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SUBSTRUCTURING METHODS FOR COMPUTING THE
NULLSPACE OF EQUILIBRIUM MATRICES*

R. J. PLEMMONS AND R. E. WHITE

Abstract. Equations of equilibrium arise in numerous areas of engineering. Applications to
electrical networks, structures, and fluid flow are elegantly described in Introduction to Applied
Mathematics, Wellesley Cambridge Press, Wellesley, MA, 1986 by Strang. The context in which
equilibrium equations arise may be stated in two forms:

Constrained Minimization Form: min(xTAx- 2xTr) subject to Ex s,
Lagrange Multiplier Form: EA-1ETA s EA-Ir and Ax r ETA.

The Lagrange multiplier form given above results from block Gaussian elimination on the 2 2 block
matrix system for the constrained minimization form. Here A is generally some symmetric positive-
definite matrix associated with the minimization problem. For example, A can be the element
flexibility matrix in the structures application. An important approach (called the force method
in structural optimization) to the solution to such problems involves dimension reduction nullspace
schemes based upon computation of a basis for the nullspace for E. In our approach to solving such
problems we emphasize the parallel computation of a basis for the nullspace of E and examine the
applications to structural optimization and fluid flow. Several new block decomposition and node
ordering schemes are suggested and reanalysis computations are investigated. Comparisons of these
schemes are made with those of Storaasli et al. for structures and Hall et al. for fluids.

Key words, substructuring, force method, discplacement method, structural optimization, fluid
flow, dual variables, reanalysis, parallel algorithms
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1. Introduction. The purpose of this paper is to develop some parallel schemes
for computing a basis of the nullspace of an equilibrium matrix with m rows and n

columns, having full row rank. Upon aggregation and then scaling, an equilibrium
matrix (or incidence matrix) E can generally be assumed to have entries 0 and 1.
Such matrices arise in a variety of applications in science and engineering (Strang
[20], [21]). Methods of finding a sparse or structured basis of the nullspace of E has

been the subject of extensive study over the past few years. Our objective here is to

consider parallel algorithms for such computations.
In general, there exists a product of elementary matrices G such that

(1) GE JR1, R2] RI[In, RIR2]

where R1 is nonsingular. Consequently, the nullspace of GE, and hence E, is gener-
ated by the columns of the block matrix

R-IR2(2) B -In-m

We will emphasize the parallel computation of a basis for the column space of B and
how it is then used in the solution of problems associated with equilibrium equations.
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An excellent general discussion of equilibrium matrices can be found in Strung
[20], where applications to electric networks, structures, and fluid flow are described
in detail. The context in which equilibrium matrices arise may be stated in two forms.

Constrained Minimization Problem:

(3) min(xTAx 2xTr) subject to Ex s.

Lagrange Multiplier Problem:

A ET x r

All matrices and vectors considered here and elsewhere in this paper are real. The
matrix A is generally some symmetric nonnegative definite matrix associated with
the minimization problem. For example, A is the element flexibility matrix in the
structures application.

In this paper we will examine the applications to structural analysis and fluid flow
computations. The structures problem of computing the system forces, displacements,
and associated stresses and strains is usually formulated as minimization of potential
energy of the elements in the structure, leading to a constrained minimization problem
of the form (3). In this case r 0, s is the vector of external loads, x is the
system force vector, and -A is the displacement vector associated with (3). Here A
is symmetric and block diagonal where each block is associated with an element of
the structure and has relatively small dimension (see McGuire and Gallagher [16] and
Huston and Passerello [12]).

In the fluid flow problems x is the vector of velocity components, A has block
structure, but is not symmetric or block diagonal. Here r and s represent the imposed
boundary conditions and is the pressure. The equilibrium (or incidence matrix) is
a discretization of the conservation of mass equation

ux + vy 0

where u is the velocity in the x-direction and v is the velocity in the y-direction. As
contrasted to the structures case, the fluid flow problem is formulated in terms of the
Navier-Stokes equations, and when appropriately discretized, they give the Lagrange
multipliers problem (4) (see Hall [11] and Hall, Porsching, and Dougall [10]).

The existence and uniqueness of solutions to problems (3) and (4) are generally
given by two sets of assumptions leading to well-known theorems. The first theorem
is relevant to the structures problem and the second is important in fluid flow com-
putations. Discussions of the first theorem can be found in Dyn and Ferguson [7] and
in Hadley [9].

THEOREM 1.1. If
(i) A is symmetric and nonnegative definite,
(ii) E has full row rank, and
(iii) A and E have no common null vector,

then problems (3) and (4) are equivalent and have a unique solution ], where x

solves (3) and

, (EET)-IE(r- Ax).
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The second theorem is established in Hall [11] and does not require A to be
symmetric. When the Navier-Stokes equations are discretized by the semi-implicit
time discretization, by the upwind discretization of the advection terms, and by the
finite difference of the viscous terms, then the assumptions of the following theorem
are true, as shown by Hall, Porsching, and Dougall [10]. Here problems (3) and (4)
are not necessarily equivalent.

THEOREM 1.2. If
(i) A has positive diagonal elements,
(ii) A is both row and column diagonally dominant and is strictly diagonally

dominant in the rows or columns, and
(iii) E has lull row rank,

then the linear system (4) has a unique solution ]. Moreover, if B is any matrix

whose columns form a basis of the nullspace of E, then BTAB is nonsingular.
There are two methods generally used to calculate the solution of (3) or (4), the

displacement method and the force (or dual variable) method.
Displacement Method. Consider (4) and assume A is invertible and E has

full row rank. Block elimination in (4) yields the steps:
(i) Solve EA-1ETA EA-Ir- s,
(ii) Solve Ax r- ETA.

This approach is called the displacement method because for structures A rep-
resents the displacements of the nodes. Here x is the system force vector and is
recovered after A is computed. On the other hand, the force method for structures
(dual variable method for fluids) involves calculating x first.

Force Method. Consider (4) and assume that Theorem 2 holds, so that BTAB
is invertible where B is a matrix whose columns form a basis of the nullspace of E.

(i) Solve Exp s, where Xp is any particular solution to Ex s.
(ii) Find a basis of the nullspace of E, given by the columns of B, and solve

BTABxo BT(r- Axp).

(iii) Set x Xp + Bxo.
(iv) Solve (EET)A E(r- Ax).

The relative merits of the two approaches have been the topic of some debate
[11], [14]. Essentially, the force method may be preferable when: (1) B is readily
computable, and (2) the row and column dimensions m and n for the equilibrium
matrix E are such that n- m << m. Then since BTAB has order n- m while
EA-ET has order m, the force method is a dimension reduction scheme.

The work in [4], [5], [6], [15], and [18] is a graph theoretic approach to the com-
putation of a sparse nullspace basis. In these papers cycle bases and bipartite graphs
are used to form a nullspace basis with as few nonzero components as possible. Al-
though this approach is not used here, we do utilize graph theoretic ideas in what
we call proper partitioned structures. In the last section of this paper we examine
the nullspace for a simple incidence (or equilibrium) matrix from incompressible fluid
flow. The sparseness of the nullspace for the cycle basis approach and our approach
are similar. We show that the nullspace calculation (forming B) can often be done by
appropriate ordering of the nodes and elements, extending certain results in [2], [8],
and [19]. This ordering yields an equilibrium matrix with a great deal of structure
which can be exploited by multiprocessing computers in forming B. Furthermore, we
will show that in the context of problems (3) and (4), the force method is particularly
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useful in the reanalysis of the problem at hand, and in the nonlinear analysis when
the components of A depend upon (x, ).

The outline of the paper is as follows. In 2 we consider a distinguished portion
of a structure and show how it generates a given block structure of E. This results
in the computation of B as in (2), where B is shown to have a useful block structure.
The third section contains the introduction of the concept of a "proper" partition
of a structure. This allows us to develop, in some cases, a very nice block structure
of E and, accordingly, B. Several examples are presented and the computation of
B on multiprocessing computers is discussed. The last two sections deal with the
applications of interest here. In 4 an application to the reanalysis of structures is
given. The final section contains an application to incompressible fluid flow.

2. Equilibrium matrices with partitioned structure. In this section we
examine equilibrium matrices that have a certain block structure which is intimately
associated with a partition of a network or undirected graph. In this regard we will
use the parlance of finite-element models of physical structures; however, the concept
to be developed can be applied to other applications such as electrical networks and
fluids (see 5).

For a given undirected graph G with node set Af and set of edges , we consider
two distinguished, disjoint sets of nodes which we call Affix and Affree. Writing S
(Af,), we call S a structure if the graph G is connected. We may think of edges,
(i, j), as elements connecting the nodes and j. A pair $1 (All, g’) is a substructure
of S if Af and are nonempty subsets of Af and c, respectively, and S is itself a
structure.

DEFINITION 1. Let S (Af,’) be a structure, where Jffree has cardinality rn
and has cardinality n. An equilibrium matrix of S is a m n matrix E (eij),
where

1 E Jfree and j (i, k) e for some k e A/’,
eij 0 otherwise.

We remark that entries 1 may be replaced by entries-1 in Definition I for directed
graphs. This situation is illustrated by Example 6 later in 5 on fluids. Also 1 may
be replaced by =t=I, where I is an identity matrix and is the dimension of
an appropriate diagonal block of A. Another possibility is to replace 1 by an /

nonsingular matrix with the sines and cosines of the angles formed by the elements
and the coordinate system (see Kaneko, Lawo, and Thierauf [13]). The first situation
is illustrated in the examples to follow.

Example 1. (a) A/" Jfree {1,2,3,4} and edge set {el,e2,e3, e4} where
the graph is given by

2 e2 3

1 e4 4

Here the equilibrium matrix is 4 4 and given by

1 1
1 1

1 1
1 1
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Note that rank(E) 3. In physical terms, this means that the structure is unstable
since E does not have full row rank. We may attach two more elements with fixed
nodes, resulting in the following example.

(b) Af Jfree [J Jfix where Jffree {1, 2, 3, 4}, Affix {5, 6} and

2 e2 3

el e3

e4 4

e5

5

1 1 1

E= 1 1
1 1

1 1 1

If the nodes are rigid, then there are three forces at each node (horizontal, vertical,
moment). In this case the l’s represent 3 3 identity matrices and E is in fact 12 18.
The equilibrium matrix E in this case has rank 12.

In general, we call a structure with equilibrium matrix E stable if E has full row
rank. A stable structure always has a basis matrix B for its nullspace which can be
expressed in the form (2). However, it is not always clear how to effectively perform
the computations in (2).

For notation purposes in what follows, the fixed nodes will either be listed last or
deleted from the set of nodes.

Example 2. This is an example of a pin-jointed-truss with 14 nodes and 39
elements. In this case each node has two associated forces and consequently the l’s
represented in E are 2 2 identity matrices.

FIG. 1. Pin-jointed-truss.

The substructures I and 2 in Fig. i are stable, whereas 3 is not stable. The connecting
elements are indicated by the light lines. If the connecting elements are attached to
substructures 1, 2, and 3, then the resulting equilibrium matrix has the block form
shown in Fig. 2.
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6x24

x24

FIO. 2. Equilibrium matrix: first form.

However, it turns out that the nullspace basis matrix is easier to compute by our
techniques if the connecting elements are associated with the last block of nodes. In
this case the equilibrium matrix takes the form in Fig. 3.

6x8 24x20

6x18

12x22

4x20

FIG. 3. Equilibrium matrix: second form.

The first three blocks for this second form for E are associated with substructures
and their nodes, and elements are disjoint from each other. The disjoint substructures
correspond to the first three diagonal blocks in the equilibrium matrix. This type of
substructuring is common, and therefore, we formalize this in the following definition.

DEFINITION 2. Let 5’ (A/’,’) be a structure and consider the collection of
pairs

{(Afk,k)" A/’k C_ Af, k C_ t, 1 _< k _< K + 1}.

The collection is called a partition of S if
(i) jf ,g-bl A.Vkf is a disjoint union,
(ii) ’ g+lk and the first K sets ’k are disjoint, and’-’k--
(iii) (A/k, k) are substructures for 1 _< k _< g.

We remark that the equilibrium matrix E resulting from a partition of S can be
assembled into the general block form shown in Fig. 4.
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FIG. 4. Block angular form.

Here the matrices Ek are the equilibrium matrices associated with the substructures
given by (Ark, Sk), 1 _< k _< K.

We are now ready to describe an effective algorithm for computing B given by
(2), where E has the block form in Fig. 4.

THEOREM 2.1. Let S (Af,$) be a stable structure with an associated partition.
Then with the equilibrium matrix E assembled into the form in Fig. 4 there is a basis
matrix B of the nullspace of E such that for some permutation matrix P, PB has
the block form given by Fig. 5.

FIG. 5. Matrix PB.

Proof. We derive PB in Fig. 5 for K 2 in Definition 2. The proof for K > 2
follows in a similar manner. By Definition 2, E can be assembled into the form shown
in Fig. 6.

FIG. 6. Matrix E for K 2.
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Then the use of either elementary row operations or orthogonal transformations will
result in a transformation of E into the form shown in Fig. 7.

0

0

FIG. 7. Matrix G1E.

Now by using row interchanges, as indicated by the arrows in Fig. 7, to move any
resulting rows with all zeros in the first two diagonal blocks to the last block, we have
the reduced form shown in Fig. 8.

FIG. 8. Matrix PIGE.

By further reduction on the bottom block there results a further form as shown in
Fig. 9.

FIG. 9. Matrix G2PGE.

Since E is of full row rank, the triangular matrices shaded in black must be invertible.
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Now, moving the column blocks between the triangular blocks to last column, as
indicated by the arrows in Fig. 9, results in the basic reduced form in Fig. 10. In Fig.
10 R1 is the left square region and [R1,R2] G2PGEP2.

FIG. 10. Matrix G2PIG EP2.

By using either block back substitution or block elementary matrices we obtain
R-R2, and note that it has the same form as R2. Thus, the mfllspace basis ma-
trix of

EP2 (G2PIG)-[R,R2] (G2PGI)-IR[I,R-R2]

is given by

-I

Thus P.B has the block form in Fig. 15, completing the proof of the theorem for the
case K 2.

In order to illustrate this form, consider the matrix E from Example 2 given by
Fig. 3. Each 6 x 18 block has full row rank 6, the rank of the 12 x 22 block is 10, and
the 4 x 20 block has rank 4. Thus the form of [R1, R.] is given in Fig. 11.

6x6 E12 ,,,28x 14

FIG. 11. Matrix [R1,R.] in Example 2.

Because of the block structure of E associated with the finite-element model of
the physical structure, certain steps in the calculation of R, R2, and B can be done
concurrently. This is summarized as follows.

Parallel Computation of B for a Stable Structure with Partition.
Step 1 In parallel, reduce each diagonal block of E to upper triangular form,

where by row permutations the zero rows are last.
Step 2 Reorder the rows so that the form of PGIE in Fig. 8 is obtained for

the general case.
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Step 3 Reduce the last row block to obtain G2P1G1E of the general form
given in Fig. 9.

Step 4 Reorder the columns to obtain the general form of G2PIGEP2
[R, R2] in Fig. 10.

Step 5 In parallel, compute R-R2 for the K / 1 blocks of rows.
Step 6 Form

B=P2T [ RR2-I ]"
In the next section we show that in some cases a proper reordering of the nodes

and elements will allow us to avoid Steps 1-3.

3. Equilibrium matrices and proper partitioned structures. As motiva-
tion for the definition for a proper partition we reconsider Example 1 with the following
ordering of nodes and elements:

2 e6 4

e2

I I I
I IE= I I I

I I

Notice the form of the equilibrium matrix E. The diagonal blocks have inverses and
correspond to stable substructures given by

({a,4},

The remaining elements, e5 and e6, connect these stable substructures.
DEFINITION 3. Let {Sk (Afk,k); k 1,...,K + 1} be a partition of S

(Af, ). A partition is called proper if
(i) Afg+l is empty.
(ii) Ark and :k have the same cardinalities for 1 _< k _< K.
(iii) Sk are stable for k 1,..., K; that is, each block Ek of E has an inverse.

We remark that the equilibrium matrix E for a structure with a proper partition
must have the form given in Fig. 12.
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FIe;. 12. Matrix E JR1, R2].

Here we define R1 diag(E1,E2,... ,EK). The elements of EK+I are often called
the redundant elements of the structure. Since the diagonal blocks of R1 are square
and nonsingular, the structure must be stable. The following examples will illustrate
that R2 often has a great deal of structure. In each example we indicate the parallel
portions of the computation of

Example 3. Consider Example 2 with the eight disjoint stable substructures
given by the dark lines (Fig. 13). The connecting elements E9 are indicated by light
lines.

FIG. 13. Example 2 with eight disjoint stable substructures.

Since this is pin-jointed truss, each 1 in the equilibrium matrix is a 2 x 2 identity
matrix and E is 28 x 88.
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FIG. 14. Equilibrium matrix form for Fig. 13.

The diagonal blocks in Fig. 14 are

Ek
1

E4

=I for k=1,2,3,6,7,8 and
1

I I

Eh=
I I

I I I--- 2 2 identity.

I

Note the "diagonal" structure of R2 which is a result of ordering the connecting
elements from the left to the right. The parallel computation of R-1R2 is clear. In
this case the work to be done on each substructure is not equal. So, we might want
to consider three groups of substructures {$1, $2, $3}, {$4, $5}, and {$6, $7, Ss}.

Example 4. Consider a rigid frame which models a wheel with eight spokes (Fig.
15). Each spoke is a stable substructure and together they form a proper partition.
The connecting elements are indicated by the light lines e33,"’, e40.

,I e2o

FIG. 15. Rigid frame that models a wheel.
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There are 32 nodes with three forces at each node. Thus, E will be a 96 120 matrix
of the form

E1 f f
E f

E3
E4

E5
E6

E7

where

0 I I I -I I -I
0 I I I -I I

Ek E0 I I I -I
I I I

fork= 1,

Then R-1R2 is easily computed and B is the 120 24 matrix given by

-I
-I

-I
-I

-I
-I

-I

,8.

g is defined by E-if. The above calculations can be done concurrently.

Example 5. Th’is example of a pin-jointed structure illustrates how a nested
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structure (Fig. 16) of the elements will yield a very nice structure of R2, and con-
sequently, B. This gives a more complicated form of R2 in E [R1,R2], where a
proper partition is identified.

FIG. 16. Pin-jointed-truss with nested structure of the elements.

The eight stable substructures are given by the dark lines. The dark and regular lines
indicate four disjoint substructures. The light lines are elements which connect these
four substructures. There are 30 nodes and 79 elements and two forces at each node.
Therefore, the equilibrium matrix E is 60 158 and has the form shown in Fig. 17.

FIG. 17. Equilibrium matrix form for Fig. 16.

The blocks of R2 can be grouped to match those in R1. This allows us to implement
the computation of RIR2 on a multiprocessing computer.

4. Reanalysis of structures and the force method. In this section we apply
the force method and the above structure of the nullspace matrix to the reanalysis of a
structure. Reanalysis refers to the analysis of a structure which has been only slightly
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modified. We will assume that only one element has been modified and that the
equilibrium matrix remains unchanged. We assume the equilibrium matrix has full
row rank. Thus, in (4) r 0, A diag (Ak), where each Ak is an nk X nk symmetric
positive-definite matrix. A will be modified by changing one Ak to Ak +k where
the } are nk nk; we may assume the perturbation of Ak may be written in the form

k (see Batt and Gellin [1]).
Since A is symmetric positive definite, A has a Cholesky factorization A GTG.

Step (ii) of the force method may be viewed as the normal equation of a least squares
problem

BTGTGBxo .-_BTGTGxp.

Thus, let GB QR be the QR factorization and find Xo by solving

(6) Rxo -QTGxp.

Here, R-1 exists because B has full column rank.

The advantage of the force method is that we can use the QR factorization of the
unperturbed problem (5) to solve the perturbed problem

T TBT (A + ekSk6k ek B(xo + Axk) -BT (A + ek6k6[e) Xp.

Here only the kth block of A has been perturbed by 55. We have used the notation

e for a n nk matrix

kth block, I nk nk identity and

Aisnn,
Eismn,
B is n (n-m),

BTek is (n- m) nk matrix consisting of the
kth block column of BT.

The key formula in the proof of the following theorem is the Sherman-Morrison-
Woodbury formula (see Ortega and Rheinboldt [17]):

(8) (A + uvT)-1 A- A-U(I + vTA-1U)-IvTA-1

Here (A + uvT)-1 exists if and only if (I + VTA-U)-1 exists.
THEOREM 4.1. Let Xo be the solution of (5) (or equivalently (6)). Let GB QR

where A GTG is symmetric positive definite and B has full column rank. Then the
solution of (7) is given by Xo + Axk, where

(9) Axk [R-R-T R-R-TUk(I + U[R-IR-TU)-U[R-R-T] f,
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Uk BTekbk (n m) nk matrix,

I nk nk identity matrix,

fk _BTekk T TQ e (Bxo + x).

Proof. Consider (7) where Xo satisfies (5)

TeTBT(A + ekbkb[e[)B(Xo + Axk) -BT(A + eoa )Xp,

T TB(Xo + AXk) _BTAxp BTekbk T TBTABxo + BTABAxk + BTekbkbk ek 5k ekXp"

Since (5) holds and A GTG,

(BTGTGB + BTekbkb[e[B)Axk --BTekbkb[e(Bxo + Xp) =-- fk.

Apply the Sherman-Morrison-Woodbury formula (8) with the following substitutions

A BTGTGB RTQTQR RTR,
A-1 R-IR-T
U Uk BTekk,
V Uo

This completes the proof of the theorem. D

Note, I / U[R-R-TUk in (9) is an n n symmetric positive-definite matrix,
and therefore, its inverse exists and is simple to compute for small nk.

T matrices in (9) reduces the amount of com-The appearance of the ek and e
putation. The nk usually ranges from one to ten. Also, B is usually sparse. The
calculation of the QR factorization of GB often can be done in parallel. Consider
Example 4 where B has a block structure. The Givens transformations can be used
in parallel by concurrently working on the eight column blocks. The -I in row block
33 and column block 1 can be used to annihilate the components in row blocks 1-4
and column block 1. At the same time the terms in row blocks 5-8 and column 2 can
be annihilated by the -I in row block 34 and column block 2. The remainder of the
top 32 row blocks can be annihilated concurrently in a similar manner.

5. Applications to incompressible fluid flow. In this section we consider
an application of the force method, the proper partition of the finite difference grid
(structure), and the time induced reanalysis to incompressible fluid flow (see [3] or

[11]). As noted in Hall [11], an appropriate discretization of the Navier-Stokes equa-
tions will yield a sequence of problems of the form (4). The matrix A will change a
little from one time step to the next. As E reflects the conservation of mass equation,
it remains fixed. In this section we illustrate how we can approximate the solution of

(10) BT(A + AA)B(xo + Ax) BT(r --(A + AA)xp)

where AA represents a change in A because the velocity has changed from one time
step to the next time step(s). We want to make use of the solution process when AA
0 and Ax 0, that is, the LU factorization of BTAB is known. The perturbation AA
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of A, unlike the perturbation for structures, may change every row of A. However,
the magnitude of AA, IIAAII, may be small for suitably small changes in time. Also,
A is not symmetric, but BTAB is invertible (see Theorem 1.2).

Before we consider the details, we review an example given in Burkardt, Hall, and
Porsching [4] and Hall [11]. Consider the incompressible fluid flow about an obstacle
with no-slip boundary conditions at the walls (Fig. 18).

FIG. 18. Fluid flow about an obstacle.

A finite difference grid with 14 cells has 21 unknown velocity components given by
the following vectors in Fig. 19.

FIG. 19. Finite difference grid for Fig. 18.

(A full numbering of this network is given in Hall [11].) Each cell is analogous to a
free node and each vector component is analogous to an element. The nodes to the
right of vectors Vb, vs, and v13 are fixed nodes. The connected graph is now directed
and the corresponding equilibrium matrix has entries 0 and :t=1, called an incidence
matrix in [11]. For example, row 9 in the incidence matrix reflects the conservation
of mass for cell 9:

V8 V7 V17 V21
/ -0,

h h

where h Ax Ay. Except for cells 6 and 7, each horizontal row of cells is similar
to a stable substructure. The incidence matrix is almost in the form given by a proper
partition. It fails to be a proper partition because the cells 6 and 7 with the vector
v6 is not a stable structure. The incidence matrix E is given:
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-1
O0

-1 0 0
0 10
0-1

-1
-1

-1
-1

-1
-1

-1
-1

/I
-1 /1

-1
-I -I-i

-i +i

Execute the following elementary row operations:

add row 6 to row 7,
interchange row 7 and row 14,
add row 14 to row 1,
subtract row 14 from row 6.

Representing these by a matrix G we have the following matrix GE:
0

-1 -1 0
-1 0

-1 -1
-1

-1 0
0

-1 0 0

0 -1 -1 0 0

0
0

-1
0 0
0 0

0

0 0
0-1 0
0 0-1

-I
-I 0

-I
-i

0 0 -1 -1 0 0

The matrix GE has the form which is associated with a proper partition. Conse-
quently, the nullspace of E is given by the span of the columns of B which is a 21 x 7

0
0
0 -I
0 -l

-i
0
0

0
-1

-1

-1

matrix:
-1 -1
-1 -1
-1 -1
-1 -1
-1 -1
0 0 0
0 0 -1 0
0 0 -1 -1

0

-1 -1 0 0

-1
-1

-1
-1

-1
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It is interesting to compare this nullspace basis with the basis/ obtained in Hall [11]
by using graph theoretic ideas. In [11],/} is a little more sparse, but/ may not be
constructed by utilizing the properties of a proper partition.

In the above, the incidence matrix was initially not in the form associated with
a proper partition of a structure. We can reorder the nodes so that the correspond-
ing incidence matrix does have the desired form. This is indicated by the following
example where the three substructures are given by the dark lines.

Example 6. Consider the following proper partition of a finite difference grid
(structure) (Fig. 20).

2 10 8

11 13 14 i

12
FIG. 20. Proper partition of a finite difference grid.

Then the associated equilibrium matrix E has the following form:

-1

-1
-1

-1

-1

-1

-1
-1

-I

-1
-1

-1
-1

The resulting R-1R2 has the form

R-[1R2

-1
-1
-1
-1

-1
-1
-1
-1
-1

-1
-1
-1
-1

-1
-1

-i

Then B has the form
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1
1 1
1 1
1 1
1 1
1 1
1 1

-1
-1
-1
-1

-1 1
-1 -1 1
-1 -1 1
-1 -1 1
-1 -1 1
-1

-1
-1

-1
-1 -1

1
1 1

-1
-1

1
1 1

-1
-1

Consider the perturbed problem (10), and assume the solution for (10) with AA
0 is given by Xo. Theorem 2 gives conditions on A and B that are applicable to fluid
flow problems. Suppose that BTAB LU has a known LU factorization. Then the
solution of equation (10) can be approximated for suitably small AA.

THEOREM 5.1. Let (BTAB)-1 exist and Xo satisfy (10) with AA O. Then for
suitably small AA,

(11) (AX)m+l (BTAB)- [-BTAAB(Ax)m BTAA(Bxo + Xp)]
converges to Ax and Xo + Ax satisfies (10).

Proof. Write (10) in expanded form:

BTABxo + BTABAx + BTAABxo + BTAABAx BT(r- Axp) BTAAxp.
Since BTABxo BT(r Axp),

BTABAx + BTAABAx -BTAA(Bxo + Xp).

Or, as (BTAB)- exists,

Ax (BTAB)-(-BTAAB)Ax (BTAB)- (BTAA(Bxo + Xp))
So, if p ((BTAB)-(-BTAAB)) < 1, then the iterative scheme (11) must converge.
Since

II(BTAB)-I(-BTAAB)[I <_ II(BTAB)-II IIBT/XABII,
we have the desired result for suitably small AA. [3

As already mentioned, we must solve a sequence of problems of the form (4) where
A is changing with each time step. It is not necessary to compute the LU factorization
for each BTAB. In particular, we may use the following scheme for solving (4) with
A replaced by At the value of A at the/th time step:
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(i) Factor BTAtB LtUt and solve (4) for Xo xt the value of x at the
lth time step.

(ii) Approximate Axk in BTAt+kB(xt + AXk) BT(r- At+kXp) by using
line (11) in Theorem 5 with AA At+k- At and 1 _< k _< K.

(iii) Repeat (i) and (ii) with l replaced by l + g. The size of g will be
determined by AA and the magnitude of p ((BTAB)-I(BTAAB)) in
the iterative scheme (11).

There are several advantages of using the force method to solve the full system
in (4). The force method is a variable reduction scheme which involves solution of
reduced linear systems with BTAB. Theorem 5 shows that BTAtB does not require
a new LU factorization for each/. The matrix B is a nullspace basis matrix for an
incidence matrix E; where, upon appropriate ordering of the cells, E has the features
of a proper partitioned equilibrium matrix. Consequently, B is easily computed and
can have a useful structure of its own which can further simplify the solution of linear
systems with BTAB. D
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STABILITY ANALYSIS OF ALGORITHMS FOR SOLVING CONFLUENT
VANDERMONDE-LIKE SYSTEMS*

NICHOLAS J. HIGHAM"

Abstract. A confluent Vandermonde-like matrix P(a0, a, an) is a generalisation of the confluent
Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the
polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px b and Pra f in
O(n2) operations are derived. Forward and backward error analyses that provide bounds for the relative error
and the residual of the computed solution are given. The bounds reveal a rich variety of problem-dependent
phenomena, including both good and bad stability properties and the possibility ofextremely accurate solutions.
To combat potential instability, a method is derived for computing a "stable" ordering of the points ai; it
mimics the interchanges performed by Gaussian elimination with partial pivoting, using only O(t/E) operations.
The results of extensive numerical tests are summarised, and recommendations are given for how to use the
fast algorithms to solve Vandermonde-like systems in a stable manner.

Key words. Vandermonde matrix, orthogonal polynomials, Hermite interpolation, Clenshaw recurrence,
forward error analysis, backward error analysis, stability, iterative refinement
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1. Introduction. Let {Pk(t)} :0 be a set of polynomials, where Pk is of degree k,
and let a0, a l, O/n be real scalars, ordered so that equal points are contiguous,
that is,

1.1 O/i aj <j) O/i-- O/i + O/j.

We define the confluent Vanderrnonde-like matrix

P=P(ao, al,"" an):[qo(ao),ql(cl)"’" qn(an)]6R(n+)(n+)

where the vectors qj(t) are defined recursively by

[po(t), pl(t), pn(t)] r ifj=0 or aj.=/= a_ l,

q(t)= d
qj- (t), otherwise.

In the case of the monomials, pk(t) , this definition yields the well-known confluent
Vandermonde matrix [9], [4]. When the points O/i are distinct we can write P
(pi(txj))in,j=o, and P is referred to as a nonconfluent Vandermonde-like matrix [12 ]. For
all polynomials and points, P is nonsingular; this follows from the derivation of the
algorithms in 2.

Various applications give rise to confluent or nonconfluent Vandermonde or Van-
dermonde-like systems

(1.2) Px b (primal)

and

(1.3) Pra f (dual).
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Three examples are the construction of quadrature formulae 2 ], 14 ], 15 ], rational
Chebyshev approximation ], and the approximation of linear functionals 3 ], 22 ].

For the monomials, with distinct points ai, efficient algorithms for solving the primal
and dual Vandermonde systems are given in 5 ]. These algorithms have been generalised
in two ways: in [4] they are extended to confluent Vandermonde matrices, and in [12]
they are extended to nonconfluent Vandermonde-like matrices, under the assumption
that the polynomials Pk(t) satisfy a three-term recurrence relation. In 2 we blend these
two extensions, obtaining algorithms for solving (1.2) and 1.3 ), which include those in
5 ], 4 ], 12 as special cases. We also show how to compute the residual vector of the

dual system efficiently using a generalisation of the Clenshaw recurrence.
In 3 we present an error analysis of the algorithms of 2. The analysis provides

bounds for both the forward error and the residual of the computed solutions. It makes
no assumptions about the ordering or signs of the points ai, and thus extends the error
analysis in 11 ].

To interpret the analysis we compare the error bounds with appropriate "ideal"
bounds. This leads, in 4, to pleasing stability results for certain classes of problem, but
also reveals grave instabilities in some other cases. The instabilities can be interpreted as
indicating that the natural, increasing ordering of the points can be a poor one. In 5
we derive a technique for computing a more generally appropriate ordering. The method
is based on a connection derived between the stability of the fast algorithms and the
stability of Gaussian elimination. As a means for restoring stability, the re-ordering ap-
proach has several advantages over iterative refinement in single precision, which was
used in 12 and 21 ].

Numerical experiments are presented in 6. Finally, in 7 we offer recommendations
on the use ofthe fast algorithms for solving Vandermonde-like systems in a stable manner.

2. Algorithms. Assume that the polynomials pk(t) satisfy the three-term recur-
rence relation

(2. la) pj + Oj( tOj)pj( .yjpj_ ), j >= 1,

with

(2. lb) po(t) 1, pl(t)=Oo(t-13o)Po(t),

where Oj 4 0 for all j. Algorithms for solving the systems (1.2) and (1.3) can be derived
by using a combination ofthe techniques in 4 and 12 ]. Denote by r(i) >- 0 the smallest
integer for which ci- Cr(i). Considering, first, the dual system (1.3), we
note that

(2.2) b(t) aiPi(t)
i=0

satisfies

( (i- r(i))(Oli) fi, 0 <-- <= n.
Thus 4 is a Hermite interpolating polynomial for the data { ai, f }, and our task is to
obtain its representation in terms of the basis p;(t) ’= 0. As a first step, following 4 ],
we construct the divided difference form of :
(2.3)

n

(t) c (t-cg.).
i=0 j =0
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The (confluent) divided differences ci- f[ao, a, ai] may be generated using the
recurrence relation 4 ], 20, p. 55

f[aj-k- 1,

(2.4)

Now we need to generate the ai in (2.2) from the C,i in (2.3). We can use the recurrences
in [12], which are unaffected by confluency; these are derived by expanding (2.3) using
nested multiplication, and using the recurrence relations (2.1) to express the results as
a linear combination of the polynomials P2.

In the following algorithm Stage computes the confluent divided differences. We
use an implementation of(2.4) from 6, pp. 68-69 ], in preference to the more complicated
version in [4]. Stage II is identical to the corresponding part of the dual algorithm
in [12].

ALGORITHM 2.1 (Dual, era f). Given parameters { 02,/2, % }J’---o a vector f,
and points { a } 7-- o satisfying 1.1 ), this algorithm solves the dual system Pra f.

Stage I: Set c f
Fork=0ton-

clast Ck
Forj=k+ lton

Ifa2 aj_k_ then
c2 c2/(k + 1)

else
temp c

c2 (c2 clast)/(a2 a2- k- 1)
clast temp

endif
endfor j

endfor k

Stage II: Set a c
a,,_ an- + (0 an- 1)an
a,, a,,/Oo
For k n 2 to 0 step -1

ak a + ([3o ak)a, + + (’y1/O1)ak /
Forj= lton-k-2

ak+j a+j/Oj_ + (j-- Ok)a++ + (’yj+ /Oj+
endfor j
a. a. /0._ k- 2 + (/3. k- ak

an an/On- k--

endfor k

In the algorithm the vectors c and a have been used for clarity; in fact both can be
replaced by f, so that the fight-hand side is transformed into the solution without using
any extra storage. Assuming that the values %./02 are given (note that 3’2 appears only in
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the terms 3’/0j) the computational cost of Algorithm 2.1 is n(2n + )M and at most
n(5n + 3)/2A, where M denotes a multiplication or division, and A an addition or
subtraction.

An algorithm for solving the primal system can be deduced immediately, using the
approach of [4], [5 ], [12 ]. We will show in 3 that the dual algorithm effectively
multiplies the fight-hand side vector f by P-T, employing a factorisation of p-T into
the product of 2n triangular matrices. Taking the transpose of this product we obtain a
representation of P-, from which it is easy to write an algorithm for computing
x P-b.

n-IALGORITHM 2.2 (Primal, Px b). Given parameters 0,/3j, 7}=0, a vector b,
and points { ai } = 0 satisfying 1.1 ), this algorithm solves the primal system Px b.

StageI: Setd=b
For k 0 to n 2

Forj n- kto 2 step-1
dk +j (3’- ,/0_ 1)dk +j- 2 + (j--l ak)dk +j- + dk +j/Oj-

endfor j
dk + (13o ak)dk + dk + /00

endfor k
d, 030 Oln- )d,_ + d,/Oo

Stage II: Set x d
Fork=n- lto0step-1

xlast 0
Forj=ntok+ lstep-1

If cj cj_ k- then
xj= xj/(k + 1)

else
temp xj/(a- a_
x temp- Mast
Mast temp

endif
endfor j
Xk Xk- xlast

endfor k []

Algorithm 2.2 has, by construction, the same operation count (to within one ad-
dition) as Algorithm 2.1. Values of 0j., /j., 3’j for some polynomials ofinterest in Algorithms
2.1 and 2.2 are given in Table 2.1.

For practical use of Algorithms 2.1 and 2.2 it is important to be able to calculate
the residual, in order to test that the algorithms have been coded correctly (for example)
and, perhaps, to implement iterative refinement (see 5). Ordinarily, residual compu-
tation for linear equations is trivial, but in this context the coefficient matrix is not given
explicitly, and computing the residual turns out to be conceptually almost as difficult,
and computationally as expensive, as solving the linear system!

To compute the residual for the dual system we need a means for evaluating (t)
in (2.2) and its first k =< n derivatives, where k max/( r(i) is the order ofconfluency.
Since the polynomials pj. satisfy a three-term recurrence relation we can use an extension
ofthe Clenshaw recurrence formula. The following algorithm implements the appropriate
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TABLE 2.1
Parameters in the three term recurrence (2.1).

Polynomial

Monomials 0 0
Chebyshev 2* 0

2j+l
Legendre*

j+

Hermite 2

Laguerre
j+l

J0
j+l

0 2j

J2j+l
j+l

*0o

*p2(l)-

recurrences, which are given in 18 ]; we note that an alternative derivation to that in
[18] is to differentiate repeatedly the original Clenshaw recurrence and to rescale so as
to consign factorial terms to a "clean-up" loop at the end.

ALGORITHM 2.3 (Extended Clenshaw recurrence [18 ]). This algorithm computes
the k + values yj p tJ)(x), 0 <= j <= k, where is given by (2.2) and k =< n. It uses a
work vector z of order k.

Setyi=zi=0 O, 1, k)
yo an
Forj=n- lto0step-1

temp Yo
Yo Oj(x- j)Yo "yj+Zo + aj

Zo temp
For to min (k, n -j)

temp Yi
yi Oj((X-- j)Yi + Zi-l) "Yj+lZi

zi temp
endfor

endforj
m=l
For 2 to k

m=m,i

Yi m , yi
endfor [:3

Cost. 3 n + kn k(k / 2 (M + A + 2 max { 0, k } M.
Computing the residual using Algorithm 2.3 costs between approximately

3n/2(M + A) (for full confluency) and 3n2(M + A) (for the nonconfluent case).
The residual for the primal system can be computed in a similar way, using recur-

rences obtained by differentiating (2.1).

3. Rounding error analysis. In this section we derive bounds for the forward error
and the residual ofthe computed solution obtained from Algorithm 2.1 in floating point
arithmetic. Because ofthe inherent duality between Algorithms 2.1 and 2.2 all the results
that we state have obvious counterparts for Algorithm 2.2.

The key to the analysis is the observation that Algorithm 2.1 can be expressed
entirely in the language ofmatrix-vector products (a similar observation drives the analysis
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of a related problem in [19 ]). In Stage I, letting ck) denote the vector c at the start of
the kth iteration of the outer loop, we have

(3.1) c) =f, Ck + )= Lkck) k=O, n-1

We will adopt the convention that the subscripts of all vectors and matrices run from 0
to n. The matrix Lk is lower triangular and agrees with the identity matrix in rows 0 to
k. The remaining rows can be described by, for k + =< j _-< n,

[ eTl (k +
t (e- er )/(a- a_k_

if aj= aj-k-1,

for some s <j, otherwise,

where ej is column j of the identity matrix. Similarly, Stage II can be expressed as

(3.2) atn)=cn), ak)=Ukak+l), k=n-l,n-2,...,O.

The matrix Uk is upper triangular, it agrees with the identity matrix in rows 0 to k
and it has zeros everywhere above the first two superdiagonals.

From 3.1 and (3.2) we see that the overall effect ofthe Algorithm 2.1 is to evaluate
step by step the product

(3.3) a Uo" "U,-1L,-I" "Lof =--P-Tf.
We adopt the standard model of floating point arithmetic [6, p. 9]"

(3.4) fl(xopy)=(xopy)(l+5), lSl=<u, op=+,-,,,/,

where u is the unit roundoff. In line with the general philosophy of rounding error analysis
we do not aim for the sharpest possible constants in our bounds, and are thus able to
keep the analysis quite short.

THEOREM 3.1. Let Algorithm 2.1 be applied in floating point arithmetic tofloating
point data ai, f } ?= o. Provided that no overflows are encountered the algorithm runs to
completion, and the computed solution d satisfies

Id-al <=c(n,u)lUol’" IU,,-,I IL,-,I"" ILol Ifl,

where, with # (1 + u)4 1, c(n, u) (1 + /.t) 2n- 8nu + O(u2).
Proof. First, note that Algorithm 2.1 must succeed in the absence of overflow, be-

cause division by zero cannot occur.
Because of the form of Lk, straightforward application of the model (3.4) to the

components of (3.1) yields

(3.5) (k + 1) DkLk(k),
where Dk=diag(di), with di= for 0=<i -<k, and (l-u)<=di<=(1 +u) for
k+ l=<i<-n. Thus

IDk--II =<[(1 +u)3- 1]I,

and hence (3.5) may be written in the form

(3.6) dk+ l)=(Lk+ ALk)k), ALkI <=[( + u)3--1]I Lk].

Turning to (3.2), we can regard the multiplication ak) Ukak+) as comprising
a sequence ofthree-term inner products. Analysing these in standard fashion, using (3.4),
we arrive at the equation

(3.7) d k) Uk + AUk)dk + 1),



CONFLUENT VANDERMONDE-LIKE SYSTEMS 29

(k)
where we have taken into account the rounding errors in forming ui, +l j- ak and

(k)
Hi,i+ 2 ’l’j+ l/Oj+ k + j).

Since 0) f, and (0), (3.6) and (3.7) imply that

(3.8) d=(Uo+AUo)’"(U,,-+AU,,-I)(L,,-I+AL,,-)’"(Lo+ALo)f

where, on weakening (3.6), we have

IAUkI<=IUkl, IAZkl<--ulZkl, #-(l+u)4-1.

Now we make use ofthe following perturbation result that is easily proved by induction:
For matrices X + AXe, if lAXl <-_ Xj. for all j, then

m m m

YI (Xj+AXj)- II xj _--<[(1 q-t$)m+--11 II IXl.
j =0 j =0 j =0

Applying this result to the difference of 3.8 and (3.3), we obtain the desired bound for
the forward error.

In the course of proving Theorem 3.1 we derived (3.8), a form of backward error
result. However, (3.8) is of little intrinsic interest because the perturbations it contains
are associated with the matrices Uk and Lk, and not in any exploitable way with the
original data { ai,f} (and, possibly, { Oj, j, ")l’j} ). The appropriate way to analyse backward
error, as we will explain in 4.2, is to look at the residual, r f- Pra (cf. the similar
approach taken in a different context in [7 ]). Rearranging (3.8),

(3.9) f =(Lo+ALo)-...(Ln_+ALn_I)-(Un_+AUn_)-’"(Uo+AUo)-d.
From the proof of Theorem 3.1 we can show that

(Lk+ALk)-=L-+Ek, IEkl<=[(1-u)-3-1]lL- I.
Strictly, an analogous bound for (Uk + AUk)- does not hold, since AUg cannot be
expressed in the form of a diagonal matrix times Uk. However, it seems reasonable to
make a simplifying assumption that such a bound is valid, say,

(3.10) (Uk+AUk)-=u-l+Fk, ]Fkl<=[(l-u)-4-1]lU[.
Then, writing (3.9) as

f= (L + Eo) .(L + En_ )(U +Fn- ) "( U + Fo)d

pTd+ LI...L-I_IEkL-I+I ...LIIUII...UI
k=O

+
k=O

we obtain the following result.
THEOREM 3.2. Under the assumption (3.10), the residual ofthe computed solution

dfrom Algorithm 2.1 is bounded by

If-Pl <-dulLtl IL-, O-, I" IO I1 / O(u2),
with d, 7n.

In common with most error analyses the one above uses a profusion oftriangle and
submultiplicative inequalities, and consequently the bounds will usually be unrealistic
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error estimates. However, as we will see, they are well able to reveal extremes ofbehaviour,
with respect to accuracy and stability.

4. Implications for stability. Now we pursue the implications ofthe error analysis.
To interpret the forward error bound of Theorem 3.1 and the backward error bound of
Theorem 3.2 we need to use two different notions of stability. We consider these separately
in 4.1 and 4.2, since there is no simple relation between them and each is ofindependent
interest. We will focus attention mainly on the nonconfluent case, making briefcomments
about the effects of confluency.

4.1. Weak stability. To interpret the forward error bound

(4.1) Id-al <c(n,u)lUol IU- ltn- I"" It0l Ifl
from Theorem 3.1 we need an "ideal" bound with which to compare it. Following the
approach of 11, 4 we consider the effect of a small, element-wise perturbation in f.
IfPr(a + 6a) f + f with 18fl -< u Ifl, then it is easy to show that

(4.2) 18al <ule-l Ifl,

and that equality is attained for suitable choice of 6f. This prompts the informal definition
that an algorithm for solving Pra f in floating point arithmetic is weakly stable if the
error in the computed solution is not much larger, in some appropriate measure, than
the upper bound in (4.2). A useful way to interpret the definition is that if the machine
fight-hand side vector is inexact, then a weakly stable algorithm solves the machine
problem to as good an accuracy as the data warrants.

By comparing (4.1) and (4.2) we see that Algorithm 2.1 is certainly weakly
stable if

(4.3) IUol IUn-ll ILn-I l" ILol <-bnlP-rl =b.lUo.. "gn-lLn-1 "Lol
for some small constant bn >-- 1. This condition requires that there be little subtractive
cancellation in the product Uo" Un_ 1L_ 1" Lo. Suppose the points are distinct and
consider the case n 3. We have

p-r= UoUI U2L2L Lo
/3o-ao 1/01 0 0 0 0
0 1 0/0 ’’2/02 0-- 19/1 ’1/01

0i-I /2 O/0 0
0 0i-

(4.4)

0 0 0
0 0 0
0 Or2 0 0
0 0 0 --1/(O3-- a0)

I 0 1/(Or2 OtO)
0 0 --1/(a3-- Oil)

--1/(al--aO) 1/(al --ao)
0 --1/(OZ2-- al)
0 0 1/(03-- 02
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There is no subtractive cancellation in this product as long as each matrix has the alter-
nating sign pattern defined, for .4 (a0) by (-1 )i +jao => 0. This sign pattern holds for
the matrices Li if the points ai are arranged in increasing order. The matrices Ui have
the required sign pattern provided that (in general)

(4.5) 0i>0, -yi>-0 foralli, and [i--Olk<--O foralli+k<=n-1.

Hence we obtain the following result, where we weaken the last condition to/3i 0 and
O/i --- 0 for all since i 0 holds for most of the commonly occurring polynomials.

COROLLARY 4.1. If 0 <= ao < al < < an, and O; > O, i 0 and /; >- O for all
i, then

Id-al <=c(n,u)le-rl If I,

where c( n, u) is defined in Theorem 3.1, and hence, under these conditions, Algorithm
2.1 is weakly stable, ff]

Corollary 4.1 is stated without proof in 12, 3 ]. In the special case ofthe monomials
(0; 1,/3; yi 0) Corollary 4.1 is essentially the same as the main result of[ 11, Thm.
2.3 ]. As shown in 11 ], the bound in the corollary can imply high relative accuracy even
when P-r is large. To see this, note that under the conditions of the corollary p-r
has the alternating sign pattern, since each of its factors does; thus if (-1 );f >_- 0 then

P-rllfl P-rfl al, and the corollary implies that d is accurate essentially to
full machine precision.

The nonnegativity condition on the points_a; in Corollary 4.1 is rather restrictive,
since points of both signs are likely to occur in practice. Suppose, then, that we alter the
conditions of Corollary 4.1 to allow that

(4.6) Olo < < Olm < O Olm + < < Oln, O <= m <= n 1.

The matrices Li retain the alternating sign pattern, as do Um+ 1, ", Un- 1. But U0, ",

Um lose the sign property, and so there is subtractive cancellation within the product
Uo"" Un-ILn-1"’" Lo. It is possible to derive an a priori bound for the effect of this
cancellation. For example, we have Ui >= 0 for 0 =< -< m, and so

IU01 IUn-, Itn-, I"" It01 =Uo’"UmlUm+,’"U-,L.-,"’Lol

(4.7)
BI B-BUm+ "" Un- 1Ln-1"’" L01

=BIB-p-r

<=BIB-IIIP-I,
where B Uo"" Um. However, in our experience this inequality is quite weak, and to
obtain a manageable bound for the term B IB-II would produce a substantial further
weakening. Therefore we adopt an empirical approach.

For various distributions of distinct points i E [-- 1, ], ordered according to (4.6),
we evaluated for the monomials, and for the Chebyshev polynomials Tk(t), the ratio

(4.8) qn
u01.., lUg-, ltn-I I"" It0111+ 1.

This quantity is a norm-wise analogue of bn in (4.3); we have taken norms because for
points satisfying (4.6) inequality (4.3) can fail to hold for any bn, since P-r can have a
zero element while the lower bound matrix in (4.3) has a nonzero in the same position.
Note that qn can be interpreted as a measure of the sensitivity of the factorisation
p-r= Uo’" Un-ILn-1’’" Lo to perturbations in the factors. Loosely, for a particular
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problem we would expect Algorithm 2.1 to perform in a weakly stable manner only if
qn is not too large compared to one.

Values of qn, together with the condition number Koo (Pr) Prll P- rll are
presented for two representative point distributions in Figs. 4.1 and 4.2. The qn values
for the monomials are reasonably small, but suggest some potential instability. More
seriously, the results indicate severe instability of Algorithm 2.1 for the Chebyshev poly-
nomials; for example, with n 30 and ai the extrema of Tn, there is a potential loss of
up to 14 figures in solving an almost perfectly conditioned linear system (cf. problem
(6.3)). Instability of this magnitude was diagnosed in [12], and a heuristic explanation
is given there. The present analysis reveals the source ofthe problem: the matrix factorisa-
tion at the heart of Algorithm 2.1 is, in some cases, an unstable one, in the sense that
the product is unduly sensitive to small perturbations in the factors.

If the order of confluency k is positive, and the points are in increasing order, then
the alternating sign condition fails to hold for at least one of Lo, "’", Lk-i. A result
similar to Corollary 4.1 can be obtained using the technique employed in (4.7). For
example, if k then the bound in Corollary 4.1 can be replaced by

Id-al <=c(n,u)le-l IMI If I,

where M L Lol is unit lower triangular and satisfies Imol <= 2.

4.2. Backward stability. We turn now to the residual bound in Theorem 3.2:

(4.9) If -erdl <dulLr IL1 ullU-l’"lUff ldl+O().

For comparison, if d agrees with a to working precision (e.g., d fl (a)) then

and so

(4.10) If-PHl er&71 =< ul PI 171.
We take (4. 0), and the norm-wise version

(4.11 f Prll --< u Prll all
as our model bounds for the residual vector. Connections with the usual notion ofback-
ward error are that (4. 0) is true if and only if, for some E 16 ], 17 ],

(4.12) (Pr+E)=f, IEI <-ulerl,
and (4.11 implies

(4.13) (pr+F)=f, Ilfll-<-n’/2ullerll (F=(f-Pra)ar/ara).
Thus (4.10) and (4.11 are equivalent to the condition that d is the solution of a linear
system obtained from Pra f by slightly perturbing pr, in the element-wise sense in
(4. 2), or the norm-wise sense in (4.13). Note, however, that these perturbed matrices
are not, in general, Vandermonde-like matrices.

For the monomials, with distinct, nonnegative points arranged in increasing order,
the matrices Li and Ui are bidiagonal with the alternating sign pattern, as we have seen
in 4.!. Thus L-1 >= 0 and U-l >_- 0, and since pr Ll...L_lU_l...Ul, we
obtain from (4.9) the following pleasing backward stability result.

COROLLARY 4.2. Let 0 <= ao < a < < an, and consider Algorithm 2.1 for the
monomials. Under the assumption (3.10), the computed solution d satisfies

If -erdl <=dnulerl Idl /O(u2),
with dn 7n. ff]
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To investigate the general case (permitting confluency) it is useful to approximate
the matrix product in (4.9) by its lower bound in

ILl UI :- L61’’’ L]-I l] U,’" U’I =< Lll L]--11 u’_, I... u’ I,

where Pr LU is an unnormalised LU factorisation. In so doing we make the residual
bound smaller and so we are still able to draw conclusions from a large value for the
bound. The significance of the approximation is that L] UI is the matrix that appears
in the backward error analysis of Gaussian elimination. For example, from [8] the LU
factors and D computed by Gaussian elimination without pivoting on A R" satisfy

(4.14) O=A+E, IEI--< nu.. I/SI I21.-nu

Using our approximation in the bound (4.9), we obtain

(4.15) If-Pl <=dnulLI IUI I1 /O(u2) (P’=LU).
The similarity of (4.14) and (4.15 suggests that the backward stability of Algorithm 2.1
is related to that ofGaussian elimination without pivoting on PV. (Note that ILl UI
LDI D- UI for any diagonal D, so the normalisation of our LU factorisation is un-

important.) For the same polynomials and points as in Figs. 4.1 and 4.2, Figs. 4.3 and
4.4 show values of

ILl IUI ..11oo>__(4.16) g"= liPql
(P=LU).

Again, the results predict serious instability of Algorithm 2.1 for the Chebyshev poly-
nomials, and, to a somewhat lesser extent, for the monomials.

5. Preenting nd curing instability. Although the increasing ordering for the points
ai yields the favourable stability results in Corollaries 4.1 and 4.2, this ordering is not
universally appropriate for Algorithm 2.1, as evidenced by the instability for the Chebyshev

16

14

12

10

5 10 15

.............................. Iog0 Koo(PT)

IOgo qn

20 25 30

FIG. 4.1. Monomials. " a -1 + 2i/n" O: Otn_ cos ir/n) (extrema of T).
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16

14

12

10

IOgo qn .........
....."......... Iogo qn

......... Iogo oo(Pr)

5 10 15 20 25 30

FIG. 4.2. Chebyshev polynomials. : ai -1 + 2i/n; O: a.-i cos (ir/n) (extrema ofT.).

16

14

12

10

Iogo gn 8

5 10 15 20 25 30

FIG. 4.3. Monomials. : ai -1 + 2i/n; O: an-i cos ir/n) (extrema ofT.).

polynomials when there are points ofboth signs. How, then, in general, can we construct
a "good" ordering of the points?

Consider the nonconfluent case. We suggest the following approach that exploits
the connection with Gaussian elimination exposed in (4.14) and (4.15 ). The bound
(4.15 suggests that to make Algorithm 2.1 backward stable the points should be ordered
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16

14

12

10

Iogo gn 8

5 10 15 20 25 30

FIG. 4.4. Chebyshev polynomials. : at -1 + 2i/n" O: a,,_t cos(ir/n)(extrema ofT,).

so that g, in (4.16) is reasonably small. But re-ordering the points is equivalent to per-
muting the rows ofpr, and as is well known, Gaussian elimination with partial pivoting
is a very successful way to obtain a row permutation that keeps g, small. Now we make
the crucial observation that the permutation that would be produced by Gaussian elim-
ination with partial pivoting on prcan be computed in O(n2) operations, without actually
performing the elimination. To see this, recall that pr L... L_Uk...U
LU, and so if we take L unit lower triangular then (cf. the inverse of (4.4))

i-I

Uii hi II oli- olj),
j=0

where hi depends only on the 0i. At the kth stage of Gaussian elimination on pr the
partial pivoting strategy interchanges rows k and r, where ul maxs_ k ul, Because
of the equivalence between interchanges among the rows of pr and among the points
ai, it follows that r is characterised by

k-I k-I

H (Ol’r--Otj) =max /-I (as-a).
j =0 s>k j =0

This relation forms the basis for the next algorithm.

ALGORITHM 5.1. Given distinct points a0, a, ..., a,, this algorithm re-orders
the points according to the same permutation that would be produced by Gaussian
elimination with partial pivoting applied to Pr(ao, a, a,) (but see below). The
permutation is recorded in the vector p.

Swap (ao, a) where aj mini_o Oti, Po j
Swap (a, a) where a maxi_ lai, Pl j
ri ai-- ao 2, 3, n)
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Fork=2ton-
7ri-- 7t’i*(Oli- Ok- 1) (i k, ..., n)
Find j where rj maxizk
Swap (ak, aj); Swap (r, rj), p j

endfor k

Cost. Approximately ne/2 multiplications and comparisons.
In fact, Algorithm 5.1 does slightly more than imitate partial pivoting since it chooses

ao and a, rather than just a, to maximise the 1, pivot a a0. This has the desirable
effect of making the output of the algorithm independent of the initial ordering of the
points.

Ifwe apply the heuristic that gn for Gaussian elimination with partial pivoting,
then from (4.15) we obtain for the ordering of Algorithm 5.1 the approximate re-
sidual bound

f- Prll --< dnu
Thus, under the several assumptions leading to (4.15), the ordering of Algorithm 5.1
renders Algorithm 2.1 (and similarly Algorithm 2.2) backward stable.

We note that Algorithm 5.1 never produces the increasing ordering, since it sets
c := max/ai. It is also interesting to note that Algorithm 5.1 is invariant under the
linear transformation of the points

An alternative approach to achieving backward stability is to take an arbitrary or-
dering of the points and to follow Algorithm 2.1 with one step of iterative refinement in
single precision. This approach, advocated for general linear equation solvers in 13 ],
was used successfully with the nonconfluent version of Algorithm 2.1, with Chebyshev
polynomials, in [12]. However, we have no rigorous forward error bounds or residual
bounds for Algorithm 2.1 combined with iterative refinement.

In terms of computational cost the re-ordering strategy is preferable to iterative
refinement, since it requires only 5n2/2 multiplications in total, compared to the 7n e

multiplications required for two invocations ofAlgorithm 2.1 and a residual vector com-
putation. Moreover, in some applications a sequence of problems with the same, or
slightly changed, sequence of points may arise, in which case the re-ordering strategy
need be applied only once for the whole sequence.

In the confluent case Algorithm 5.1 can be applied to the distinct subset of the
points, with groups of equal points interchanged block-wise (since condition 1.1 must
be maintained). Note, however, that in this form the algorithm no longer mimics the
partial pivoting interchanges, and so the theoretical support is weaker.

6. Numerical experiments. We have carried out a wide variety of numerical ex-
periments to test the analysis of 3-5, and to gain further insight into the behaviour of
Algorithm 2.1; we present detailed results for a subset of the tests in this section. The
tests were done using Borland Turbo Basic on a PC-AT compatible machine. Turbo
Basic uses IEEE-standard single and double precision arithmetic, for which the unit
roundoffs are Usp 2 -23 1.19 10 .7 and Udp 2 -52 . 2.22 10 -16, respectively.

We solved each test problem in single precision using each of the following four
schemes, which we will refer to by the mnemonics indicated.

Alg" Algorithm 2.1.
(2) Ord: Algorithm 2.1 preceded by Algorithm 5.1.
(3) Sir: Algorithm 2.1 followed by one step of iterative refinement with the residual

computed in single precision using Algorithm 2.3.
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(4) Gepp: Gaussian elimination with partial pivoting, where Pr is formed in double
precision using repeated calls to Algorithm 2.3 (with x ci, and a ej in
(2.2)).

In all our test problems the points are in increasing order (ofcourse this is irrelevant
for Oral and Gepp). For each computed solution d we formed the norm-wise rel-
ative error

and the relative residual

ERR

RES

Here, a ddp is the solution computed by Algorithm 2.1 in double precision, and the
residual f Prd is computed using Algorithm 2.3 in double precision. The order n was
restricted to ensure that ddp was correct to single precision, thus ensuring a correct value
for ERR. Note that ERR and RES are scaled to be "independent of the machine preci-
sion"; thus both should be compared with when assessing the accuracy of a computed
solution or the size of its residual.

Two further quantities computed were the model bound for ERR, from (4.2),

and gn in (4.16) (for the original, increasing ordering of the points).
The first problem,

(6.1) Chebyshev polynomials a --,
n f Unif [-1, 1],

illustrates Corollary 4.1 (Unif denotes the uniform random number distribution); see
Table 6.1. The excellent accuracy of Algorithm 2.1 is forecast by the corollary since, as
is clear from the results, Ie-rl Ifl IIo Ilallo (a is a large-normed solution). Inter-
estingly, the favourable forward error properties are seen to be lost in the process of
iterative refinement, as has been observed in [12].

Next, we consider the monomials on problems with points of both signs. We tried
a variety of problems, aiming to generate the instability that the analysis of 4 predicts
may occur for the monomials. In most problems, including all those from 5 and 11 ],
Algorithm 2.1 performed in both a weakly stable and a backward stable manner, yielding

TABLE 6.1
Results for problem (6.1). All values except n are logs to base 10.

ERR RES
n Koo(Pr) Ilall Alg Ord Sir Gepp Alg Ord Sir Gepp wn gn

10 8.6 6.5 --0.2 0.8 5.8 6.7 --1.6 --1.4 --1.5 --1.3 0.9 2.1
15 13.1 11.4 --0.3 0.4 10.3 6.9 1.3 1.6 1.6 1.3 0.1 3.5
20 17.6 13.9 1.0 1.6 14.7 6.9 --1.4 --1.8 --1.5 --1.7 2.1 5.2
25 22.1 19.6 0.2 0.8 19.3 6.9 --1.7 --1.6 --1.6 --0.9 0.8 6.4
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TABLE 6.2
Resultsfor problem (6.2). All values except n are logs to base 10.

ERR RES
n K(R)(Pr) Ilalloo Alg Ord Sir Gepp Alg Ord Sir Gepp w# g,,

10 4.8 0.0 1.I 1.8 0.9 -0.3 -0.2 -1.5 -1.7 -3.6 1.3 2.2
15 7.3 0.0 2.2 3.9 2.0 1.2 1.6 1.1 1.2 -2.9 2.3 3.4
20 9.7 0.0 3.8 6.4 2.8 1.9 3.1 -1.5 -1.9 -3.1 3.3 4.8
25 12.2 0.0 5.1 9.2 5.5 3.4 4.4 -2.1 -0.9 -3.0 4.4 5.2
30 14.7 0.0 6.1 11.6 9.3 4.4 5.4 -1.8 1.2 -2.9 5.5 6.1

TABLE 6.3
Resultsfor problem (6.3). All values except n are logs to base 10.

ERR RES
n Koo(Pr) Ilall Alg Ord Sir Gepp Alg Ord Sir Gepp wn gn

10 1.0 0.0 3.8 1.1 0.3 0.2 3.5 0.8 0.0 -0.2 0.4 4.2
15 1.2 0.0 6.5 1.0 0.3 0.5 5.9 0.3 0.1 -0.1 0.4 6.6
20 1.3 0.0 8.8 1.7 2.3 0.5 6.4 1.2 1.8 -0.1 0.4 9.1
25 1.4 0.0 10.9 2.1 6.5 1.9 6.5 1.4 5.8 0.1 0.5 10.3

ERR =< wn, and RES O( ). On examining the error analysis we selected the problem

2i
(6.2) monomials ai +--, f= PVen,

n

reasoning that a en might "pick out" large elements in the matrix product in (4:9).
The results, summarised in Table 6.2, do indeed display instability, principally in the
residual, and they match well the predictions ofthe analysis, as can be seen by comparing
the values of RES (for Alg) and gn.

The problem

(6.3) Chebyshevpolynomials an_i=cos((i+1/2)r)
in which the points are the zeros of T +1, illustrates the instability of Algorithm 2.1 for
the Chebyshev polynomials when there are points of both signs; the results are in Table
6.3. The re-ordering strategy successfully stabilises Algorithm 2.1, as does iterative re-
finement except at n 25 (at this value even using double precision to compute the
residual brought no further improvement). Note that because P is well conditioned 10 ],
a small residual implies a small forward error in this problem.

Finally, we present two confluent problems. In these the order of confluency is four
and the distinct points { ,i }/a__ 0 occur in groups of successive sizes 4, 3, 2, 1, 4, 3,
where the obvious pattern repeats. The two problems are:

(6.4a) monomials } (ir),d-i COS i= O, d, f= en
(6.4b) Chebyshev polynomials

In Table 6.4 we see that both iterative refinement and the re-ordering approach behave
very unstably on (6.4a) in the sense of weak stability; in our experience this instability
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TABLE 6.4
Results for problem (6.4a). All values except n are logs to base 10.

ERR RES
n Koo(Pr) Ilall Alg Ord Sir Gepp Alg Ord Sir Gepp wn gn

9 6.4 -0.3 0.3 3.7 0.3 3.5 1.1 -0.9 1.0 1.2 0.0 1.0
19 12.3 2.3 1.0 6.4 6.1 6.9 -1.7 -1.8 -1.7 -1.5 0.0 3.0
29 17.4 5.7 2.8 10.6 10.9 6.9 -0.6 -2.3 0.4 -1.8 0.0 4.8

TABLE 6.5
Resultsfor problem (6.4b). All values except n are logs to base 10.

ERR RES
n Koo(Pr) Ilallo Alg Ord Sir Gepp Alg Ord Sir Gepp w. gn

9 6.6 -0.6 0.5 2.5 0.5 1.8 -3.7 -2.8 -2.5 -2.5 0.0 1.3
19 9.4 -0.9 4.9 4.2 2.1 4.6 -0.8 -2.4 -3.6 -2.3 0.0 4.1
29 11.3 -1.1 9.9 8.2 9.8 5.7 0.7 -0.8 1.0 -2.3 0.0 5.8

is unusual for the latter scheme. Table 6.5 demonstrates clearly that weak stability is not
implied by backward stability.

The complete set of test results contain several more features worth noting.
The results for confluent problems were similar in most respects to those for

nonconfluent ones; the behaviour of Algorithm 2.1 seems to be minimally affected by
confluency. Test results for the Legendre polynomials were very similar in almost every
respect to those for the Chebyshev polynomials.

(2) The growth quantity gn for Gaussian elimination without pivoting is sometimes
many orders of magnitude bigger than RES for Alg, but approximate equality can be
attained, as in problem (6.2). This behaviour confirms our expectationsmsee the com-
ment at the end of 3.

(3) For the monomials our experience is that the forward error from Alg is usually
similar to, or smaller than, the forward error from Ord.

(4) Unlike in the tests of[12], in which usp 10 -15, we found that iterative re-
finement in single precision does not always yield a small residual (see Table 6.3, for
example). This does not appear to be due to errors in computing the single precision
residual via Algorithm 2.3, but seems to indicate that in order to guarantee the success
of iterative refinement in single precision a certain level of precision is required relative
to the degree of instability (indeed this is implied by the results in [13]).

(5) All our tests support the following heuristic, for which theoretical backing is
easily given:

The computed solution from Gaussian elimination with partial pivoting applied
to a linear system Ax b usually satisfies I111 --< u-libllo/llAIl, where u is the
unit roundoff.

Thus, although Gaussian elimination with partial pivoting is guaranteed to produce a
small residual, it is unable to solve accurately Vandermonde problems with a very large
solution, such as problem (6.1). (Indeed, merely forming the machine matrix fl(Pr)
may be enough to force Ilall --< u-llfll/llell for the machine problem!)
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7. Conclusions. To conclude, we offer some brief guidelines on the numerical so-
lution ofVandermonde and Vandermonde-like systems. First, we caution that construc-
tion ofalgorithms that involve the solution ofa Vandermonde-like system is not generally
to be recommended. The tendency for Vandermonde matrices to be extremely ill-con-
ditioned may render such an approach inherently unstable, in the sense that the "ideal"
forward error bound (4.2) is unacceptably large; furthermore, as n increases the solution
components may soon exceed the largest representable machine number, producing
overflow. Despite these problems we have seen that many Vandermonde systems can be
solved to surprisingly high accuracy using Algorithms 2.1 and 2.2. A useful rule ofthumb
is that it is those Vandermonde systems with a large-normed solution--one that reflects
the size of P---that are solved to high accuracy.

Our experience shows that ofthe four solution methods considered in 6 (Alg, Ord,
Sir, Gepp), none consistently produces the smallest forward error or the smallest relative
residual. Nevertheless, the error analysis and the test results point to some clear recom-
mendations for the choice of solution method. Recall that Alg denotes Algorithm 2.1
(or Algorithm 2.2) with the points arranged in increasing order, and Ord denotes Al-
gorithm 2. (or Algorithm 2.2) preceded by Algorithm 5.1.

Monomials. Nonnegative points: Use Alg. In the nonconfluent case Corollaries 4.1
and 4.2 guarantee both weak and backward stability.

Points of both signs: (i) Use Alg. This usually behaves in a weakly stable and a
backward stable manner. (ii) If it is vital to obtain a small residual use Ord, perhaps
after first trying Alg. Note, however, that the forward error for Ord is usually no smaller,
and sometimes larger, than that for Alg (see Tables 6.2 and 6.4).

Other polynomials. Nonnegative points: Use Alg. In the nonconfluent case Corollary
4.1 guarantees weak stability if 0i > 0, i 0, and "Yi -- 0 in (2.1), as for the Chebyshev,
Legendre, and Hermite polynomials.

Points of both signs: Use Ord (Alg is unstable).
If the points are all nonpositive then in both cases Alg should be used with the

points in decreasing order (appropriate analogues ofCorollaries 4.1 and 4.2 can be derived
for this situation).

Acknowledgments. I am grateful to Professor Charles Clenshaw for pointing out
reference 18 ], and to Des Higham for valuable comments on the manuscript.
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BALANCED APPROXIMATION OF STOCHASTIC SYSTEMS*

K. S. ARUN’i" AND S. Y. KUNG:I:

Abstract. The state of a linear system is an information interface between past inputs and future outputs,
and system approximation (even identification) is essentially a problem of approximating a large-dimensional
interface by a low-order partial state. Balanced Model Reduction IEEE Trans. Automat. Control, 26 1981 ),
pp. 17-31 ], the Fujishige-Nagai-Sawaragi Model Reduction Algorithm [Internat. J. Control, 22 (1975), pp:
807-819 ], and the Principal Hankel Components Algorithm for system identification [Proc. 12th Asilomar
Conference on Circuits Systems and Computers, Pacific Grove, CA, November 1978 approximate this input-
output interface by its principal components. First generalizations ofbalanced model reduction to the stochastic
system approximation problem are presented. Then the ideas of principal components to the problem of ap-
proximating the information interface between two random vectors are generalized; this leads to three approximate
stochastic realization methods based on singular value decomposition. These methods and their relationship to
the different kinds of balanced stochastic model reduction are discussed.

Key words, balancing, model reduction, stochastic realization, system identification, principal components,
singular value decomposition, canonical correlations, mutual information, predictive efficiency

AMS(MOS) subject classifications. 93E12, 62M10, 62H25, 60G25, 93B30

1. Introduction. This paper addresses the problem of identifying a linear, rational,
discrete-time system driven by second-order white noise, given estimates ofthe covariance
lags ofthe output process. The approach adopted in this paper is that ofbalanced model
reduction. In general, the state of a system is an information interface between the past
and the future, and the dimension of this interface is equal to the minimal order of the
system and the minimal size of its state vector. However, perturbations in the covariance
lags increase the apparent dimension ofthis interface to much more than the true system
order. Then the problem is one of constructing a reduced-order model whose state is an
adequate approximation of this apparently large-dimensional interface between the past
and the future. This partial state must be constructed from the significant components
of the information interface. The yardstick that we will use to measure the significance
of a candidate state component is the one that is used in balanced model reduction ],
and in the deterministic identification algorithm of 3 ]. We will show that a partial state
chosen using such a criterion, has the highest predictive efficiency for the future.

The key idea is to put the full-order state in internally balanced coordinates, because
in such a coordinate system, the elements of the state vector are uncorrelated, and their
variances measure their individual contributions to the input-output behavior of the
system. Then, the partial state may be constructed from those elements of the full-order
state that have the largest variances. In this paper, we will indicate how the variances of
the different elements of the balanced full-order state can be determined directly from
the covariances via singular value decomposition, without actually constructing the full-
order model.

Section 2 develops a stochastic definition of system state, and demonstrates the
phase ambiguity in covariance information. Section 3 describes the many kinds ofsystem
balancing that have been proposed in the context of stochastic model reduction. Section
4 discusses three approaches to approximate stochastic realization, and brings out their
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connections to the different balancing schemes discussed in 3. The theme of 4 is
principal components approximation of the past-future interface, which is also the state
space of the innovations representation (minimum-phase model) corresponding to the
covariance data.

2. Preliminaries.
2.1. The model. In state-space notation, a discrete-time, linear, shift-invariant, ra-

tional, pth order system is

(1) x(t + Fx(t) + Tv(t), y(t) hx(t) + v(t)

where v(t) and y(t) are the input and output sequences, respectively, x(t) is a p
state vector process, and F, T, and h are constant parameter-matrices of sizes p p,
p 1, and p, respectively. Henceforth, boldface, italic, and upper case Greek letters
will be used to denote matrices and vectors, and the transpose operator will be denoted
by a superscript t.

In terms of the state-space parameters, the transfer function of the system is
given by

H(z) h( zl F)-IT + 1,

the poles of the model are the eigenvalues of F, while the zeros are the eigenvalues of
the matrix (F Th). It can be seen that the impulse response of the model, in terms of
the state-space parameters is

1, k=0,
i(k)=

hFk- T, k>0.

For any invertible p p matrix Q, the transformed parameter-triple (Q-FQ, Q-IT,
hQ) has the same impulse response and transfer function; and it corresponds to a new
coordinate system for the state. The new state is Q-ix instead of x.

The particular state-coordinate system we are interested in, is the so-called internally
balanced coordinate system [1 ]. The internally balanced realization is a special case of
the principal-axis realization introduced in [4 ]. The principal-axis realization is char-
acterized by both the observability grammian W and the controllability grammian K
being diagonal. In general, these grammians are the solutions of the two following
p p Lyapunov equations 5 ]"

K FKF + TTt, W FtWF + hth,

and are also explicitly given by

T
TtF

K [T FT F2T F3T TtF t2 CCt,
TtFt3

W= [htFthtFt2htFt3h ."]

h
hF
hF 2

hF
OtO.
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In linear systems terminology, the infinite-sized, p-dimensional operators O and C
are known as the extended observability matrix and the extended controllability matrix,
respectively. Note that these matrices and the two grammians are not unique for a given
transfer-function, instead they change with the state coordinates. A transformation of
the state from x to Q-ix changes the extended observability matrix to OQ and the
extended controllability matrix to Q-IC, while changing the grammians to Q-IKQt-
and Q/WQ. A transformation Q that simultaneously diagonalizes both the grammians
can always be found, and a principal-axis realization always exists [4 ]. In fact, for any
given transfer-function, many such principal-axis realizations exist, and the balanced
realization is one of them.

A realization is said to be internally balanced [1] if the grammians K and W are
not only diagonal, but also equal to each other:

K W Z, where Z diag (0-1,02, o"p).

Though the operators O and C and the corresponding grammians W and K depend
on the coordinates ofthe state, the eigenvalues ofthe product WK are coordinate-invariant,
and in fact, are equal to 0"2, 0"2, 0"2. Therefore, the elements of the balanced gram-
mians are invariant parameters of the system, and a model-reduction criterion based on
these elements will depend on the system’s input-output behavior, and not on the state-
coordinates. In balanced model reduction ], 6 ], the full-order system is first balanced,
and then the partial state for the reduced-order system is constructed from the elements
of the balanced full-order state with the largest 0"k- S.

2.2. The notion of state. Intuitively, the state of a (minimal-order) system is a
summary ofthe information in the past input history that is both necessary and sufficient
to predict the future output. In fact, from the state-transition equation of the model:

x(t+ 1)=Fx(t)+Tv(t),

we can see that the state is a linear combination of the past inputs:

x(t)=Tv(t- 1)+FTv(t-2)+F2Tv(t-3)+F3Tv(t-4)+ CV-(t)

where C is the extended controllability matrix defined earlier, and V- is the following
vector of past inputs:

V-(t)=[v(t- 1)v(t-2)v(t-3)v(t-4) ...]t.

Moreover, from the output equation:

y(t)=hx(t)+v(t),

we can see that if the future input is zero, i.e., if v(k) 0 for all k >= t, then the present
and future outputs are completely determined by the present state as y( + k) hFkx(t)
for all k >- 0, or

Y+(t) Ox(t)

where O is the extended observability matrix defined earlier, and Y + is the following
vector of present and future outputs,

Y+(t)=[y(t)y(t+ 1)y(t+2)y(t+3) ...]t.

Hence, the extended controllability matrix C maps the past input V- into the state
x, and the extended observability matrix O maps the state vector into the future output

The future-input vector and past-output Y- are defined just as are Y and V-, respectively.



BALANCED APPROXIMATION OF STOCHASTIC SYSTEMS 45

Y /. Together, the composition H OC is an operator from the past input to the future
output. The same conclusion may be arrived at by noting that the (m, n)th element of
I1 OC is hFm- Fn- T i(m + n so that the composition H is the Hankel matrix
that appears in the following equation:

i(1)
i(2)
i(3)
i(4)

y(t)
y(t+ 1)
y(t+2)
y(t+3)

i(0)
i(1)
i(2)
i(3)

i(2) i(3)
i(3) i(4)
i(4) i(5)
i(5) i(6)

i(O) 0
i(1) i(O)
i(2) i(1)

v(t- 1)
v(t-2)
v(t- 3)
v(t-4)

v(t)
v(t+ 1)
v(t+2)
v(t+3)

or

(2) Y/=HV-+LV /.

Knowing that the Hankel matrix in (2) can be factored as H OC, (2) can be rewrit-
ten as

Y + Ox + LV + where x CV-.

Hence, H is a two-stage operator that maps the past input V- into the state x, and the
state x into the future Y /. Consequently, the rank of H is equal to the size of the state
vector that in turn, is equal to the model order p.

Let the singular value decomposition (SVD) ofH be

H= UVt.

One choice of factors O and C is U; 1/2 and ; /V t, respectively. Any other choice
corresponds to different coordinates for the system state. In the chosen coordinates, both
grammians W and K are equal to ;. This establishes that the singular values ofH are
in fact, equal to the system’s coordinate-invariant parameters a, ..., a,. Hence, the
deterministic identification algorithm of[ 3 that constructs a low-order system from the
principal components in the SVD of H, uses in effect, the same partial-state selection
criterion used in balanced model reduction.

Because ofthe system’s time-invariance, O and C (in any coordinates) have special
structure, they satisfy

(3) OF=O’ and CtFt=Ct
where O is obtained from O simply by deleting the first row, and shifting all other rows
one step up.

2.3. The stochastic model. When the input v(t) to the model of (1) is a white
random process of variance p, the system-invariants a take on a new interpretation.
Here, by white, we only mean second-order white, i.e., a sequence of zero-mean, uncor-
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related random variables, all with the same variance:

E[v(t)v(t+m)l=
0,

where E[. denotes the expectation operator. Then the state covariance matrix P
E xx’l satisfies the Lyapunov equation:

p FPF + 0TT,
and is equal to o times the controllability grammian K. The covariance of the output
process y(t) is

hPh + 0, m 0,
r(m)= E[y(t)y(t + m)]

hF Iml -g, m:/:0

where g FPh + pT E[x(t + )y(t)]. The output power spectrum

S(z) pH(z)H(z-) ,+_r(m)z

is given in terms of the system parameters as:

r(0)
S(z)=R(z)+R(z-1) where R(z)=h(zl-F)-g+.

2

Since the state-variance P is p times the controllability grammian K, the variance
of state-element xk in internally balanced coordinates is simply p ak because

P=pW=p;

for an internally balanced realization. However, because ofphase ambiguity in stochastic
systems when only output covariances { r(m)} are known, different kinds of balancing
have been proposed in the context of the stochastic system approximation problem.

2.4. Phase ambiguity. Ifwe reflect some (or all) system-zeros across the unit circle
in the z-plane and rescale the transfer function to make the direct feedthrough term i(0)
equal to 1, we get a new system that can still generate the process y(t) when it is driven
by a different white noise sequence.2 Thus, when we wish to identify the system from the
output process alone (without knowledge ofthe input process) or from output covariances,
there is ambiguity as to the exact location of the system-zeros. The restriction that the
system be causally stable constrains all poles to be within the unit circle, but because of
the ambiguity about zero locations, there are many causally stable models that have the
same poles, and generate the same output covariance sequence r(m) when driven by
different white-noise processes.

However, the triple F, g, h) can be determined uniquely modulo coordinate trans-
formations to (Q-IFQ, Q-g, hQ)) from the output covariance sequence. This means
that the various models that generate the same covariance sequence, can each be put in
state-coordinates where they all have a common state-feedback matrix F, the same output
matrix h, and the same vector g E[x(t + )y(t)]. However, they differ in the input
matrix T, input variance p, and state-variance P. We thus have a number of covariance-
equivalent models of the form:

Xm( q’- Fxm(I) + Tml)m(/), y(t) hxm(t) -- l)m(

The two white-noise processes are related by an all-pass system of order p.
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all of which have unity feedthrough, and the same F and h matrices, but have differ-
ing Tm matrices, and are driven by different white input sequences Vm(t) with different
variances Om. Yet they all generate the same output process y(t). Their states and
state-variances Pm E[xmXtm] are different, but every Pm satisfies the algebraic Ric-
cati equation:

Pm FPmF + (g- FPmht)( r(0)- hPmht) -1 (g- FPmht) t.

This can be verified by replacing Tm and Pm in the Lyapunov equation Pm FPmF +
pmTmTtm by Tm =/9l(g FPmht) and Pm r(O) hPmh t.

In Faurre’s pioneering work on stochastic realization [7], [8], he has shown that
the state-variance of the minimum-phase model (that has all its zeros inside the unit
circle) is the smallest solution Pmin ofthe Riccati equation. It was later established 9 ]-
11 that the largest solution Pmax is the state-variance of the maximum-phase model,

having all its zeros outside the unit circle.

2.5. Stochastic definition of state. In this section, we will develop a stochastic def-
inition for the state of a system, along the lines of 12 ]. For a zero-mean n random
vector Y (Yl, Y2,’", Yn) t, Span (Y) will denote the Hilbert space of all random
variables that are linear combinations of Yl, Y2, Yn }. The inner product on this
space of zero-mean random variables is the cross correlation, and the dimension of this
space (upper bounded by n) is the largest number of mutually uncorrelated random
variables in the space. We will use the notation x\Y to denote the linear, minimum-
variance estimate of zero-mean random vector x from the zero-mean random vector Y.
It is also the orthogonal projection of x onto the subspace Span (Y). From elementary
estimation theory [13], we know that

(4) x\V= E[xYt](E[yyt])-x.

When the input is a white-noise process, the past and future inputs are uncorrelated,
and as a result, the two components of the future output vector Y + from (2)

Y + HV- + LV +

are orthogonal. Consequently, the orthogonal projection of Y + on Span (V-) must be
H- itself,

i.e., Y+\V- =HV-.

However, we have already seen that this information is completely summarized in the
state, since H- Ox, and x C-. Therefore,

(5) Y+\V- :HV- Ox, x= CV-,

a mathematical restatement of the fact that the state condenses all the information in
the past input that is sufficient for predicting the future output.

This input-output notion ofstate can be further refined to a past-future notion based
entirely on the output process. While (5) is satisfied by all the covariance-equivalent
models that generate y(t), the following past-to-future definitions ofthe state will depend
on the zero locations of the model.

In each of the covariance-equivalent models (F, Tm, h, Pm), the output y(t) is
obtained causally from Vm(t), and consequently, Y- lies in Span (V ,) for every m.
However, only the minimum-phase model has a causally stable inverse, and only l)min(t)

A symmetric matrix A is said to be bigger than another symmetric matrix B if A B is nonnegative
definite.
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can be obtained causally from the output y(t).4 Therefore, nin lies in Span (Y-), but
none of the other past inputs V , lie in Span (Y-). As a direct consequence, we have
the following equality of spaces:

Span Y Span (V nin

however, Span (Y-) is a proper subspace of Span (V ), the space spanned by the past
inputs to every nonminimum phase model. As a result of the above equality, the state
of the minimum-phase model can be also interpreted as a summary of the past output
history (instead of past input history) for predicting the future output.

2.5.1. The minimum-phase model. The minimum-phase model:

6 Xmin (t + Fxmin (t) + Tmin l)min (t), y(t) hxmin (t) q- l)min (l)

has a causally stable inverse obtained by simply rearranging the forward model’s equations:

(7) Xmin (t + 1)=(F-Tminh)xmin(t)WTminY(t), l)min(t)=-hxmin(t)Wy(t).

The minimum-phase property ensures that the zeros of the model of (6) that are the
eigenvalues of (F Tmin h) lie within the unit circle. But these eigenvalues are precisely
the poles of the inverse filter of (7), hence the inverse filter must be stable. Thus the
state-process Xmi (t) as well as the input process l)mi (t) can be obtained causally from
the output y(t) using the above inverse filter.

The state transition equation of the inverse filter indicates that

y(t)

Xmi (t) Tmin F Tmin h)Tmin (F Tmin h)2Tmin )"
y( + Y (t)y(t+2)

Moreover, since Span (Y -) Span (V ain), we have

Y + \Y Y + \V nin HV nin OXmin.
Combining the last two equations, we get

(8) Xmin 9Y and Y /\Y OXmin,

meaning that the state of the minimum-phase model summarizes the past output history
for predicting the future output.

As a footnote, (8) indicates that the projection ofy(t) on the past space Span (Y-)
is nothing but

y(t)\Y- hxmin (t).

Therefore, the part of y(t) that cannot be predicted from the past Y- is simply

y(t) hxmin (t) tmin (t).

Thus, the input white noise to a minimum-phase model is the innovations process 14
for the output, and consequently, the minimum-phase model is also called the innovations
representation of the output process 9 ], 15 ].

3. Balancing of stochastic systems.
3.1. Balanced model reduction. If the full-order model is completely given, and the

question is one of model reduction, we could apply Moore’s balanced model reduction

The subscript min on x, T, and v indicate that they refer to the minimum-phase model only.
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procedure in a fairly straightforward fashion. As noted earlier, in internally balanced
coordinates, P pW diagonal matrix p, whose (k, k)entry Pak is the variance of
the element Xk of the balanced full-order state. The partial state for the reduced-order
model may be constructed from the elements Xk ofthe balanced full-order state with the
largest variances.

When the full-order model is internally balanced, the different elements Xk of the
full-order state are uncorrelated (since P is diagonal), and their contributions to energy
in the future-output, are also decoupled (since W is also diagonal). In addition, for each
state-element Xk, its variance Pkk is proportional to Wkk that measures its output-energy
contribution. Therefore, the significance ofXk can be measured by its variance Pkk alone.
Hence, balanced model reduction picks out those components of the state space, that
have large variances and also make a large contribution to the future output.

It turns out that such a model reduction scheme was in effect, proposed by Fujishige,
Nagai, and Sawaragi 2 much before the concept ofbalancing was introduced. Fujishige,
Nagai, and Sawaragi used a least-squares prediction-error criterion to justify their model
reduction algorithm.

3.2. Fujishige model reduction. Recall the input-output definition of state in (5)"

Y+\V- =HV- Ox, x= CV-.

The space Span (Ox) is coordinate-invariant, and its dimension n is the order of the
model. The full-order state is any basis for this space. For model reduction, the partial
state has to be obtained from the significant components of this full-order state space.
An optimal compression of Ox that retains the maximum information is provided by
the principal components in its Karhunen-Loeve (KL) decomposition. Let the eigen-
decomposition of its covariance matrix E[(Ox)(Ox)t] OpO be

OPOt= U2Ut---
akUkUk

k=l

where n is the model order, and the eigenvalues are arranged in nonincreasing order
a >= a2 >= >= an. Then, a KL decomposition [16] of Ox is

n

Ox= (uOx)u,
k=l

and the random variables uOx that are the scalar coefficients in the above expansion,
are uncorrelated with each other, while their individual variances are a. Let U be
composed from the p eigenvectors corresponding to the p largest eigenvalues. Then, a
principal components approximation of Ox is (for p < n) 17

p

(uOx)u
k=l

that is completely summarized in

Xpartial U OX.

The Fujishige Model Reduction Algorithm chooses the above partial state because
it has the smallest error in predicting the future output. Among all p-sized vec-
tors from Span (Ox), the above choice minimizes the least-squares prediction error
E Y + Y + \ Xpartial

2 181, 19 ].
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3.2.1. Relation to balanced model reduction. Recall that Ox equals HV- Taking
the covariances of both sides, we arrive at

OPOt= pHHt,

implying that the eigenvalues of OPO are p times the squared singular values of the
infinite Hankel H. The singular values in turn, are equal to the system-invariant param-
eters used in balanced model reduction. Thus, Fujishige’s method uses the same partial
state selection criterion as balanced model reduction. Furthermore, it can be verified that
both methods obtain the same reduced-order model. In effect, balanced model reduction
was first proposed by Fujishige, Nagai, and Sawaragi using a stochastic justification.

When only output covariances are available, and the full-order model is not given,
the situation is very different. Because of phase-ambiguity, there is a whole class of full-
order models that could have generated the given covariance sequence, and a balanced
model reduction ofeach ofthem will lead to not only different phase-responses, but also
to different approximated covariance sequences, and different power spectra. The first
two kinds of balancing that are described below, work with system-invariant parameters
that are common to all the full-order covariance-equivalent models that generate r(m).
Neither ofthe two approaches internally balances any ofthe covariance-equivalent models
in Moore’s sense.

3.3. Covariance balancing. Although the states of the covariance-equivalent models

Xm(t -[- Fxm(l) -]- TmPm(t), y(t) hxm(t) -[- l)m(t)

that generate the process y(t) are different, they all have the same correlation with the
past output, i.e.,

G=E[xmY -’]

is the same for all covariance-equivalent models, and is in fact,

G= [g, Fg,F2g,F3g, ...]

where g FPmht -b pmTm is the same for all models.
The new grammian J GG that satisfies the Lyapunov equation

j FjF + ggt

and is common to all the covariance-equivalent models, is the controllability grammian
for the new causal system (F, g, h) whose impulse response is { r(0)/2, r( ), r(2),
r(3),... }, and transfer function is R(z). Just as for the other grammians, coor-
dinate transformations effect J, however, the eigenvalues of the product WJ are
coordinate-invariant, and common to the entire class of covariance-equivalent models
(F, Tm, h, pm).

We will say that this class of models is covariance-balanced if

W J a diagonal matrix D.

Taking a hint from balanced model reduction, we could try to construct a class ofreduced-
order approximate models by retaining only those rows and columns of the covariance-
balanced (F, g, h) matrices corresponding to the p largest entries in this diagonal matrix

This indicates that Xm \Y Xmin for all m, explaining why Pmin - Pm for all m.
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D. However, there is no guarantee that the approximated pseudocovariance sequence

r(O), m=O,
f(m)=

lml 1, m:f0

is nonnegative definite. As a result, the reduced-order Riccati equation

P P"F’ + (1 P’’)(r(0) fiP"h)-(l P’’)’
may not have any positive-definite solution. In other words, we may not be able to find
any model that generates the pseudo-covariance sequence f(m). A simple, ad hoc solution
is to add a suitable constant to r(0).

3.4. Desai and Pal stochastic balancing. The state-variances of the minimum-phase
and maximum-phase models (Pmin and Pmx, respectively)change with coordinate trans-
formations. If Xmin is transformed to Q-lxmin, then Pmin and Pma get transformed to
Q-Iemin Q-it and Q-lxma Q-It. However, the product plax emin undergoes a similarity
transformation to Q/plax emin Q-’. Therefore, the eigenvalues of Pmax-I Pmin are also
system-invariants [20 ], 21 ], and like the eigenvalues ofWJ, are common to the entire
class of covariance-equivalent models (F, Tin, h, Pro). This class can be coordinate-
transformed to make

-1Pmax Pmin a diagonal matrix A.

In these coordinates, the class of covariance-equivalent models (F, Tm, h, Pm) is said to
be stochastically balanced in the Desai and Pal sense [21 ], [22]. The entries of the
diagonal matrix A are the eigenvalues of plax Pmin in any coordinate system, and are
coordinate-invariant parameters of the covariance-equivalent class.

Desai and Pal suggest constructing a class of reduced-order covariance-equivalent
models by retaining only those elements of the stochastically balanced full-order states
Xmi and Xmax that correspond to the p largest entries in the diagonal matrix A. The
justification for such a model reduction is in the fact that the entries ofA are the canonical
correlation coefficients between Y- and Y /, and measure the mutual information between
them. A more detailed discussion follows in the next section on approximate stochastic
realization.

3.5. Internal balancing of the minimum-phase model. In both the kinds ofbalancing
described above, none of the models (F, Tin, h, Pro) is internally balanced, and none of
the states x is centered between the input and the output. The problem here is that if
we internally balance any one of the covariance-equivalent models, all the others will be
unbalanced. Since we do not know a priori which model is the correct one, the two
above kinds ofbalancing do not internally balance any ofthe models. Instead, they work
with system-invariants that are common to all of them.

In many applications, the model’s phase-response is of no concern, and the only
purpose ofcovariance approximation is to smooth out the perturbations in the covariance
estimates, or to obtain a low-order rational spectral estimate. There are other applications
where the sole purpose of stochastic modeling is least-squares extrapolation/prediction
of y(t) [23]. In general, when only the output process (or its covariances) are known,
we cannot hope to approximate the input-output transfer ofthe underlying system, without
any additional knowledge about the system’s phase-response or ofthe input process itself.
However, a balanced model reduction of the full-order minimum-phase system will ap-
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proximate the past-future interface in the output process optimally in an unweighted
least-squares sense.

We will show in the next section that an internally balanced approximation of the
minimum-phase model provides good covariance approximation, and minimizes the
least-squares error in the extrapolation/prediction of y(t). Recall that the minimum-
phase model is internally balanced in Moore’s sense, if

Pmin Pmin W a diagonal matrix.

In these coordinates, the elements ofXmi are uncorrelated, and their variances are/gminOk,

where ak s are Moore’s system-invariant parameters. Balanced model reduction ofthe
minimum-phase model (innovations representation) corresponding to the covariances
is achieved by retaining only the p largest trk s.

4. Approximate stochastic realization. The problem addressed in this section is
that of approximating a perturbed covariance sequence (that may not be nonnegative
definite after the perturbation) by a low-order rational model. Because the perturbed
sequence may not be a valid covariance sequence, we cannot hope to first construct a
full-order model, and then reduce its order by one ofthe three balanced approximations
discussed above. We will construct reduced-order approximate models directly from the
perturbed covariance sequence. In this section, we will indicate how stochastic system
approximation based on the three kinds ofbalancing can be performed directly from the
covariance sequence, without constructing a full-order model, via the SVD of certain
matrices.

We will now formulate the approximate modeling problem as one of approximat-
ing the apparently high-dimensional information interface between Y- and Y / by a
p-dimensional state Xpartia

4.1. Partial state selection. Using (4), we can verify that

y +\Y- HR-1y-

where R E(Y-Y-’) and H E(Y +y_t) are the Toeplitz and Hankel matrices, re-
spectively, formed from the covariance lags ofthe output process. Combining this equation
with (8)"

Xmi Y and Y /\Y Oxmin,

leads to the following observations.
HR- equals O. Consequently, HR-l must have rank equal to the size of the

state vector (i.e., equal to the model order p).
(2) Moreover,

HR-y- OXmin,

which means that the dimension of Span (HR-Y -) is equal to the model order p, and
that the state Xmi is any basis for this space.

Thus, the stochastic realization problem is, simply stated, the problem of picking a
basis for Span (HR-Y -) [24].

However, when the covariance lags are estimated from a finite record ofthe stochastic
process or are directly measured, then the perturbations in the lags will distort the rank
structure ofHR-. It will have full rank, making the apparent state size much larger than
the true model order. Then the problem is one of constructing a partial state from those
components in Span (Y-) that contain the most information regarding Y /. This partial-
state must "effectively" summarize the information interface between Y / and Y-. Note
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that the problem is one of compressing Y- while retaining maximal information not
about Y-, but about Y /. Hence, principal components analysis of Y- will not suffice
16 ], 23 ], for the partial-state selection problem.6 The compression ofY into its prin-

cipal components is not appropriate because it is based on the selection of components
containing the maximum information about Y- itself, whereas only specific information
about Y / is of interest in the partial-state selection problem.

However, there exist in the statistical literature, generalizations of the concept of
principal components (ofa random vector) to the problem ofcompressing the information
interface between two random vectors (that will henceforth be referred to as the 2-vector
problem for the sake of brevity). We will present three approaches to approximate sto-
chastic realization as applications of three such generalizations.

For a zero-mean n random vector Y, the p principal components ofY
(a) Are maximally correlated with Y,
(b) Have maximum self-information in the Gaussian case,
(c) And retain the maximum reconstruction (prediction) efficiency for Y.
Generalizing these three properties to the 2-vector problem leads to the three methods

of this section.

4.2. The principal components of H. Taking a hint from the correlation-maximizing
property of the principal components of a single random vector, we could look for a
partial-state in Span (Y-) that maximizes some measure of its correlation with Y +. For
instance, we could pick

(9) p sizedXpartial if’Y- to maximize IIE[Y +Xgartial]llF,
constraint:I,

where subscript F denotes the Frobenius norm of the matrix. The solution to this is
constructed from the principal components of the covariance Hankel matrix H. The
rows of must be the orthonormal singular vectors ofH corresponding to the p largest
singular values. If the SVD ofH is

H UDV UIDV + U2DV
(where the subscript stands for the dominant components corresponding to thep largest
singular values) then the solution to the minimization problem of (9) is V . This
justifies the principal components approximation ofH 25 ]-[ 27 ], that has been exten-
sively used for approximate stochastic modeling 28 ], 29 ]. We will henceforth refer to
this approximation as the PC-H approximation.

4.2.1. Relation to covariance balancing. It can be easily verified that the eigenvalues
ofthe full-order WJ in any coordinate system, are identically the squares of the singular
values of the infinite Hankel H. First note that H factors into the product of O and G:

H E[Y +Y-’] E[OxmY-’] OE[x,Y -t] OG

since (Y / Oxm) depends only on the future input V +m that is uncorrelated with the
past output Y- Hence, the rank of H is equal to the full order of the model, and one
choice of O and G is UD /2 and D I/2v t. In these coordinates, W J D, and so the
eigenvalues ofWJ (that are coordinate-invariant parameters ofthe covariance-equivalent
class) are squares of the singular values of H. Thus, the same partial state selection
criterion is used in covariance-balanced model reduction and in the PC-H method. Hence

Note that the covariance matrix R is not expected to have rank equal to the model order, even when the
lags are exact. Hence, in the perturbed situation, a principal components approximation of R is not justified.
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the PC-H method suffers from the same problem: we can obtain (’, g, ) for the class
of reduced-order models, but the class may be empty because the pseudo-spectrum
Re [21]( eJI ,)-l + r(0)] may be negative at some frequencies w. However, for
spectral estimation applications, where we are only interested in locating the frequencies
of spectral peaks [29], [30], the lack of positivity may not be a serious problem. For
more detailed discussion ofthe quality of the PC-H approximation, the reader is referred
to [31 ].

4.3. The canonical correlations criterion. This criterion was first proposed in statistics
by Hotelling 32 ], and later used for the partial-state selection problem by Akaike 12 ],
[24 ]. Here, any orthonormal basis Z / is found for Span (Y /), and the p partial-state
components are selected as p orthonormal random variables from Span (Y-) that have
the maximum correlation with Z /. The constraint that the partial-state components be
orthonormal translates into the constraint

E Xpartia Xpartial xI/Rt Ip.

If R 1/2 is any square root of R (i.e., R R1/2RI/2’), and R-/2 is its inverse, then one
choice for Z + is R-/2Y +, and so our problem is to

+ -1/2Maximize [[E[R /2y Xpartial][lF__[[ R Ht[[F.
constraint:xI,Rqt Ip

The solution to this constrained optimization problem is constructed from the prin-
cipal singular vectors of R--/2HR-1/2’:

R-1/2HR-1/2t= UAV t= U1A1V + U2A2V .
where as before, the subscript denotes the principal components in the SVD, and

xIt=VR-1/2.

Though the square root of R is not unique, different choices of R 1/2 will not change the
singular values h of R-1/ZHR -1/21. Although the singular vectors U and V depend on
the choice of R-l/z, the composition VR-1/2 is the same for all choices of the
square root.

The singular values ofR-I/ZHR-/21 are the canonical correlation (c.c.) coefficients
between the past Y- and the future Y + [32 ]. It was shown by [33 ], [34 ], that for the
Gaussian case, the c.c. coefficients between Y + and Y- provide a measure of the mutual
information between Y- and Y +. A heuristic derivation of the formula for the mutual
information between Y + and Y- may be found in [31 ].

The canonical components of Y- (with respect to Y+) are Xk vR-1/ZY and
the mutual information between each Xk and Y / is -0.5 log X). Thus, the p com-
ponents from Span (Y-) that maximize the mutual information with Y / are the p ca-
nonical components Xl, x2, , xp with the p largest c.c. coefficients. Just as the principal
components of a random vector maximize the self-information content, the canonical-
components approximation maximizes the mutual information in the 2-vector problem.
Thus, it seems that a natural choice for the components of the partial state are the
canonical components of Y- that have the largest c.c. coefficients, and consequently,
the maximum mutual information (with respect to Y /). Akaike first suggested the use
of c.c. analysis for partial-state selection, and subsequently, many approximate modeling
algorithms have been proposed [22], [35], [36], that use such an approximation.

4.3.1. Relation to the Desai and Pal stochastic balancing. Desai and Pal 20 ]-[ 22
pointed out that the nonzero c.c. coefficients between Y- and Y + are precisely the ei-
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genvalues of the full-order P-max Pmin in any coordinate system. We have seen that these
coordinate-invariant eigenvalues are squares of the nonzero entries of Pmin, when the
covariance-equivalent class is in the Desai and Pal stochastically-balanced coordinates
Pax Pmin 2k. However, we also have the following equalities: Pnax OtR-O
and Pmin RxItt. Therefore, in the Desai and Pal stochastically balanced coordinates
R-l/20 must equal UA /2, and R/- must equal A/2Vt, for some U and V with or-
thonormal columns. However, the composition O equals HR-, and so we obtain the
following equality

R-1/2HR-1/2’ UAV

where A is a diagonal matrix whose entries are square roots of the eigenvalues of
pnlax Pmin, and U and V have orthonormal columns. Thus, the singular values of
R-I/2HR -1/2’ that are the c.c. coefficients between the past and the future are precisely
the square roots ofthe coordinate-invariant eigenvalues ofP,ax Pmin. The c.c. algorithm
is therefore, equivalent to model reduction via the Desai and Pal stochastic balancing.
For a discussion of the appropriateness of the mutual information criterion to the ap-
proximate stochastic realization problem, the reader is referred to 31 ].

4.3.2. Relation to the phase factor. Recall that the target matrix used in the PC-H
method is the Hankel H constructed from the covariance lags of the process. The co-
variance lags r(m) are the coefficients in the power-series expansion of S(z)
pH(z)H(z- for the full-order system. The function S(z) is called the magnitude factor
of the full-order system H(z), because on the unit circle we have S(eJ) o H(eJ)l 2.
The information about H(e) missing in S(eJ) is the phase, and this is available in the
all-pass system

H(z)
(z):

In fact, we have

p(n(z))2= S(z)d(z).

Hence, I,(z) is called the phase-factor of the system H(z). The reason for the no-
menclature becomes even more obvious on the unit circle, where we have

H(W) I-S(W)O(W)

O(e)1 1, Angle (I)(e) 2 * Angle g(e’) ].

Stochastic model reduction based on the above phase factor has also been suggested
[37], and it is closely related to c.c. analysis. It turns out that the target matrix
R-i/_ttR-/2, used in c.c. analysis is related to the phase factor ofthe full-order, minimum-
phase system that corresponds to the given covariances. Ifthe given covariances correspond
to the output of a large-order, minimum-phase system Hmin(Z) driven by white noise,
then the matrix a-l/2nli-l/2’ is equal to the Hankel matrix constructed from the
impulse-response (causal part only) of its phase factor q(z).

CLAIM. Let the stable impulse response (inverse z-transform) of the phase
factor be

Hmin(Z)
CkZ-k

nmin (2"-1) k
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then there exists a square root R 1/2 that makes the composition R-I/2HR-1/2t equal to
the Hankel operator

CI C2 C3 C4

C2 C3 C4 C5
C3 C4 C5 C6
C4 C5 C6 C7

and for any other choice of square root, R-1/2HR -1/2’ has the same singular values as
C, and it will lead to the same approximation.

The proof of this claim is deferred to the Appendix. We can now state that while
the PC-H method works on the Hankel operator corresponding to the magnitude factor
S(z), the c.c. approach works on the Hankel operator corresponding to the phase factor
(z). This result is useful in demonstrating the sensitivity of the poles of Hmin (z) to

perturbations in the matrix R-I/ZHR-/2t. It is shown in Appendix B of [38 ], that the
first-order partial derivative of a pole fli of the system Hmin (z) to the entries Ck in the
Hankel matrix C is

6Ck
--13 + 1(1 --/3/2) I-I

Olm flm=l

where ai,/3i, 1, 2, p are the zeros and poles, respectively, of Hmin (z). Thus
when two poles are close together (as in high resolution problems where two close spectral
peaks are to be resolved), then the poles are very sensitive to perturbations in the Ck
parameters, especially when there are no zeros close to the poles. On the other hand, the
poles may not be as sensitive to covariance perturbations, because

6r(m)

Hence the problem of model estimation from the covariances is numerically well
conditioned, but the use of the matrix C as an intermediate step increases the numerical
sensitivity causing finite precision errors to be magnified in the pole estimates.

4.4. The predictive efficiency criterion. The previous two approaches to approximate
stochastic modeling (the principal components of H and the canonical correlations
method) were derived by generalizing the correlation-maximizing property and the in-
formation-maximizing property of the principal components (of a random vector) to
the 2-vector problem. Recall however that the function of the partial state is to predict
the future output well. Hence, instead ofmaximizing its correlation with Y / or its mutual
information with respect to Y /, it might be more appropriate to generalize the recon-
struction-efficienc property of the principal components approximation to the 2-vector
problem.

The principal-components approximation of a random vector provides an optimal
data compression that maximizes its ability to reconstruct the full-sized vector. In the
partial-state selection problem for approximate modeling, we come across a similar prob-
lem, that of compressing Y- into a partial state that can best predict Y /. Taking a hint
from the reconstruction-efficiency of the principal components of a random vector, we
might wish to compress Y- into a partial state that has the smallest error in predicting
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Y +. Our partial-state selection problem is then to pick a partial state Xpartial Y- to

minimize E [11Y + Y + \ 2
Xpartial ],

The inherent constraint here is that should have only p rows.7 Such a criterion was
first used by Rao in multivariate statistics for the 2-vector problem [19]. Since Xpartia

9-, it can be shown using (4) that

(10) Y +\x Ht(Rt)-X

and the prediction error to be minimized is Trace (R Ht(IRIt)-Iat). Equivalently,
we must choose a p matrix that maximizes Trace ((HtHfft)(qffRt)-l). The
solution to this optimization problem is as follows. The p rows of must be a basis for
the space spanned by the p generalized eigenvectors of the matrix pencil (H/H, R),
corresponding to the p largest generalized eigenvalues. If R is invertible, as is the case
when the model is strictly stable, we can obtain from the eigenvectors of HR-H
instead. Let the eigendecomposition (or SVD) of HR-H be

HR-Ht= UZ2U‘= U,ZU + U2Z22U_

and let subscript "1" denote the principal components, as before. Then, the predictive-
efficiency criterion is optimized when

p AUHR-where A is any p X p invertible matrix.
Note that this solution is different from Akaike’s solution and the PC-H approxi-

mation, because under perturbations, H will be full rank and the principal components
ofHR-Ht, R-1/2HR -/2’, and H arc all different. Rao himself states that his generalized
principal components analysis for studying the association between two random vectors
is different from Hotelling’s canonical correlations analysis.

4.4.1. The Unweighted Principal Components (UPC) Algorithm. After choosing
the partial-state components using the predictive efficiency criterion, we still must obtain
the corresponding parameter estimates. The parameter-estimation step (Step 2) is taken
from the deterministic identification algorithm of 3 ]. It is assumed here that the model
order p is estimated (or given) prior to the model parameter estimation. From that point
on, the rest of the Unweighted Principal Components (UPC) algorithm is [ ], [42 ]"

Step 1. Perform an eigendecomposition of

HR-’Ht= U2Ut--UU -- U222Uand retain only the principal components (denoted by subscript ). Now
I, can be any basis from the row span ofUHR-, i.e.,

I, AU HR- for any invertiblep Xp matrix A.

Different choices ofA will correspond to different coordinate transformations
of the partial state. We choose

Without such a constraint, no size compression is required, and the entire past Y- can be used as the
state.

When R is singular, the process is purely sinusoidal, and this solution is the same as the Toeplitz ap-
proximation method of 39 ]-[ 41 ].
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Then, (10) indicates that

y + \Xpartia HxIt xIRxItt)- Xpartia

implying that the extended observability matrix estimate is

O=HR-IH/U -1/2 1/2 -1/2 /2(2;i- UHR- HtU1 )- UI
Step 2. But, the partial-state is not a "true state" of a linear time-invariant system,

and the O and if’ matrices do not have the required structure. Hence, as in
the deterministic identification algorithm of 3 ], we resort to a second ap-
proximation, and F is obtained as the least-squares solution of (see (3))

OF=O
where O1 (O) is formed from O by deleting the last (first) row. Moreover,
h and T are the first row and column of O and if,, respectively. Therefore,
the parameter estimates are:

h st row ofO,

T st column of

F =OO2
where the superscript stands for the pseudoinverse.

4.4.2. Relation to internal balancing of the minimum-phase model. It can be easily
verified that the eigenvalues of HR-1H are precisely the squares of the state-variances
of the internally balanced, full-order, minimum-phase model; and that, consequently,
the UPC method effectively performs balanced model reduction of the full-order, min-
imum-phase system corresponding to the given covariance sequence.

We will first show that the UPC algorithm is a stochastic version ofthe deterministic
identification algorithm of[3 ]. Recall that Y +\Y- Oxmin that in turn is equal to
Hmi V nin because Xmin Cmin V nin. Moreover, using (4), we saw that Y +\Y-
HR-IY- Combining the two, we get

HR-IY Hmin V nin.

Therefore, the covariance matrices of the two vectors must also be the same. And thus,
we come to the rather surprising result:

HR- H Pmin Hmin Htmin

Thus, the eigenvalues of HR-IH are proportional to the singular values of the impulse-
response Hankel amin of the minimum-phase model. Hence, the UPC method is a sto-
chastic generalization of the deterministic identification algorithm of 3 that works on
covariance data instead of impulse-response measurements.

Since the singular values ofamin are precisely square roots ofthe coordinate-invariant
eigenvalues of WK for the minimum-phase model, it implies that the UPC method
performs balanced model reduction on the minimum-phase model corresponding to the
given covariances.

4.4.3. Some comparisons. In the previous section, it has been shown that the matrix
approximated by its dominant singular vectors in the UPC method is HHt. It also has
been shown that the matrix used in c.c. analysis is equal to the Hankel matrix built from
the impulse response of the all-pass system I,(z) Hmin (z)/Hmin (z-1 ). If we use the
notation I[ to denote the Hankel matrix constructed from the causal part ofthe inverse
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z-transform of the function "." within the square brackets, then we have

Hmin l[Hmi (z) ],

HR-Ht= l[Hmin (z)]" r[Hmn (z)] ,
H= r[s(z)],

R-/2HR-/2’ [(z)

where S(z) laH,(z)H,(z- and (z) Hmin (z)/Hmin (z-).
Thus the PC-H approximation uses the magnitude factor of the full-order system,

the c.c. approximation uses the phase factor, and the UPC approximation uses the transfer
function of the minimum-phase system. Alternate interpretations of the three methods
presented in this section may be found in [31 ].

4.4.4. Connections to other methods. We have already seen how the UPC method
relates to balanced model reduction, to the deterministic identification algorithm of 3 ],
and to Fujishige model reduction. It turns out that the matrix used by the UPC method
for SVD is also used in a realization algorithm due to Mullis and Roberts [43]. This
realization algorithm uses both output covariances and impulse-response coefficients.
When an equal number of covariance lags and impulse-response coefficients are known,
they utilize an (n + n + matrix K n, n) (not to be confused with the controllability
grammian) constructed from

{r(0),r(1), ,r(n);i(O),i(1), ,i(n)}
whose (j, k)th element is

rain k,j)

r(]j-k[)-p , i(l)i(l+ ]k-j]), j,k=O, 1, ,n.
l=O

It is apparent that this matrix is the leading submatrix ofR pLLt. Taking the covariances
of both sides of (2) Y / HV- + LV +, we arrive at

R pHH + pLLt.
Therefore, K(n, n) is the leading submatrix of pHHt. In this paper, we have indicated
how the matrix pHH can be obtained from output covariances alone, when the model
is minimum-phase.

5. Simulations and concluding remarks. Every system approximation criteria dis-
cussed in this paper is based on system parameters that are invariant to coordinate trans-
formations. However, each criterion is different, and measures different quantities. For
instance, only internal balancing centers the state between the input and the output,
while covariance balancing and the Desai and Pal stochastic balancing do not do so,
partly because the input sequence is not uniquely known in the stochastic realization
problem. We have shown that an internally balanced approximation ofthe unique min-
imum-phase transfer-function corresponding to the given covariances, optimizes predic-
tive efficiency in Rao’s sense. We have shown that such an approximation is equivalent
to a principal-components approximation of the information interface between the past
output and the future output. We have presented an algorithm to directly construct the
reduced-order model from the covariances of the output process.

The practicality of the algorithm, however, depends very much on its numerical
performance: its sensitivity to covariance-estimation errors, finite-precision errors, and
to finiteness in the dimensions of the H and R matrices. Our simulations are promising,
in that they seem to indicate that finiteness in the length of the estimated covariance
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TABLE

Method

PC-H Method
C.C. Method
UPC Method

Miss ratio

33/2OO
69/200
7/200

Radius

mean

0.93023
0.86709
0.93009

st. dev.

0.03782
0.09146
0.03309

Angle (in r radians)

mean

0.90679
0.90714
0.91254

st. dev.

0.02405
0.02692
0.02085

sequence does not badly affect the algorithm’s performance. However, a more detailed
analysis is necessary, before a conclusive statement can be made.

Below, we present some simulation examples to illustrate the application of these
methods.

Example 1. In this example, we consider the problem of estimating a fourth-order
rational spectrum from a short record of one sample sequence of the stochastic process.
The stochastic process was generated using the following model:

y(n)= 1.456y(n- 2)-0.81 y(n- 4) + v(n)

that has four doubly symmetric poles approximately at 0.95 e+-j’4 and 0.95 e+-j’6. The
first 30 covariance lags were estimated from a data record of length 120 from a single
sample sequence, and the system parameters were estimated from these covariance es-
timates using the UPC algorithm of this thesis, and the c.c. algorithm of[22 ]. The size
ofthe matrices H and R used in both algorithms was 15 15, and a rank-4 approximation
was used in their component selection steps. The algorithms were repeated on 20 inde-
pendent data sets generated by driving the model with 20 different pseudowhite-noise
sequences, and the 20 spectral estimates from each method were plotted over one another.
The resultant plots and the true model spectrum are displayed in Figs. (a)-1 (c).

The c.c. estimates show a slightly larger variation and many of the c.c. estimates
failed to resolve the two peaks in the spectrum and instead reproduced one peak at the
center. The better ability of the UPC methods to resolve spectral peaks is brought out
more dramatically when the number of simulations is increased further, as in the next
example.

Example 2. The problem considered here is the estimation ofthe poles ofa second-
order rational model from unbiased estimates of the first 26 covariance lags. The true
pole positions (on the z-plane are 0.9 e+-j’9’, so that the problem is one of resolving two
spectral peaks that are 0.27r radians apart. The covariance lags were estimated from a
data record of length 120, from a single sample sequence of the output random process.
Two hundred statistically independent data records were generated by driving the model
with different (pseudo) white-noise sequences, and 200 sets of estimates for the 26 co-
variance lags were obtained.

The PC-H method using the algorithm of 29 ], the c.c. approach using the algorithm
of[22 ], and the UPC algorithm were tested on these 200 sets of the 26 covariance
estimates. The matrices H and R used were of size 13 13 in all three algorithms, and
a rank-2 approximation was used in their first steps. The second step (F O*1" 02) is
common to all three algorithms, and is taken from [3 ]. The results, in terms of the
failure rate, the mean and standard deviation (taken over only the successful trials) of
the pole estimates are tabulated in Table 1.9

A trial is considered a failure if both pole estimates are on the real axis, which means the method has
failed to resolve the two peaks.
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The results appear to indicate that the unweighted predictive-efficiency criterion is
particularly suitable for high resolution rational spectral estimation. Accordingly, for the
next example we include the estimates obtained by more popular spectrum estimation
methods that estimate difference-equation parameters instead of state-space parameters.

Example 3. In this example, we consider the problem ofestimating the power spec-
trum of a second-order autoregressive process from a short record of the process in
additive white noise. The stochastic process was synthesized using the following model:

y(n) 1.864y(n 0.96 y(n 2) + v(n)

that has two symmetric poles approximately at 0.98 exp + j0.1 r, driven by a pseudo-
random white-noise sequence of unit variance. Another statistically independent pseu-
dorandom white-noise sequence of variance 10.0 was added to the output. Twenty such
statistically independent data records ofthe time series, each oflength 64, were generated.

The first 26 covariance lags { r(0), r(1), r(25)} were estimated using the
unbiased covariance estimator from each 64-point record separately, and the model pa-
rameters were estimated from these 20 sets of covariance estimates using a variety of
methods. The maximum entropy method (MEM) was first used to obtain all-pole models
of orders 2, 12, and 25, that exactly match the first 2, 12, and 25 lags, respectively. The
true power spectrum is plotted in Fig. 2(a), and the 20 MEM spectral estimates are
plotted one over the other in Figs. 2 (b), 2 (c), and 2 (d). MEM does not perform very
well, because an autoregressive process in additive white noise needs a second-order pole-
zero model or a high-order all-pole model. Hence, the second-order all-pole model that
exactly matches the first two lags, fails to resolve the two peaks (that are 0.2r radians
apart) in every trial. Instead, it puts both the poles on the real line, and detects only one
peak at zero. On the other hand, high-order all-pole fits that use more lags give rise to
spurious peaks, though the true peaks at +_0.1 r are resolved well. Sometimes, the strength
of the spurious peak can be larger than the true peak, and the spectral shape is not
reproduced with any degree of fidelity. The next two plots in Figs. 2(a)-2(f) are the
spectral estimates obtained by the canonical correlations (c.c.) algorithm of[22] and by
the UPC method of this paper. Here, 13 13 matrices were employed that used all the
25 covariance lags. The model order p was assumed to be predetermined to be 2, and a
rank-2 approximation was used in all trials. The spectral shape is well reproduced by
both methods. But, the c.c. approach fails to resolve the two peaks in two ofthe 20 trials.
This loss in resolution capability and the large variance in pole estimates can be attributed
to the numerical sensitivity problems inherent in the c.c. approach when the poles are
close together 38 ].

Table 2 lists the failure rate, and the mean and standard deviation (taken over
successful trials only) ofthe pole-estimates obtained by a variety ofmethods. For methods

Method

HOYW-2
HOYW-12
Cov.-of-Cov.
C.C.
UPC

Miss ratio

7/20
0
0

2/20
0

TABLE 2

Radius

0.0922
0.1064
0.0994
0.1485
0.1000

mean

0.9592
0.9889
0.9838
0.9581
0.9863

st. dev.

0.1558
0.0239
0.0122
0.0916
0.0181

Angle (in r radians)

mean st. dev.

0.0306
0.0192
0.0090
0.0964
0.0088



BALANCED APPROXIMATION OF STOCHASTIC SYSTEMS 65

that estimate second-order models, a trial is considered to be a failure, if both pole-
estimates are on the real axis, which means that the method has failed to resolve the two
peaks. For methods that obtain higher-order models, a trial is a failure, if the pole-
estimates that are closest to the true poles are on the real axis. For the first two rows in
Table 2, the second- and twelfth-order model’s difference-equation parameters were ob-
tained by exactly solving the first 2 or 12 covariance recurrence equations (called the
higher-order Yule-Walker equations [44 ], [45 ]) using 2p covariances. Thus, only 4 lags
and 24 lags were used respectively. Because of covariance estimation errors in the given
lags, an exact fitting method such as this does not perform well. The second-order exact
realization fails to resolve the peaks seven times in 20 trials, but it does better than
second-order MEM that failed every trial. The higher-order exact rational realization
does better than the second-order rational model, for it successfully resolves the two
peaks every time. Yet, it is an unnecessarily complex model, and the variance of its pole-
estimates is high. On the other hand, a second-order approximate realization based on
all 25 lags, using the covariance-of-covariances method of 45 ], appears to have a much
lower deviation in the pole-estimates. Here, a least-squares solution is found for the
overdetermined system of 23 HOYW equations. The least-squares solution (under the
unit norm constraint) is also the fight singular vector of 23 3 Hankel matrix H,
corresponding to the smallest singular value 25 ]. The next two entries are for the SVD-
based state-space approximations: the c.c. method of [22] and the UPC method of this
paper. Note that the high sensitivity of the c.c. approach in the high-resolution problem
also causes large deviations in the pole-estimates. This sensitivity, in fact, reduces the
resolution capability of the c.c. approach as is demonstrated by the previous examples.
More computer simulations of the UPC method are reported in 41 ].

In conclusion, we have presented three different criteria and three methods for
approximate stochastic realization, as applications of the ideas of balancing introduced
by Moore. Different generalizations lead to different kinds of balancing, and to three
approximate stochastic realization methods. We have tried to demonstrate that an in-
ternally balanced approximation of the minimum-phase model corresponding to the
given covariances leads to good approximate models. We have developed an algorithm
that constructs such a reduced-order approximate model directly from covariance data.
The UPC algorithm uses the same partial-state selection criterion that is used in balanced
model reduction and Fujishige’s model reduction. Balanced model reduction and the
method ofFujishige, Nagai, and Sawaragi are identical, except that one uses a deterministic
justification, that of retaining the most reachable (controllable) and most observable
state-components, while the other uses a stochastic justification, that of retaining the
state components with the highest predictive efficiency for the future. In that sense, the
UPC algorithm is closer to Fujishige’s model reduction. The difference between them
lies in the crucial fact that the Fujishige method needs the full-order model, and does
not require it to be minimum-phase; while the UPC algorithm works with output co-
variances only, and in effect, performs a Fujishige-like model reduction on the minimum-
phase system corresponding to the given covariances.

Appendix.
CLAIM. Let the stable impulse response (inverse z-transform) of the phase fac-

tor be

Hmin(Z)
k2-k

Hmin (2-1) k=-
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then there exists a square root R 1/2 that makes the composition R-I/2HR-1/2’ equal to
the Hankel operator

CI C2 C3 C4
C2 C3 C4 C5
C3 C4 C5 C6
C4 C5 C6 C7

and for any other choice of square root, R-/2HR-1/2‘ has the same singular values as
C, and it will lead to the same approximation.

Proof. The phase factor (z) has poles both inside and outside the unit circle, and
its stable impulse-response has both causal and anticausal parts. In general, the Hankel
matrix constructed from the causal part ofthe impulse-response ofa system is an operator
that maps the past input into the future output. First, let w(t) be the output of (z),
when the input is Vmi (l). We will determine the Hankel operator C that takes the past-
input nin into the future-output W /.

It is immediately obvious that the process y(t) can be alternately generated by
feeding the new process w(t) to the system Hmin (z-l ). This implies that

y(t)-- imin (k)w(t+k),
k=O

that in matrix notation, translates to Y / +Lmin W where Zmi is the lower triangular
Toeplitz matrix (of (2)) built from the impulse response of the minimum-phase model.
Now, Hmin (z-l has all poles outside the unit circle, and is stable if run backwards in
time, as above. In addition, it is also minimum-phase, which means its inverse,
/ Hmin z-l ), is also stable if run backwards in time. In other words, the matrix Ltmin is

invertible, and
t-IW / Lmin Y +.

Combining this with (2)" Y / /’/min V min + Lmin V +
min, we conclude that the Hankel

operator (associated with the phase-factor) that maps the past input V nin into the future
output W + is

t-1C LminHmin.

Let us now express the covariance Hankel H in terms of//min and Lmin. From the
definition of the impulse-response imin (k)

y(t) imin (k)l)min (t- k)
k=0

it immediately follows that

y Pmin Lmin Lmin.Lmi Vmin, and R= E[Y-Y-’]
1/-2 L is a valid square root of R. In addition, we haveTherefore, Omn min

n E[Y +y_t] E (/_/mi V min "q- Lmin V +
min Lmin V in t] PminHmin Lmin.
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For the same reasons as before (the model is minimum phase), Lmin is invertible, and
we get Hmin HL[n. Therefore, we have

t-IC Lmin HL-min
Hence the claim that the Hankel operator corresponding to the phase factor is C
R-I/2HR-/2‘, for the particular choice of square root R 1/2 Ltmin. Any other square
root of R can be written as Lmin Q (where Q is an orthogonal matrix), and then
R-I/2HR-1/2’ Q/CQ. Since Q is orthogonal, R-/2HR-1/2‘ has the same singular
values as C, and the singular vectors are transformed by the matrix Q. However,
V R-1/2 is unaffected by the transformation. V1
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MULTISPLITTING OF A SYMMETRIC POSITIVE DEFINITE MATRIX*

R. E. WHITE"

Abstract. Parallel iterative methods are studied, and the focus is on linear algebraic systems whose matrix
is symmetric and positive definite. The set of unknowns may be viewed as a union of subsets of unknowns
(possibly with overlap). The parallel iteration matrix is then formed by a weighted sum of iteration matrices
that are associated with splittings ofthe matrix corresponding to the blocks. When the blocks are from a matrix
in dissection form, it can be shown under suitable conditions that the parallel algorithm is convergent. When
the multisplitting version of successive over-relaxation (SOR) is used, the SOR parameter is required to be less
than oo < 2.0. Calculations done on the Alliant FX/8 multiprocessing/vector computer indicate speedups of
nine to ten.

Key words, multisplitting, parallel algorithm, symmetric positive definite
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1. Introduction. In this paper we continue the work of O’Leary and White in [9]
on parallel algorithms generated by multisplittings ofa symmetric positive definite matrix.
A parallel algorithm is one whose parts can be executed concurrently by different pro-
cessors of a multiprocessing computer. As indicated in [9] and by White in [14] and
[15 these may be used to approximate the solutions of linear and nonlinear problems.
When a multiprocessing computer is used, significant speedups can be achieved as is
illustrated in 9 ], 14 ], and 15 ], and the last section of this paper.

We restrict our attention to the linear algebraic system

(1) Au=d

where A is symmetric and positive definite. Also, we assume we can reorder the nodes
via a permutation matrix P so that PrAP has dissection form as described by George
and Liu in 3 ]. This allows us to write the multisplitting iteration matrix as an iteration
matrix of a single splitting (see Theorem 3). This single splitting is required to be P-
regular, and hence, by the Householder-John theorem (see Theorem 2) in [5] and [6]
the multisplitting iteration matrix will have spectral radius less than one (see Theorems
4 and 5).

In 2 we review some of the basic concepts of multisplittings. Section 3 contains a
motivating example for the results in 4 and 5. In 4 we indicate how the multisplitting
may be viewed as a single P-regular splitting. Section 5 contains an application to the
multisplitting version of the successive over-relaxation (SOR) algorithm applied to ma-
trices in dissection form that are irreducibly diagonally dominant, symmetric, and have
positive diagonal components. In this case there exists a _-< w0 < 2 such that if the SOR
parameter is less than or equal to w0, then the algorithm will be convergent (see Theorem
5 ). The last section contains numerical experiments using different compiler directives,
different overlapping blocks of unknowns, and different numbers of unknowns. These
experiments were done on the Alliant FX/8 multiprocessing vector computer at Argonne
National Laboratory. The Alliant FX/8 has 8 processors and each has a vector pipeline.
Speedups of nine to ten over the serial codes were observed.
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2. Preliminaries. Multisplittings can be formed by considering blocks ofunknowns
that may overlap. This technique has also been considered by Ostrowski 12], Robert
13], and Hayes [4], and more recently by McBryan and Van DeVelde [7], Neumann,
and Plemmons [8]. A multisplitting is a sequence of splittings

(2) A=Bk-Ck, k=l, ,K.

If each B is invertible, then for each k we can form an iterative method

(3) u + B- Cku + B- d.

The multisplitting iterates in (3) can be computed concurrently. Once this has been
done, we can combine the iterates by using weighting matrices, D. This gives the following
parallel algorithm.

PARALLEL ALGORITHM. Let A B Cgk 1, K and assume each Bg is
invertible. Let 0 < Dg be diagonal matrices that satisfy i= Dg I:

K K

(4) u" + Hu" + Gg where H= , DB-1Ck and G DB-
k=l k=l

The splittings are often associated with blocks of nodes, Sg c { 1, N} where A
is an N N matrix. Usually the ith components of the Dg are zero if the ith node is not
in block S. Thus, we only need to compute those components of B Cg and B{ that
are in block Sg. This reduces the work per processor, and the computation can be done
concurrently.

Remark. If G has an inverse, then we may view this algorithm as given by a single
splitting A B- C where B G-1 and C G-1 H.

Example 1. This is a parallel version of the Gauss-Seidel algorithm as described in
[14 ]. Let A D L Lr be an N N matrix where L is the negative strictly lower
triangular part ofA.

Suppose U= S 1, N}. Define

Bk D- Lk and Ck L + LT- Lk
where Lk a.), A ao) and

-a6, i,j Sk, j< i,
a}=

0 otherwise.

In this case each B- (D Lk) -1 exists and is a lower triangular matrix whose diagonal
is D-. (D is invertible because A is positive definite). Since Z f= D I, G
i= DkB will also have this form, and so, G- exists. The convergence of parallel

algorithms has been studied when A is an M-matrix as defined in Berman and Plemmons
]. When the splittings are weak regular splittings, then O’Leary and White [9] proved

0(H) < 1. Later White [14 showed that there exists a monotonic norm such that

IIn[I _-< [Inll <1

where H D-(L + U) is the Jacobi iteration matrix and H is from the multisplitting
in Example 1. Recently, Neumann and Plemmons 8 strengthened this to the following
for A being irreducible:

p(H) =< p(Hj) < 1.
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In a paper by Eisner [2] presented at the Third SIAM Conference on Applied Linear
Algebra (May 1988 at Madison, WI), a more general result was presented. Let A -l >= 0
and A Bk Ck be weak regular splittings with B =< Bk <- B. IfA M- N M- _N
are regular splittings with B =</, then 0(M-1N) -< 0(H) =< 0(2Q-l). The conclusion
is false ifA M- N M N are not regular splittings.

When A is symmetric and positive definite, the parallel algorithm may not converge
even if the splittings are P-regular. (A B C is P-regular if and only if B-l exists and
B* + C is positive definite.) The following example given in 9] illustrates this:

L0.0 0.7 1. 4. 1. 3.25

and

When

then

Also,

=B:-C:.
-1. 0.5 -1. -.25

0 0
and D2DI=

0 0 0

.875 .25 ] and p(H)=l.125.H

.25 .875

1[ -2!
G-- D1B-{ +D2B

-2

When we restrict the weighting matrices, then the following theorem can be proved
(see [9]).

THEOREM 1. If A is symmetric and positive definite with P-regular splittings
A=Bk-Ck, and Dg agI with ak >0 and = lag 1, then for H given in (4)
p(H) < 1.

The proof of this theorem has the same flavor as the proof of the Householder-
John theorem in [5] and [6]. The interested reader may wish to consult Ortega and
Plemmons [10] where some interesting generalizations are considered.

THEOREM 2 (Householder-John). Let A B C be Hermitian and B* + C be
positive definite. Then p(B -l C) < ifand only ifA is positive definite.

3. Motivating examples. In the following example we indicate a reordering scheme
that will allow us to view the multisplitting as a single P-regular splitting. This is a special
case of the results in 4 and 5.

Example 2. Consider Au f where the five-point finite-difference method is used
with three unknowns in each direction. We may consider this as a two-block problem,
as indicated by S and $2 in Fig. l, where the center row is the overlapping subblock.
This gives a 9 9 system matrix that we indicate by nine 3 3 blocks

Ao -I 4) ]A -I Ao -I
4) -I Ao
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$2
u =(u,,u,u)
Ul =(Ull, U12, U13)
u (u, u,u
u (u, u,u)

FIG. 1. Two blocks and classical order.

where

A0= -1 4 -1
0 -1 4

I 3 3 identity matrix, and 4 3 3 zero matrix.
Now, reorder the nodes so that the overlapping row, row 2, becomes the last row,

that is, u (u, /’/3, U2) T. Then the appropriate permutation matrix P gives

PrAP 49 Ao -I
-I -I Ao

The Gauss-Seidel splittings associated with the two blocks are

and

where

PrAP B C ck Do Lo ck 4 Uo I
-I ck Do Lo ck I Uo

PT"AP= 92 C2 dp Do- Lo 4 ck Uo I
ck -I Do Lo I 49 Uo

Ao Do Lo Uo,

[ ]0 0 0
Lo 0 0

0 0

One choice of weighting matrices is

Then

and

and

(Do-Lo)-G DB-{ +DzB ck
1/2 (Do Lo)-2

and

Do-Lo 4
G-l 4 Do Lo

-1/2I -1/2I

Do =4I,
0 0]Uo= o o
0 0 0

D2
4,

(Do- Lo) -1

1/2 (Do Lo)-2

Do Lo

(Do- Lo)-
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Write H B-C where B G-1 and PrAP B C, and then

C= q Uo I
1/2I 1/2I Uo

Br+ C ck Do 1/2I
1/2I 1/2I Do

Since Br + C is symmetric, irreducibly diagonally dominant and has positive diagonal
components, Br + C is positive definite (see Theorem 2.3.10 of 11 ]). By the House-
holder-John theorem we conclude o(H) < and the parallel algorithm converges.

Remarks. Let the reordering have the splitting PrAP B C where P is the
permutation matrix. Then the original matrix has the splitting A PBP- PCP and
(pBpr)-I(pcPr) P(B-C)Pr. Thus, o(B-C) o((PBPr)-(PCPr))= spectral
radius.

(2) If the serial Gauss-Seidel method is used with the new ordering, then for the
Gauss-Seidel splitting PrAP Bs Cs we have

Bs+Cs= b Do b
Do

(3) If the Jacobi method is used with this new order, then for the Jacobi splitting
PrAP Bj- Cj we have

Do b I ]B+ Cj= Do I
I I Do

Later we present Example 3 where for a very simple case a parallel version of the SOR
method is given. An explicit condition on the SOR parameter, w, is given so that the
algorithm converges. This requires 0 < w -< Wo < 2; in contrast, the serial SOR algorithm
only requires 0 < w < 2.

4. A multisplitting as a single P-regular splitting. In this section, we restrict the
forms of the system matrix and the multisplitting so that we can explicitly compute
B and DkB )-. This will allow us to view the multisplitting iteration matrix as
an iteration matrix from a single splitting. The form of the matrix is from a reordering
and has been described in George and Liu [3].

DEFINITION. An N N matrix A is in dissection form if and only if

(5) A

hi

AK
Cr Ao

where Ak are nk nk matrices for <- k <- K, Ao is m m matrix with nl + + nk +
m N, and C is (N- m) m matrix. IfA0 is also in dissection form, then A is said to
be in nested dissection form.

Example. Consider -Au f and discretize it via the five-point finite-difference
method. Let the unknowns be a disjoint union of nodes as indicated in Fig. 2. Reorder
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93

92

91

{1,.--,N}=UP
S =PUP =
S PUPUPs
S PaU P5

FIG. 2. Partition ofnodes.

the nodes by listing the two smaller sets of nodes P4, P5 last. Then K 3 and

A= 0 A 0 C3

(6)

(7)

Assumed structure and multisplitting of A.
1. Let A have dissection form where Ao diag (At) where

l =K+ 1, ,2K- 1,

C=(Ckt)k 1,... ,K, I=K+ 1,... ,2K-1.

2. A Bk Ck where Ak Mk Nk, At Mt Nt and

*o

(8)

3. Dk diag (d/k) where d/k are uniform on Pt, that is,

dki dkt for all ie Pt,

S P, U PK+ 1,

l=K+k-1,

S=PUPK- ,
K

dkt 0 for Pie5 Sk and , dkl 1.
k=l

The following lemma will be used repeatedly in the proof of Theorem 3.
LEMMA.

-1

Ak Ak

Ck Ao "--Ck A -where k =-- A CkA-, A- existsfor k O, K.
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Proof. Use the definition of an inverse of a matrix.
THEOREM 3. Let A have the dissection form (5), (6), the multisplitting (7), and

the uniform weights (8). If M- M[ for k 1, K and K + 1, 2K
exist, then the multisplitting iteration matrixH in (4) may be written as H B-IC where
A B C and

(9)

Proof. In order to compute Bl, use the lemma with Ak Mk for k 1, k,
Ao=diag(Mt) forl=K+ 1,...,2K- 1, and

C C,+ C,+, C,x- r.
Then (k (Ck,:+ , Ck,2i- r where

Oo

1T M-i- T -1 ".CktMk and Dk=

where Ik identity on Pk.
Thus

Oo

dkld-lT dklM-1

o

Since E- dkt I,

K., DkB
k=l

o

dkl-lT dklM-["1

Apply the lemma with Ak M1, Ao diag (M]-l) for K + 1, 2K- 1, Ck
(dk,C+ l(k,C+ 1, dk,2K-l(k,2-l) r. Thus
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(&,K+ ICk,K+ 1, &,2K-1Ck,2K 1),

Oo

( Kk= )-1G-l= DkB- "..

"-dktC"" Mt

Since GA I- H, A G- G-H B- C.
THEOREM 4. Let A be symmetric positive definite, and have the multisplitting as

in (5)-(8 ). Let A B C, as given by Theorem 3. Then

Br+C

Oo

+ (]

SYM Mf+ Nt

IfB T + C is positive definite, then the multisplitting algorithm in (4) is convergent.
Proof. SinceA =B-C,C=B-AandBT+C=Bv+B-A.By(7)and(9)

we have

BT+C

,o

M+Nk (1 --kt)Ckt’’"

Mf+U 

Since A is symmetric and positive definite, the Householder-John theorem yields the
desired conclusion when B r + C is positive definite.

The following example illustrates the condition of B + C being positive definite.
In this example a multisplitting version of the SOR method is given, and convergence
is characterized by the SOR parameter being less than o0 < 2. This is a special case of
the more general result in the next section.

Example 3. Consider

-a 0]A -a -a
0 -a
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which is positive definite for 2a 2 < 1, and reorder the nodes by (1, 2, 3) -- (1, 3, 2).
Then define two SOR multisplittings:

1/W 0
B1-C1 0 1/w

-a 0 1/w 0

0 ][(1-w)/Woa
1/w 0

1/w 0
B2-C2 0 1/w

0 -a

a 0 ](1-w)/w a
a (1-w)/w

a 0 ](l-w)/w a
0 (1-w)/w

When the following weighting matrices are used:

0 and 02

then

B (DIB-1 +D2BI) -1

w 0

a/2w2 a/2w
0 0 1/w 0
w -a/2 -a/2 1/w

Define C by A B C to get

Then

(1-w)/w 0 a ]C 0 (1-w)/w a
a/2 a/2 (1-w)/w

(2-w)/w 0 a/2
BT"+C 0 (2-w)/w a/2

a/2 a/2 (2-w)/w

By the definition of positive definite and by completing the square of a quadratic we
have that B 7- + C is positive definite if and only if

V2
lal +V--

It is interesting to compare the constraint on w with the serial SOR and Jacobi SOR
constraints on w. For the Jacobi SOR splitting,

1/w 0 0 (1-w)/w 0 a
A= 0 1/w 0 0 (1-w)/w a

0 0 1/w a a (1-w)/w

and

(2-w)/w 0 a ]BT+C 0 (2-w)/w a
a a (2-w)/w
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and this is positive definite if and only if

0<w<

Since

12al + V"

f2 f2
IZal + V
<

la] +V
for this example the Jacobi SOR method requires more restriction on the SOR parameter
than the parallel SOR method. The serial SOR method requires less restriction on the
SOR parameter than the parallel SOR method.

5. Application to parallel SOR. The serial SOR algorithm is given by the sin-
gle splitting

A =--(D- wL)---(( w)D+ wL 7-).
w w

Then BT + C ((2 w)/w)D will be positive definite when 0 < w < 2 and D has
positive diagonal components. The multisplitting version of the SOR algorithm will be
more restrictive on w.

PARALLEL SOR ALGORITHM.

(10) uki’n+l/2=(di-- aiju’n+l-- aijuT)/aii, irSk,
j other
jSk j4

(11) uki’n+l=(1--W)U+wuki ’n+l/2 iS,

K

(12) u+l= Z dkiui’n+’.
k=l

For S, (10) and 11 are computed concurrently. Since d 0 for S, only
those u’"+ for S are needed to compute (12). This algorithm may be written as
the following multisplitting"

A=(D-wL) 1((1 wlD+w(L+Lr L))
w w

L=(-a),
-ao, i,j6S and j<i,a=
0, otheise.

Consider the dissection form as specified by (5)-(8 ). Let D diag (aii) where 6

P and {1, N} is the disjoint union ofP for k 1, K, K + 1, 2K- 1.
S are the overlapping blocks as given in (8). Then 10)-(12) may be written in the
form of (7) where

Ag= (ai), i,j6P

(13) I(D- wL’)-I(( w)D + wL‘r)
w w
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where

L= (l), i,jPk,

l { -aij, i,j Pk

0 otherwise.

In this case, L is a combination of L and -C:
0

L

L= 0

-Ch

and j<i,

Then M[ + Nk ((2 w)/w)D and

((2-w)/w)Dk (1--tkt)Ckt
(14) Br+C ""...

(1--dkt)C[t ((2-w)/w)D

Theorem 4 requires w to be such that B r + C is positive definite. The next theorem gives
conditions that will yield B r + C positive definite. We further restrict A to be symmetric,
have positive diagonal components, be irreducibly diagonally dominant, and hence, pos-
itive definite.

THEOREM 5. Let A be symmetric, have positive diagonal components, and be ir-
reducibly diagonally dominant. Assume that A has dissection form and has the parallel
SOR multisplitting given by (5)-(8) and (13). There exists a wo >-- such that if O <
w <- wo, then B r + C in (14) is positive definite.

Proof. Since A is irreducibly diagonally dominant, aii >= Zj,i a0l. Also, 0 -<

dt --< 1. Thus, we may choose wik >-- such that for _-< k -< K

2 Wik
aii (1-dt)laijl, ieP.

Wik Kj PI

Also, for K + =< =< 2K- we may choose wit >- such that

2- Wil
aii (1-dz)la01, iez.

Wil k Kj Pk

Define Wo min wi P, k <= 2K- 1}. Since aii >= ji a/l and 0 =<
dkt -< 1, B r + C in (14) will be irreducibly diagonally dominant when 0 < w -< w0. Also,
B r + C is symmetric and has positive diagonal components, and hence, by Theorem
2.3.10 of[10], B r + C must be positive definite.

6. Numerical experiments. In this section we illustrate Theorem 5 by considering
the algebraic system that evolves from an elliptic partial

--Au=10.0 one2=(0,1)(0,1),
(15)

u=0.0 on 0f.
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This problem was discretized by the five-point finite-difference method and the resulting
system was scaled (D-/2AD-/2)(D1/2u) D-/2d. In all the calculations N=
(n )2 and Ax Ay 1.O/n. The stopping criteria was the absolute error with e

0.0001. Double precision (64 bit reals) was used, and the optimal SOR parameter Wopt
was estimated by numerical experimentation to within +0.005.

All calculations were done on the Alliant FX/8 multiprocessing computer at Argonne
National Laboratory. The Alliant FX/8 has eight processors and each has vector instruc-
tions. In order to use the vector instructions, in each block the red-black ordering was
used. Various compiler directives can be used to control the amount of parallelism:

Alliant FX/8 Compiler directive

-Og
-Ogv
-Ogc
-0

optimized serial (1 processor)
optimized vector (1 processor)
optimized concurrent
optimized concurrent with vector

Table indicates some calculations where different complier directives were used.
N 57 z was the number of unknowns. In all cases the number of iterations needed for
convergence was 114 and Wopt 1.900. In this case K and the red-black order was
used. Consequently, the -0gv gave a significant decrease in computing time.

The -Ogc directive did not give a significant decrease in time because the problem
was not partitioned properly. Table 2 contains calculations for different blocks. In all
calculations N 57 z and the -0 directive was used. Note that the iterations required
for convergence increased as K increased. However, if the overlap between blocks is
increased, then there is some decrease in iterations required for convergence. Figure 3
explains the configuration of the blocks K 4a, 4b, 8b.

TABLE
Variable compiler directives.

Directive Time (sec)

-Og 15.36
-Ogv 4.56
-Ogc 10.08
-0 2.77

TABLE 2
Variable blocks.

Blocks Iterations Wor,t (_+0.0005) Time (see)

K 2 112 1.920 1.70
K 4a (overlap row) 263 1.885 2.71
K 4a (overlap 3 row) 202 1.910 2.27
K 4a (overlap 5 row) 177 1.920 2.18
K 4b 222 1.905 2.78
K 8b 292 1.885 2.90
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K= 4a K= 4b K= 8b

FIG. 3. Block configurations.

TABLE 3
Variable N, K 2 and speedups.

N Directive Iterations Wop (+0.0005) Time (sec) Speedup

292 -0g 68 1.855 2.38
292 -0 59 1.855 .31 7.67
572 -0g 114 1.900 15.36
572 -0 112 1.920 1.70 9.04
1132 -0g 247 1.950 13 I. 15
1132 -0 243 1.960 13.75 9.54
2252 -0g 482 1.975 999.81
2252 -0 476 1.980 105.49 9.48

Table 3 measures speedups for dittrent N. Speedup is defined as follows:

time for 0 calculations
Speedup

time for 0g calculations"

In Table 3 for -0 and K 2 the red-black ordering was used. The speedup for N 29 2

was not as good as the others because the length of the vector pipeline in the Alliant
FX/8 is 32 64 bit real numbers. Thus, for N 292 with red-black ordering more loads
of the pipe were required.
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ON THE PERFORMANCE OF THE MINIMUM DEGREE ORDERING
FOR GAUSSIAN ELIMINATION*
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Abstract. The minimum degree ordering for Gaussian elimination is considered. A way to resolve ties
that results in a fill-in of 0(n34) for n n matrices whose zero/nonzero structure corresponds to a torus graph
with an optimal fill-in of 0(n log n) is exhibited. Experimental results suggest that random tie resolution yields
a similar fill-in.

Key words, sparse matrix computation, Gaussian elimination, minimum degree ordering
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1. Introduction. We want to consider Gaussian elimination (with no pivoting) for
sparse matrices. In particular, we are interested in the amount of fill-in introduced by a
particular sequence of pivots, since the fill-in determines the number of arithmetic op-
erations and also the required storage.

In 6 Parter observed that Gaussian elimination can be interpreted graph theoret-
ically. He considered linear systems of equations that have sparse symmetric square
coefficient matrices with a nonzero diagonal. Let M be such a matrix with n rows and
columns. By replacing every nonzero entry ofM by 1, we obtain the adjacency matrix
of an undirected graph G(M). Parter showed that eliminating a variable in a system of
equations corresponds to eliminating the corresponding vertex in G(M). To eliminate
a vertex v from G(M), we first add edges to interconnect any two neighbors of v, and
then we remove v with all its incident edges. The number of edges introduced during a
sequence of such transformations corresponds to the fill-in ofM induced by the corre-
sponding sequence of pivots. This graph-theoretic approach was developed further by
Rose 7 ].

Both Parter and Rose considered cases where one can order vertices to be eliminated
in a way that minimizes the resulting fill-in. However, for an arbitrary graph the problem
of finding a sequence of vertices minimizing the fill-in is probably intractable (since in
[9] a language version of this problem was shown to be NP-complete). Therefore it is
appropriate to consider heuristics that hopefully provide an acceptable level of fill-in.
We investigate the widely used heuristic of "minimum degree ordering" (MINDEG)
introduced in 8 (for a more comprehensive exposition see or 3 ). Here, each time
we eliminate a vertex of minimum degree. Since the heuristic itself has to be efficient, it
would be nice if we could break ties arbitrarily. In [1, p. 137] experimental data is
presented which suggest that some tie-breaking strategies are ineffective. Our analysis
confirms this conclusion.

We analyze MINDEG on the torus Te with n k2 vertices. We obtain Te when we
identify corresponding vertices on parallel sides of the (k + 1) (k + mesh. Our
result is the following theorem.

THEOREM. Assume n k2 where k/4 is a power of 3. Then there exists a tie-
breaking strategyfor Te with afill-in larger than rt 1g34 and the number ofinduced arith-
metic operations larger than n 151g34.
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87-0400, and Office of Naval Research contract N0014-80-0517 is gratefully acknowledged.
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One should note that the optimal tie-breaking strategy for Tk yields the fill-in of
0(n log n) and the induced number ofoperations 0(n 1.5) (see [5]). Thus the ratio between
the worst and best possible fill-in obtainable by minimum degree orderings for a graph
ofsize n can be as bad as n 0"26 (n’39 for the number ofarithmetic operations). Previously,
only constant lower bounds for these ratios were known. Determining the worst possible
performance ofthe minimum degree ordering for the torus graph remains an interesting
open problem.

A similar result can be proven when we consider a square mesh instead of a torus;
however, the proof becomes quite tedious in this case. We also experimentally studied
random tie-breaking strategies and found that the resulting fill-in was approximately the
same as the one implied by the strategy described in this paper. Therefore we expect that
most tie-breaking strategies are far from optimal. On the other hand, it should be remarked
that the rate of growth of n’26 is initially moderate. This could explain why MINDEG
behaves satisfactorily in practice.

2. The construction. We first introduce some terminology. We consider edges of
an undirected graph to be two-element sets of vertices; elements of an edge are called
neighbors; the degree of a vertex is the number of its neighbors.

DEFINITION. Given an undirected graph G and a vertex , we define the elim-
ination graph G as the result of the following transformation:

(a) add edges to G to interconnect any two neighbors of in G;
(b) delete u and all its incident edges.
(2) Given a sequence of distinct vertices of G, we define G; inductively:

I G if- is the empty sequence
G;

(Gn)w ifT=(,w).

(3) We say that a sequence of vertices (u, ,/Ira) is a minimum degree sequence
if and only if u;/l is a vertex of minimum degree in G,, ,, for 0 =< < m.

Assume that k/4 is a power of 3. To prove the theorem we will construct a minimum
degree sequence such that Tk) is a complete graph with more than 1.5kg34 vertices.
This will suffice, because for a complete graph with N nodes the number of edges is ()
and the induced number of operations is at least N3.

The vertices of Tk correspond to the integer points on the plane where the
points (x, y), (x + k, y), and (x, y + k) are identified. All edges have the form
{(x,y),(x+ 1, y)} and {(x,y),(x,y+ 1)}.

Let k 21m. We define the (l, k)-brick graph B that will be most important for
our construction.

Consider the rectangle (or "brick" with corners (0, 1), (l, 0), 3l, 2l), and (2l, 3l)
on the torus T. The translations of this rectangle by the vectors (0, 2l) and (2l, 0) will
cover T with m 2 copies ofthe original rectangle. (The resulting cover resembles a slanted
wall of bricks.) We label bricks with pairs (i, j): the "first" brick is labeled (0, 0); this
brick, when translated by (2li, 21j), is labeled.(ij).

The vertices of B are exactly the vertices of T (i.e., the points with integer coor-
dinates) that lie on the boundaries of the rectangles. The edges of B connect vertices
belonging to the same rectangle. (Thus each rectangle is completely interconnected.)

Note that this graph was defined by coveting Te with polygons. In general, for any
set of polygons that cover Tk, we can define a graph with exactly those vertices of Tk that
lie on the boundaries of the polygons, while the edges connect vertices belonging to the
same polygon. Such polygons provide a pictorial representation of a graph, which we
will call (as in [2]) the finite element graph representation.
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LEMMA 1. Assume that 4 divides k. Then there exists a minimum degree sequence
that transforms the torus Tk into the (2, k)-brick graph.

Proof We say that a vertex is odd if the sum of its coordinates is odd. Let fi be a
sequence of all odd vertices of Tk. Because no two odd vertices are adjacent, is a
minimum degree sequence. We eliminate all odd vertices to obtain the graph G1
Tk)n (Fig. (a) shows the finite element representation ofG ). Note that all vertices of
G have degree 8.

Next we form the sequence of all vertices (i, j) with i, j even and + j divisible
by 4. Again, no two such vertices are adjacent and is a minimum degree sequence.
Therefore we can obtain G2 (G)7. The polygons of the finite element representation
of Gz (see Fig. (b)) are translations of the square with corners (0, 2), (2, 0), (4, 2),
and (2, 4). Observe that each corner of such a square is shared by exactly four squares.
Thus the corners of each square have degree 20, while all other vertices have degree 12.

Finally, we form a sequence of all vertices of the form (4i + 3, 4j + 3). All of
them have degree 12, and no two are adjacent; therefore is a minimum degree se-
quence. Observe that (G2) is the desired (2, k)-brick graph (see Fig. (c)). V]

2 3 4 5 6 7 8 9

(a)

10

10 0 2 3 4 5 6 7 8 9 10

(b)

10

9

8

7

6

5

4

3

2

0

0 2 3 4 5 6 7 8 9 10

(c)

FIG. 1. Circles denote previously eliminated vertices.
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Next we show how to increase the size of the bricks without eliminating too many
vertices.

LEMMA 2. Assume that 6l divides k. Then there exists a minimum degree sequence
that transforms the (1, k)-brick graph into a graph isomorphic to the (4l, 4k/3)-
brick graph.

Proof We will merge adjacent bricks so that the number of "bricks" decreases by
a factor of 9, while the circumference (and so the number of adjacent vertices) of a
"brick" increases by a factor of 4. Before describing the process of merging bricks, we
will explain the evolution of graphs with finite element representation.

In the graphs considered below a vertex has minimum degree only if it belongs to
exactly two polygons of the representation. Consider a vertex u that has (minimum)
degree m and that belongs to polygons P1 and P2. Let C be the set of vertices that belong
only to PI and P2. The neighbors of u are the vertices that belong to P or P2. Thus all
elements of C have the same minimum degree m. Moreover, if is a sequence of
distinct elements from C, then the degree in G; of the remaining elements of C is m
i, which must be minimum: elements of C do not gain any new neighbors in this trans-
formation. As a result, any ordering of elements of C is a minimum degree sequence.
(Here a collection ofminimum degree vertices is eliminated simultaneously; George and
Liu [4] call this process mass elimination.)

One can see that G has the same finite element representation with the exception
that polygons P and P2 are replaced by a single polygon, P t_J P2.

Now we are ready to prove the lemma. First we partition the set of bricks into
triples, using the labeling of bricks introduced in the definition of brick graphs:

{(0, 0), (0, 1), (1, 1)}, {(1, 2), (1, 3), (2, 3)}, {(2, 1), (2, 2), (3, 2)}
belong to the partition;

if a triple belongs to the partition and we add (0, 3 (or (3, 0)) to every label, then it
still belongs to the partition.

Next in each triple we merge a pair of bricks to obtain a "long rectangle." For
example, in the triple { (0, 0), (0, 1), (1, 1)} we merge bricks (0, 0) and (1, ). The
remaining original bricks, one in every triple, are pairwise disjoint (see Fig. 2 (a)). Because
of the repetitiveness of the brick arrangement, every pair of adjacent bricks contains a
vertex of minimum degree, thus we can perform these mergers via mass elimination.

Subsequently for each triple we merge the "long rectangle" with the remaining
brick. The resulting polygons, which we call "hats," are shown on Fig. 2(b). Note that
we had a choice: merge a pair of"long rectangles"; merge a "long rectangle" with a brick
adjacent to its short edge; and merge a "long rectangle" with a brick adjacent to its long
edge. The degrees ofthe first vertices eliminated in these mergers are, respectively, 19l 2,
15l- 2, and 14l- 2. Hence we can create the "hats" using a minimum degree sequence.

Note that the system of hats has similar symmetries as the system of bricks: each
hat is adjacent to six other hats, and the pairs of adjacent hats share the same number,
2l + 1, of vertices. (This property allows us to interpret the system ofhats as a hexagonal
mesh.) Therefore we can repeat the entire process once more with hats: we group them
in triplets, etc. Two stages of this process are shown on Figs. 2(c)-2 (d). Let us call the
resulting polygons "neo-bricks."

Observe that’ we reached our goal. Before, all bricks were derived from one via
translations by vectors (21, 0) and (0, 2l). Now, all neo-bricks can be derived from one
via translations by vectors (6l, 0) and (0, 6l). We label the neo-brick containing brick
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(a) (b)

(c) (d)

FIG. 2

(0, 0 with (0, 0), while the translation of this neo-brick by the vector 6li, 6lj) is labeled
with (i, j). Observe that

(a) neo-bricks i, j), + m/ 3, j), and i, j + m/ 3 are the same;
(b) neo-brick (i, j) shares 41 + vertices with bricks (i, j + ), (i + 1, j + ),

(i 1, j), (i + 1, j), (i 1, j ), (i, j- ), while its intersection with other neobricks
is empty;

(c) three neo-bricks share one vertex if and only if the intersection of any two of
them is not empty; the intersection of any four neo-bricks is empty.

Therefore the resulting graph is isomorphic to the (41, 4k/3)-brick graph. D
Proof of the Theorem. Let k 3 m/ 14. With Lemma 1, we transform Tk into a

(2, k)-brick graph. By repeatedly applying Lemma 2, we obtain a (X, 6X)-brick graph
for X 4m2. This graph contains 9 bricks in its finite element representation (recall
that the (, 2Xz)-brick graph contains/2 bricks). The bricks in this graph are labeled
with pairs (i, j) such that 0 =< i, j < 3. We initially merge bricks (0, 0) and 1, ), 1, 2
with (2, 0), and (0, 2) with 1, 0). Then we merge the first result with (2, 2), the second
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TABLE
(n k2).

(Fill-in)
k Fill-in (Fill-in)/(n log2n) (Fill-in)/ng3a n

8 353 0.91927 1.85622 0.08618
16 2695 1.31592 2.46433 0.04112
32 17133 1.67314 2.72432 0.01634
64 104400 2.12402 2.88675 0.00622
128 580116 2.52911 2.78939 0.00216

with (0, ), and the third with 1, 0). At this point the graph becomes fully interconnected
and contains 18l vertices.

Note that

18l 4m36 36 (k/12 )1og34 36 / 31g344 1g34) kIg34 (9 / 4 Iog34) k1g34 > 1.565n51g34.

Since the number of edges in a completely interconnected graph with N vertices is (r),
the resulting fill-in is larger than 1.22r/ 1g34. Similarly, for the completely interconnected
graph with Nvertices, the implied number ofmultiplications is N (see ), which means
that this strategy yields the implied number of operations larger than n 151g34. [-]

3. Experimental results. We ran MINDEG for the k k torus graph resolving ties
at random, using the linear congruential random number generator. For each value of
k at least l0 trials were performed. The maximal deviation from the average was close
to 5 percent each time. The results in Table below suggest that random tie-breaking
strategies do not perform better than the strategy discussed in the second paragraph.
It is worth mentioning that these results are proportional to the ones described in
[1, p. 137].

Acknowledgments. We wish to thank John Gilbert for introducing us to this problem.
Thanks also to Alex Pothen for helpful comments.
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Abstract. Feasibility results are generalized for the interval arithmetic versions of Gaussian elimination
and of total-step, single-step, and symmetric single-step methods to block methods. It is shown that block
Gaussian elimination is always feasible for H-matrices and for a new class of interval matrices. Convergence
results for the block iterative methods are given and the quality of the enclosure and the speed of convergence
are compared with respect to the fineness of the partition into blocks of the given matrix.

Key words, linear interval equations, block Gaussian elimination, block total-step method, block single-
step method, block symmetric single-step method, M-matrix, H-matrix

AMS(MOS) subject classifications. 65G10, 65F05, 65F10

1. Introduction. In this paper we consider the problem of finding good interval
enclosures for the set

Z(A,B) { A-DI AA, :6B }
of solutions ,A =/, where is varying in the interval matrix A [A, ] and B is
varying in the interval vector B [B, B]. The best possible interval enclosure is the hull
of Z(A, B), i.e., the intersection of all interval vectors containing Z(A, B). A survey of
methods available to determine the hull of Z(A, B) or an outer approximation to it
recently has been given by Neumaier [14].

Our paper differs from most papers considering direct and iterative methods for
enclosing Z(A, B) in that we are investigating block methods, i.e., we are working with
submatrices of the given matrix rather than with single entries. As we shall show, block
methods may give an improvement on nonblock methods, i.e., they may result in an
interval vector of smaller radius.

Linear systems whose coefficient matrices have a natural block structure often appear
in the numerical solution ofmatrix equations arising from finite-difference approximations
to partial differential equations [25 ]. Typically, the coefficient matrices are block tridi-
agonal matrices. Here the number ofarithmetical operations required can be considerably
reduced by using block methods (see, e.g., [8, 2.3.3]).

To the best of our knowledge, interval methods for block systems have been con-
sidered in the literature only in three cases: Valenca 24 solves a tridiagonal block system
arising from using multiple shooting to find bounds for the solution of a two-point
boundary value problem; however, she does not give any conditions for solvability of
such a system by interval methods. Tost 22 ], 23 presents a method for solving systems
of interval equations arising from discretizations of the Laplace equation. Schwandt
[20], [21] applies an interval variant of the Buneman algorithm to solve systems of
interval equations related to nonlinear Dirichlet problems. In the last two methods (as
in [6] for methods for solving interval Toeplitz systems of equations) a substantial re-
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duction both in the total computing effort and in coefficient storage is obtained by ex-
ploiting the special structure of the matrices involved.

In the next section of this paper we recall some results from interval mathematics
and from the theory of M-matrices. In 3 we consider an interval variant of block
Gaussian elimination and show that this direct method is always feasible for H-matrices
and for a new class of interval matrices. In 4 we use the concept of sublinear maps due
to Neumaier 12 to prove some convergence results for the block total-step, single-step,
and symmetric single-step methods. It turns out that for M-matrices a partition with
smaller block size results in at least as good enclosures. On the other hand, a partition
with smaller block size gives possibly larger spectral radii of some matrices connected
with the iteration processes that indicates slower convergence. So roughly speaking, a
finer partition yields for M-matrices a better enclosure at the expense of slower con-
vergence.

2. Preliminaries. We denote by , n, nXm the set of real numbers, real n-di-
mensional (column) vectors, and real n m matrices, respectively. To avoid in the
sequel parallel definitions for real numbers, vectors, and matrices we identify
matrices with real numbers and n matrices with vectors. We consider n X m endowed
with the natural (componentwise) partial ordering =<. Compact, nonempty intervals of

n X m with respect to this partial ordering

A [_A,] { d2(nm A <=
are usually referred to as interval matrices or matrix intervals. By U x we denote the
set of all interval matrices. If__A we call A D m thin and identify the set of thin
interval matrices with 2nm. In this paper, we simply refer to elements of U"" as
matrices. The entries of a matrix A e []2nm are written as aij, 1, ..., n,j 1, ...,
m. Transposition is denoted by a superscript T.

We denote the (real) identity matrix by I and by E(i) its ith column vector. The
order of I will always be clear from the context. The absolute value A and radius r(A
of a matrix A m are given by the real matrices

IAI max Ii IiA }, r(A):= 1/2(d- A).
The distance q(A, B) nm ofA, B nm is defined as

q(A,B)’= sup { IA__-BI, Id- BI }.
The Ostrowski-operator (.)" fir n -- "" is defined as follows. In the one-dimensional
case, we have

(a) := min (11 laea},

or, explicitly, (a) min {l a I, I1) if 0 a, and (a) 0 otherwise. For n > this
operator is defined by

(A)ii’=(aii), (A)o’=-laijl for i4:j.

IfP is a bounded, nonempty subset of n m, we denote by

UP’= [inf P, sup P]

the interval hull of P.
The interval arithmetical operations are defined as usual (see [2, Chaps. 1, 10] for

a more detailed introduction and summary ofproperties). IfA, B e fl,xn, then the sum
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and difference ofA and B are defined as

{ [A+B,A+B] for"+",A++-B:={’3+ J[ArA’;rB}=. [A-/,-B] for"-".

IfA 6 0R" x m, B DR m p, then the product ofA and B is defined as

A.B’=AB:=q{[ ArA, rB}.

Ifn=rn=p= 1, wehave

ab= [min {ab, ab,_b,t}, max {ab,ab,@,ab}l,
and otherwise AB can be calculated componentwise by

m

AB)ij aikbkj 1, n, j 1, p
k=l

We call a matrix A DR" m O-symmetric, ifA -. If a DR and A DR n m we define
scalar multiplication by

(aA)0"=aao, i-1, ,n, j= l, ,m.

Writing e [-1, 1], we may represent O-symmetric matrices A as e lA[ and have for
O-symmetric matrices A, B" A + B e(IA[ + [B[). Furthermore, ifA [IRn m is O-
symmetric and B e DR p, then AB, BA are O-symmetric and AB A[ B I, BA [BIA
hold. We call A DRn n regular if all A are regular. Then the inverse of A is de-
fined as

For n 1, if 0 a, we obtain

and for b e DR, we define

a 6’a

For n -> 2, A - can be given explicitly in the following cases:
(i) n=2:if0ao,i,j= 1,2, then

A_ =( (al-al2 a21/a22)- (a21-all a22/a12) -1)(al2--all az2/a2l) -I (a:2-al:z a2l/all) -I

Related formulas hold for the other cases.
(ii) A is diagonal, i.e., A diag (a, an,); then

A-l =diag (1/all, 1/a,,).

(iii) A is inverse-nonnegative, i.e., infA - >= 0; then [19] A - [.-1, A-].
A fundamental property of the interval arithmetical operations is given in the fol-

lowing lemma (see, e.g., [2, p. 6]).
LEMMA 2.1 (inclusion isotonicity). Let * { +, -,., /}, A*B be defined, and

A
_
A, B’ B. Then A * B’ is defined and A * B’ A *B holds.
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Now we extend the definition of the Schur complement to interval matrices. Let
C 0 n n; then the leading principal submatrix of order u (v > O) of C is the matrix
(co)i,j= l, ,.. Now let C be partitioned as

(Cll C12) whereCll,C22aresquare,(2.1) C
C21 C22

and suppose that CII is regular. Then the Schur complement of CI1 in C is defined as

CCll )"= C22 C2IC-? CI2,

Following 12 and 13 ], we call a map S OE n
_
E" sublinear if the following axioms

are valid for all X, Y ":

(S1)

($2)

($3)

XYSX_SY.

e =,, S(cX) (SX).

S(X+ Y)c_SX+ SY.

The absolute value of a sublinear map is the unique nonnegative matrix SI 2nn
satisfying SX SI x for X [-E(;), E(i)], 1, n. A sublinear map is called
normal, if

(S4) r(SS)>= lair(X) for allXN n.
The relation S c_ T between sublinear maps S, T means that SX TX for all X e flflq n.

Examples of sublinear maps il 2 ]. Let A e 0N n x .
Multiplication ofA by a vector, At. X AX, is sublinear and normal with

(2) IfA is regular then the map A/" fin" -- N n,
(2.2) AI-Ix’=,(A,X),
is sublinear with A/I A-II and A/

_
(A-l)t.

The determination of At-Ix is, in general, a difficult problem (see 1.1 of[14] for a
survey of available methods). However, it is easy for n -< 2 and for general n for an
arbitrary regular interval matrix that is thin, diagonal, or inverse-nonnegative (ifX >_- 0,
X-_< 0, or0 eX) [4].

(3) The Gauss inverse A ofA is obtained by performing ordinary Gaussian elim-
ination in interval arithmetic (see, e.g., [2, Chap. 15]). IfA exists then it is a sublinear
and normal map with A/ A. IfA fie 2 2 and A is regular, then A exists 17 ].

We call A fie n, an M-matrix if A is inverse-nonnegative and 60 =< 0 for all 4
j, and we call A an H-matrix if (A) is an M-matrix.

The following lemma gathers some properties of M-matrices (see, e.g., 5, Chap.
6]), we shall frequently use in the sequel (0 denotes the spectral radius).

LEMMA 2.2. Let A n.
(i) IfA (A) then thefollowingfive conditions (a)-(e) are mutually equivalent:

(a) A is an M-matrix;
(b) The real part ofeach eigenvalue ofA is positive;
(c) There exists a vector U n, U > O, such that AU > 0;
(d) A admits a regular splitting, i.e., it has a representation

A M- N, where M is regular with M-1 >-_ O, N >= 0
which is convergent, i.e., to(M-IN) < 1;

(e) Each regular splitting ofA is convergent.
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(ii) IfA is an M-matrix and B gqn n with (B ) B and A <= B, then B is also an
M-matrix with B-1 <= A

In the sequel we shall make frequent use of the following lemma.
LEMMA 2.3 [1], [12, Lem. 11, Thm. 4]. Let A Ogq" be an H-matrix. Then

A-l <- (A)-l, and A 6 exists with A c[ <= (A)
Remark. In Lemma 2.3 equality holds ifA is an M-matrix. Equality A c (A

follows from (A) A__ and AaW A_-W for any We DRn with 0 6 Wby [3, 4]. For
IA-I (A- see [12].

In the sequel we denote by I[" a norm on DR n X that is monotone, i.e., that satisfies
11A AI for all A or, equivalently 11], AI --< n implies A --< nil for all A,
B. We note that [11]

(2.3) A
_
n A --< nil for all A, Be DR" x m.

If n m we assume that the norm is multiplicative, i.e., IIABII --< IIAII nil holds for all
A, B DR nxn.

The following lemma extends a well-known result for real matrices to the inter-
val case.

LEMMA 2.4. IfA Off2nxn with IIAII < 1, then I- A is regular and

(/-A)- _-<(-IIAII)-Proof. Let A; then by (2.3) ]lJll -< AII < and it follows that I is regular,
and hence 1- A is regular. Since #(IAI) --< IAI IIA[I < it follows by Lemma
2.2 (i), (a) (b), that the matrix I A is an M-matrix and since (I A ) >= 1 A
holds it follows by Lemma 2.2(ii) that (I- A ) is also an M-matrix with (I- A )- _-<
(I- AI) -l By applying Lemma 2.3 we obtain

[I(I-A)-’[I I(I-A)-llll =< II(I-A)-lll <= II(I-IAI)-’II.
Since the statement is true for the thin matrix [A[ the statement for A follows.

In 4 we shall use scaled maximum norms defined by

IIAII max (Zlail u)/ui

for some fixed positive vector U.
We note that for A e R" x with A >= 0

(2.4) #(A inf A ,
U>0

In this paper we consider partitions of a matrix A e DR n n

A A12" Ak
(2.5) A A.21 A.22 A?

A Ak2 A

where the blocks Aij are ni X nj-matrices, nl + 172 + + 17k n; in particular, all
diagonal blocks Aii are square. Then

(All), -1A23( -[A2;,I
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Let r, r* be two partitions (2.5) with

n= n(r)+ +n(a-)= n(r*)+ + n,(Tr*).

Then 7r* is called finer than r if k* >- k and there are numbers jl, j2, jk,
jk+ k* / such that

ni(’tr nj( Tr* / nji + Tr* / + nji (’tr* i=1, ...,k,

i.e., the diagonal blocks with respect to 7r* are diagonal blocks of diagonal blocks with
respect to r.

Vectors X e 0" are considered to be partitioned in conformity with (2.5) X
Xl, Xk)r, where Xi e OE’i, 1, k.

3. Block Gaussian elimination. Let A "" be regular and let B 0 n. We want
to find an interval vector containing Z(A, B). An obvious way to find such an enclosure
is to perform Gaussian elimination in interval arithmetic [2, Chap. 15 ], resulting in
AB. However, it may fail due to division by an interval containing zero even when A
is regular and columns and rows of A may be interchanged [17]. As we have seen in
Lemma 2.3, A exists ifA is an H-matrix.

In this section we first extend interval Gaussian elimination to the block case and
show that for an H-matrix block Gaussian elimination is feasible for any partition (2.5)
ofthe matrix. Then we present a further class ofinterval matrices for which block Gaussian
elimination does not fail.

Let the partition (2.5) of A be fixed. We assume that All is regular. Starting with
the formulas

(3.1)

1)AIj "=AIj, j= 1,"" ,k,
()

Aij "=Aij-AilA-{:Alj, i, j= 2, ,k,

B}I) := Bi-AilA-{ BI,

Ail := O,
i=2, ,k,

(1)we obtain a new coefficient tableau A i (partitioned in conformity with (2.5)). By
1)). If A :: is regular we proceedLemma 2.1 it is easy to see that Z(A, B)

_
Z(A (1), B (1)

in a similar way in transforming (A), B}))g,=2,...,k. For convenience, we also
renumber the columns and rows that are left unchanged.

After k-1 steps, the original coefficient tableau (A,B) is changed to
(A(k-1), B(k-1)) with an upper block triangular matrix A (k- ). Obviously, E;(A, B)

___
Z,(A (k- ), B(k-)) holds. Now we use the formulas

X.= (A(- ) -kk

(k-l)(3.2) Xi.=(A}ik 1))-1 B}k 1)_ Aij i=k-1,-..,1,
j=i+l

to obtain X e 0" satisfying Z(A, B)
_
X. If all diagonal blocks Aii are of order one, then

block Gaussian elimination is ordinary (interval) Gaussian elimination. If k then
block Gaussian elimination results in A -1B.

A variant that avoids the calculation of inverses is to replace in (3.1) A ]-:Alj by
{A(k-I))GA1A/, i.e., Gaussian elimination applied to the columns ofA 1, and to use .. u

instead of (A ii(k- 1))_ in (3.2) (if the Gauss inverses exist).
We say that block Gaussian elimination applied to A isfeasible (with respect to the

(i-1)partitioning (2.5)) if all A u are regular for l, k (A (o).= A).
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THEOREM 3.1. IfA fflnxn is an H-matrix, then block Gaussian elimination is

feasible andforming the inverse in (3.1) and (3.2) may be replaced byforming the Gauss
inverses.

Proof. Since (Al) is a principal submatrix of (A) it is an M-matrix, and it fol-
lows by,[.1,] that All is nonsingular. Hence, formulas (3.1) can be applied. We now show
that (A ’.. )i,j= 2,... ,k is again an H-matrix. The first statement of the theorem follows
then by induction.

By using the rules for O-symmetric intervals we obtain from (3.1) for 4: j (noting
that e 2 e)

whence by Lemma 2.3

A j

e, Aijl el Ail

-,(IAijI / IAil] IAT? IAjI),

(3.3) Aij e(IAol

For j we obtain similarly
(1)(3.4) Aii _Aii-elAill(All)-llAul.

From (3.3) and (3.4) it follows that (note that 0 aii, 1, ..., n)

(3.5) (A

where (A() is the result ofapplying the first step ofblock Gaussian elimination to (A
It is sucient to prove that (A is an M-matrix since then by 3.5 and Lemma 2.2 (ii)
(A ()) is an M-matrix, also. That (A)() is an M-matrix follows by two hcts, namely:

(i) The matrix ((A ())i,=2, ,k may be obtained by n steps of ordinau Gaussian
elimination. This follows from the close connection ofthe (real) Schur complement with
the process of ordinau Gaussian elimination (see, e.g., [15]).

(ii) IfGaussian elimination is applied to an M-matrix, then all inteediate matrices
remain M-matrices (see, e.g., 26 ).

The second statement follows similarly by using the enclosure

AftXe(A,,)-IIxI forallXN n,
a consequence of Lemma 2.3.

In 3 it has been shown that for M-matrices A e N" x, Gaussian elimination yields
AnB SZ(A, B) under the conditions B 0, N 0, or 0 s B. This result caes over
to block Gaussian elimination. The proof uses the fact that for an M-matrix C N" x n

paitioned as in (2.1) the Schur complement (C/CII) is also an M-matrix and
(C/CII) [(/11), (C/Cll)] (for All all, see [12, Prop. 6]).

A question that naturally arises is the following. Does block Gaussian elimination
Nve any improvement, i.e., a resulting enclosure of Z(A, B) ofsmaller radius, on nonblock
Gaussian elimination? The answer is that the block method may give an improvement
on, but may also be worse, than the nonblock method.

Example 1. Choose

A’=
1,0] 2 -4
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(cf. 13 ). Then Gaussian elimination results in

AaB= ( [-,1] ).
block Gaussian elimination yields

[- -1
Example 2. Choose

4 [1,21 [0, 1] )[-2,-11 4 [-1,01
0 [0,11 2

Then

which contains properly the vector

AGB [-,]
r
L38 32.1

FI7 9
t, TJ

(0)B’= 0

the result of the block method with partition

(4 [1,2])All
[-2,-1] 4

Az_=2.

Now we present a class ofmatrices for which ordinary (interval) Gaussian elimination
(without row and column interchanges) may fail.

We associate with each pair (i, j), i, j 1, k, a monotone norm I1" II0 on
II1 "’x’.. These norms may be different for different pairs but must satisfy the following
compatibility condition:

CD 0--< c i, O I1,, i,j, / 1, k,

for C e I]IR "x ", D C= [IRnlxnj.

LEMMA 3.2 (cf. 18, p. 226 ]). Let A e R" x ,, A >= O, be partitioned as in (2.5) and
let C e Nkxk be defined by cij IIa0110, i,j 1, k. Then o(A) <= o(C).

Proof. Proceeding similarly as in [7, p. 42 ], we may find vector norms I1" IIi on
R ", 1, k, such that

IIDZll--< IIDIIollZllj forallD eiR’x",

Denote a Perron vector ofA by X,

(3.6) AX= o(A )X.

Taking norms in (3.6), we obtain

p(A)( Xl Ill, sll) r =< c( Sl I1,, ..., xllk)

The assertion follows now by using Theorem 1.1 of[5, p. 28].
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THEOREM 3.3. Let A ffln n be partitioned as in (2.5) and let all diagonal blocks
Aii be regular. Ifone ofthefollowing two matrices CI(A ), C2(A defined by

Cl A )iJ A ii Ao o

(C2(1))’= -II AoA

ifi =j,
ifi4:j,

ifi =j,
ifi:/:j

is an M-matrix, then block Gaussian elimination is feasible. In particular, A is regular.
Proof. We give the proof only for Cl (A) since the proof for C2(A) is similar. Let

Cl (A) be an M-matrix. Then by Lemma 2.2 (i) there exists a vector U k with positive
entries ui such that C1 (A) U > 0, i.e.,

k

-1A Ilijuj< ui, i= k(3.7) , ]lAii ij
i=1
j4=i

(1)We now show that Cl ((A ij i,j 2,... ,k) satisfies condition (c) of Lemma 2.2 (i) with the
positive vector (u2, u)T. The statement of the theorem then follows by induction.

(1)First we show that Aii is regular for 2, k. We set Dij AilA-{A u, i,j
(l) ii Jii, where dii Aii, Jii Dii, and2, , k. Let A ii A ii then A ii

(3.8)

Since by 3.7

-ljii)Aii(I-A-1Aii ii(I- dii ii AilA-{llAIi).

i "--IlAii-lA il A-{I A illi; <= IIA-ii Ai

bl I,l

ll bl

we may apply Lemma 2.4 to obtain that I- A i- 1Dii is regular and

(3.9) I-- A i-il Oii)-l llii <= (1-- "yi) -1

(l)It follows from .8) that A }il) is regular. Since A ii 6 A ii was chosen arbitrarily, we
(lobtain that (A ii

-l exists and by (3.8)
,-i =(I-A- ii)-lfi nii)-lA -lA ii ii (I A ii ii

and hence

(3.10) (1) -1 Dii)-i -1(Aii (I-Aii Aii

For 2, k we have by (3.10) and (3.9) (here Z’ means that the running index is
not equal to (i))"

k

(I))-IA()Z (A ii ij ijUj
j=2

k

-IDii)-I (A -Dij)II< 2; II(I- A ii A ii ij ijblj
j=2

k

-IDii)-I (A -Ai A-{:Alj)llijuj< , (I A ii ii A ii ij
j=2
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k

-IAi A-filAljlloUj(1 _,.),,i)-1 Z IlATtilAij-Aii
j=2

-IA0 ouj / A- A IIil E ’ll A i-iIA lj< (l--r,)- IIAi ii lj Uj
j=2 j=2

By (3.7) we have

k

’llA-fdAljlluu< Ul- IlA-lAl,lliu
j=2

so that we may further estimate

by using (3.7) again. This concludes the proof.
Remarks. (i) If all diagonal blocks ofA are oforder one, the norms are the absolute

values and Theorem 3.3 reduces to the result obtained in for the case of real intervals
(note that for a 0N with 0 a the property a-l - (a) holds).

(ii) A class closely related to matrices A N n n satisfying the assumptions ofTheo-
rem 3.3 is the class of quasiblock diagonal dominant matrices 16].

The following corollary gives a more easily verifiable condition for the feasibility of
block Gaussian elimination.

COROLLARY 3.4. Let A ffff2n n be partitioned as in (2.5) and let all diagonal blocks
Aii be regular. Ifthe matrix C3(A) defined by

A 1 ifi=j,
(3.11) (C3(A))’= -IIA011 ifig:j

is an M-matrix, then block Gaussian elimination is feasible.
The following theorem relates a subclass of the matrices satisfying the assumptions

of Corollary 3.4 to H-matrices.
THEOREM 3.5. Let A 0n", and suppose that C3(A) (cf 3.11 )) is an M-matrix,

and let all Aii be M-matrices. Then A is an H-matrix.
-1Proof. Let A satisfy the above assumptions. Then (Aii)= Aii, and [IAii Ilii

IIAIII ii, 1, ..., k. We will show that the regular splitting of (a), (A) M N
with M diag (Al, A___kk), N M (A), is convergent.

Since C3(A) is an M-matrix, it follows from Lemma 2.2(i) that the regular
splitting of C3(A C (A) M2 N2 with M2 := diag A V? Vl -1 -1

N2 := M2- C3(A) is convergent. Applying Lemma 3.2, we obtain o(M-iIN)<-
p(M1N2) < 1, which completes the proof. [2]

The following example shows that in Theorem 3.5 the assumption that all A. are
M-matrices cannot be replaced by the assumption that all A, are H-matrices.
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Example 3. Choose

A:

2 21 1.5 0
-1 _240 0

-0)- O, "" 1
0 -0.5 1

with the partition marked by dashed lines and choose as norms I1" I1, the maximum row
sum norm. Then

1.5 -1.5 )C3(A)
-0.7 0.75

is an M-matrix. However, the determinant of the leading principal submatrix of order 3
of (A) has a negative value that shows (cf. 5, p. 134 ]) (A) is not an M-matrix.

Suppose that A is not an M-matrix and that some diagonal blocks ofA are of size
hi, ni >-- 3, and inverse-nonnegative. For these diagonal blocks the inverse is given by
A u [.l Aiil]. However, in the rth step (r > A ii may not be inverse-nonnegative
and often will be not sparse and not thin so that it is hard to find (A ,,!.)-l, This diculty
can be overcome by using the variant of block Gaussian elimination, avoiding the cal-
culation of inverses or by using iterative methods (see the next section). But for some
special block band matrices often appearing in practical problems the determination of

() -(A u may be avoided. For example, for tfidiagonal block H-matrices we may apply
an interval variant of the block method described in [8, 2.3.3] that computes the
solution of AX B through solutions of linear systems of smaller size and avoids the
computation ofinverses ofsubmatfices of order greater than one (the proofof feasibility
uses the same idea as the proof of Theorem 3.1 ).

4. Iteration. In this section we study methods for enclosing Z(A, B) iteratively. We
begin with block foard and backward substitution. Let L x n be paitioned as in
(2.5) and let L be a regular lower block triangular matrix, i.e., L, is regular for
1, ..., k and Lo 0 for j > i. Then blockforward substitution is the map LF: n

defined as follows: Let X n. Then LFx Y, where

(4.1) Yi L X- Lj =l,...,k.
J

IfR "x, is a regular upper block triangular matrix, i.e., Ru is regular for l,
k and Ro 0 for j < i, then block backward substitution is the map RF" " n

defined by (X ", Y RVx)

(4. g.= x- 0 i=,-,’",.

Then, as can readily be confirmed, L and R are sublinear maps. Let A e Nx be
paitioned as in (2.5). Then we express A as the matrix sum

(4.3) A=L+D+U

where D diag (AI, A, Ak), L is a strictly lower block triangular matrix, i.e.,
Lo 0 for j i, and U is a strictly upper block triangular matrix, i.e., Uo. 0 forj N i.
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THEOREM 4.1. Let/1 gnxn be splitted as in (4.3) and let D ex&t with

(4.4) p(I DrI(I LI / UI))< 1.

Then for arbitrary B gn, thefollowing statements are true:
The equations

(4.5) X= D(B-(L + U)X),

(4.6) Y= (D+ L)F(B UY),

(4.7) Z= (D+ u)F(B-L((D+L)F(B UZ)))

have unique solutions X, Y, Z n with X Y Z
_
AIB.

(ii) The sequences generated by

(4.8) Xtz+)’=D(B-(L+U)X))
(4.9) y(l+ 1).._ (D+L)F(B_ uytl))

(block total step method)

(block single step method)

(4.10)
Z(t+ /:).= (D+L)F(B UZ (t))
Z(t+ 1).= (D+ u)F(B-LZ (+ 1/2))

block symmetric

single step method)

converge to Xfor all starting vectors X(), ytO), z(O) ,,. Setting

R’= IDOl ILl, S’= IDOl IVl,(4.11)

we have

(4.12)

(4.13)

(4.14)

liq(X tz+’),x)[I with o:= liR+SII,

liq(Y (t+’),x)ll <=liq(Y(t),x)ll with/.= Ii(/-R)-’SII,

IIq(Z (t + ),X) z llq(Z (),X)
with I1(I- S)-R(I- R)- all, zf I1" is a scaled maximum norm and < 1, then

(4.15) Z,.

(iii) Thefollowing relation holds

(4.16) p((I- S)-R(I- R) -1 S) p((I- R)- S) p(R + S) < 1.

Proof. We consider the block total step method first. Since D exists by assumption,
D is a normal sublinear map. Blockwise multiplication of the matrix L + U by a
vector W (WI, W) r is also sublinear and normal. From (4.4) and 13, Thm.
3. l] it follows that for each B fl, equation (4.5) has a unique solution X e , and
that the block total-step iteration (4.8) is convergent with limit X. Moreover, we obtain
estimation (4.12 for the block total-step method.

To show AnB X we note that each e A may be expressed as a sum of block
matrices=++ withL,D, OU. Let2=-witheB;then
==(+6+ )and
(4.17) = 6-(-(+ ))D(B-(L+ U))
by the inclusion isotonicity of interval arithmetical operations. If we sta (4.8) with
Xt) , we obtain Xt) X() by (4.17) and by the inclusion isotonicity of the map
that maps a vector W e on D(B (L + U)W) we obtain that e Xit) for all l,
whence e X. Since e AnB was chosen arbitrarily, AnB X follows.
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Now we show (4.15). Let [1" v, be a scaled maximum norm and let R + S[I v, <
1. Then (I- R S)U’> 0 holds, and hence

(4.18) SU’ <-SU +R(I-R-S)U’=(I-R)(R + S)U’.

Since R>=0 and p(R)<l it follows that (I-R)- >=0 and (4.18) gives
(I- R)-SU <= (R + S)U’, and hence/3 -< a. Similarly, we obtain I1(1- S)-RIIv,--<
a < 1. Finally, the inequality 3’ =< B follows from

--< I1(I- S)-lR 11(I- R)-I SI[ -</3.

Part (iii) is a consequence of (2.4) and (4.4).
To prove the statements on the block single-step method and the block symmetric

single-step method we proceed first as in [12] to show that the maps (D + L)F and
(D + R)F are normal. If Q := (D + L)Fp, p 0n, then Q satisfies the equation Q
Da(p LQ), and hence

(O+ L)Fp Da(P-L(D+ L)Fp).

Now apply Proposition 3 of[12] (setting therein R := (D + L)F, S := D, letting Tbe
the map that maps a vector W e 0n on -LW, and noting that p(IDIILI) < by
(4.4)) to obtain that (D + L)F is normal and

(4.19) [(D+L)F[ =(I-ID[ [Zl)-ZlDl.

Similarly, we show that (D + U)F is normal and

(4.20) l(D/ U)FI-(I-IDGI UI)-IIDGI
holds. Using (4.16 ), equality (4.19 gives

(I(D/L)I IUI)=o((I-R)-S)< ,
and the statements on the block single-step method follow from Theorem 3.1 of[13].

To prove the statement on the block symmetric single-step method we show a theo-
rem similar to Theorem 3.1 of 13 for the equation Z H(W + J(B + KZ)) and the
corresponding iteration, where W, B e D and H, J, K are sublinear maps satisfying
p([ HI J[ K[ < 1. Applying this theorem and using (4.19), (4.20), and (4.16), the
statements on the block symmetric single-step method follow.

It remains to show that the solutions X, Y, Z of (4.5)-(4.7 are equal. The solution
Yof(4.6) satisfies Y D(B (L + U)Y) and the uniqueness of the solution of(4.5)
yields X Y. Similarly, we have that X is a solution of W (D + U) (B LW). Hence
X satisfies (4.7) and by the uniqueness ofthe solution of (4.7) it follows that X Z. U]

Remarks. (i) If A is an H-matrix then D is also an H-matrix and by Lemma 2.3
D exists. Since (A) (D) ILl UI is a regular splitting of the M-matrix
we obtain by Lemma 2.2 and Lemma 2.3

p(ID[(ILI + IUI))<=p((D)-I(ILI + Ul))< I.

Hence the assumptions of Theorem 4.1 are satisfied if A is an H-matrix and we may
estimate by Lemma 2.3

(4.21)

(4.22)

c (D)-’(I LI + UI)ll,

II(r-(D)-’ILI)-’(D)-’IUI II,
and similarly for 3".
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If in (4.1), (4.2), (4.4)-(4.16) we replace Da by D-1 then Theorem 4.1 remains
true. Condition (4.4) then reads

(4.4’) 0(ID-11(1LI + [UI))< 1.

Again, (4.4’) is satisfied ifA is an H-matrix and estimates for a,/3, 3’ similar to (4.21 ),
(4.22) hold.

If A satisfies the assumptions of Corollary 3.4, then by Lemma 3.2 it follows that
condition (4.4’) is fulfilled.

The point here is that D- may be replaced by any enclosure/) ofD- as long as

(4.4") O(I/)l([ LI + [UI))<

is guaranteed.
(ii) For a matrix A condition (4.4) (respectively, (4.4’) or (4.4")) is satisfied if

r(X)) < r(X)) (see 13, Prop. 3.3 ]). This condition is satisfied if, e.g., X) is contained
in the interior ofX{).

(iii) It should be noted that the symmetric single-step method may be carried out
in such a manner that the number of interval arithmetical operations is about the same
as for the single-step method 2, p. 168 ]. Here we have neglected the number ofoperations
required for the solution of the linear systems with coefficient matrices D,. These are in
each step 2k linear systems for the symmetric single-step method and k systems for the
single-step method. However, after having computed Z (1/2) (or YI)) we know the tri-
angular decompositions of the matrices Dii so that the solution of each of the linear
systems reduces to one forward and one backward substitution.

If condition (4.4) is dropped (but for any of the block methods the first iterate is
contained in the starting vector) the convergence is monotonic.

LEMMA 4.2. Let A 0nn be split as in (4.3) and let D exist. Let { V1) } be any
ofthe sequences {Xtt)}, {Ytt)}, {Z tt) generated by the iterations (4.8)-(4.10). Then
thefollowing enclosures are true"

If Vt) V), then it holds thatfor 1,2,
(4.23)

V V(l)CT- V(l- 1).._. .._ V(0)
where lim Vt) V, and V is a solution of the corresponding fixed point equation

(4.5)-(4.7).
Proof. The monotonic convergence (4.23) follows by induction using the inclusion

isotonicity of the involved maps. That V is a solution of the corresponding fixed point
equation follows by the continuity of these maps.

THEOREM 4.3. Let A 0nn be split as in (4.3) and let D exist. If
(4.24) X(0)= yt0)=Z(0) and X()_X),

then the sequences {Xt)}, { Yt)}, {Z (t) } converge monotonically to the same limit
vector. Specifically, for all

(4.25) Z(t) Y(t)_X(t),

(4.26) X(kt) Y(),

(4.27) yk)
_

Ztl).

Proof. We assume (4.24). By Lemma 4.2, the sequence {Xtz) converges mono-
tonically. By an extension of the proof for the (nonblock) total and single-step method
in 28 to the block case we show that Yt)

_
yt0), which implies by Lemma 4.2 that

{ Yt) converges monotonically also.
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Furthermore, we obtain similarly as in [28] that y(t)
_

X(t) and (4.26) hold for all
l and that Z l/2) Z (0).

To show (4.27) and Z (t)
_

y(t) for all/we proceed by induction and assume without
loss of generality that k >- 2. The statements trivially hold for l 0. We assume that
y<kl)

_
Z(t)

_
y(t) for some l. Then by the inclusion isotonicity of the map that maps

a vector W 6 0n on (D + L)F(B UW) we obtain

y(kl+ l) z(Z+ l/2)__, y(t+ l).

Hence

Z(kl+ 1)_. l)g nk- Z AkjZt+ 1/2)_
) ) + )

_
D B- AkjY

kl+l) Yk
j=l

j=l

We assume that for some k -< =<
(kl+k-l) }I+I) (+I)(4.28) Yi’

_
Z.,

_
Y for all i’, k-< i’ -< + 1.

Then by (4.28) and the monotonic decreasing of the sequence { Y(t)}, we obtain

(l+ 1) AOZZ Di Bi- , AoZ t+ 1/2) 1+ 1)

j=l j=i+l_
D Bi- AoY + ) , AoY +- 1)

j=l j=i+l

i-I k
A’"V!’) )

_
D Bi- AijY

l+ 1)_

j=l j=i+l

y}kl+ k)

y}t+ l)

from which y(k(l+ l))

_
Z(I+ )

_
y(t+ l) follows. In particular,

Z()_ y(1)= Z(1/2)z(O)

implying monotonic convergence of the sequence { Z()}. The proof is complete. E]

Remark. The enclosure (4.26) is optimal in the sense that there are matrices A and
starting vectors X() satisfying (4.24) such that the sequences {X(t) } and { Y(t) } are
different but X(kz) Y(t) for all l.

An example is provided by choosing k n,

0 0 a
1

A’= 0

0 0 1
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with0<c< land

Then

X():=e(1, ,1) T.

x(nl) y(l)= olX(O).

The enclosure (4.27) is nearly optimal: Choosing A T and the same starting vector X()

we obtain

z(l)=alx(O),

Y((n-)t)=eat-(1,a, ,a) T,
y((n-1)/+ 1)= go/l( 1, 1,ce) T.

The partition (2.5) has been considered to be fixed so far. Now we compare the
limits ofthe sequences (4.8) for different partitionings. We affix a star to mark quantities
that are related to a partition r*.

THEOREM 4.4. Let 7r, 7r* be two partitions (2.5) and let r* be finer than r. Let
A E ffffsn be an M-matrix andX and X* be the solutions ofequation (4.5) with respect
to r and r*, respectively. Then X * X holds and there are M-matricesfor which X* 4:
X. IfB >= O, <= O, or 0 B, then X* X AnB is valid.

Proof. As we have already noted, condition (4.4) is satisfied for M-matrices. For
each partition (2.5), the iteration (4.8) is a special case ofthe incomplete LU-factorization
of Mayer [9] and the inclusion X*

_
X follows from Theorem 3 therein. Now choose

r* as the finest partition, i.e., D diag (all, ann), and r as the coarsest partition,
i.e., D A. Then 7r* gives rise to the total-step method with blocks and 7r to
Gaussian elimination. Choose A and B as in Example of 3; then

)X*=
[-2,-:]

and thus X* X.
IfB >- 0, B -< 0, 0 6 B we have by 3, 4 X AB AHB, and by Theorem 4.1 (i),

AHB c_ X * from which X X* AHB follows. D
Remark. IfA is an H-matrix but not an M-matrix, the inclusion X* Xis possible.

An example is provided by choosing

Then

A’=
0.5 [-1, 1]

D*’=A, D’= diag (1, 1).

[-2,21 - [-1.2, 1.2]

This example also shows that in Theorem 3 of 9 the assumption that A is an M-matrix
cannot be relaxed to A is an H-matrix. This counterexample is simpler than the one
given in 10 ].

If A is an H-matrix the spectral radii appearing in (4.16) may be estimated by
bounding IDOl by (D)-I. We now compare the resulting bounds for different partitions.

However, it should be noted that the single-step methods (4.9) and (4.10) are not special cases of the
incomplete LU-factorization of 9 ].
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THEOREM 4.5. Let r and r* be two partitions (2.5) and let r* befiner than r. Let
A n n be an H-matrix. Setting

/’= (D)-’ Zl, ’= (D)-’ UI,

thefollowing relations hold:

(4.29) p(/+ )__< p(/, +
(4.30) p((I-/)-1) =< p((i_/,)-1,).
IfD is an M-matrix, then (4.29), (4.30) become

p(R + S) <- p(R* + S*),

p((I-R )-’ S) <- p((I-R* )-1 S* ).

Proof. Since (A has the regular splittings

(A)= (O) ILl- IUI (O*)-It*l- IU*I
with ILl /IUI-< IL*I / IU*I .relation (4.29) follows by using Corollary (5.7)
of [5, p. 183]. Moreover, we have 0(/ + )<1 and o(/* + *)< 1, and hence
(D) -z (A) I -/ and I -/ are inverse-nonnegative. Since >= 0 we may apply
Theorem 5.2 of 5, p. 181 to obtain

p((I- k)-’) 0((A)-I UI)
/o((A- UI)"

A similar formula holds for the splitting (A) (D*) L*I U*l. Since uI --<
U*l and x / x) is a monotone increasing function of x for x >= 0, (4.30) follows.

The statement for the case that D is an M-matrix follows from the remark to
Lemma 2.3.

Remark. We did not yet succeed in showing that

(4.31) p((I-)-lt(I-t)-l)<=p((I-*)-lt*(I-l*)-l*)

holds if A is an H-matrix. When proceeding as in the proof of Theorem 4.5 and using
the regular splitting

(D)-’(A)=I I- =(I-/)(I- )-/,
then we obtain

p((i_,)-ll(i_k)-l)= P((A)-ILI(D)-’IUI)
+o((A)-ILI(D)-IUI)"

A similar formula holds for the fight-hand side of (4.31 ). However, both formulas do
not seem to be comparable because of (D*)- =< (D)-I.

If 7r* is given by

A12 0 0
A22 A23 0 0

0 Ak-1,
Akl 0 0 A

Then by the functional equation derived in [27]

O((I- *)-/* (I-k*)-l*) 0(k * + *)
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and an analogous equation for the spectral radius with respect to the partition r hold.
Then (4.31) follows by (4.29).

If we have an enclosure W for AHB it is advantageous to form the intersection
Vt) f"l Wt) after having calculated V(t) (taking intersection after each iteration step) or
V}t) (taking intersection after having calculated each component). For a discussion of
different methods see [2, Chap. 14] and [12, 8].
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LINEAR MAPS THAT PRESERVE AN INERTIA CLASS*

RAPHAEL LOEWY

Abstract. The purpose of this paper is to prove the following result: Let n >-_ 3 and let r, s be given positive
integers such that r q: s and r + s

_
n. Let denote the space of all n n hermitian matrices. Suppose that

T: , is a linear transformation that maps the set of all matrices with r positive eigenvalues and s negative
eigenvalues into itself. Then there exists an n n nonsingular matrix S such that either T(A) S’AS for all
A e or T(A) S*AtS for all A e. This gives an affirmative answer to a problem raised by Johnson and
Pierce.

Key words. Hermitian matrix, inertia, rank-k nonincreasing linear map

AMS(MOS) subject classifications. 15A57, 15A04

1. Introduction. Let gn denote the set of all n n complex hermitian matrices,
and let Sn denote the set of all n n real symmetric matrices. If A is in n or Sn, and
has r positive eigenvalues, s negative eigenvalues, and zero eigenvalues, r + s + n,
then the inertia of A is defined to be the triple In (A)= (r, s, t). We let 7r(A)= r,
(A) s, 6(A) t. Following [5], let G(r, s, t) denote the set of all A n such that
In (A)= (r, s, t). Gs(r, s, t) will denote the corresponding set in Sn. We assume
throughout that r, s, are nonnegative integers such that r + s + n.

Given a linear transformation T on n, we say T preserves G(r, s, t) if and only
if T(G(r, s, t))

_
G(r, s, t). Our purpose here is to consider the following conjecture,

due to Johnson and Pierce [5].
Conjecture. Suppose that n >_- 3 and T: gn - /n is a linear map that preserves the

(fixed) inertia class G(r, s, t). Suppose that r > 0 and s > 0. Then there exists a nonsingular
n n complex matrix S such that

either T(A eS’AS for all A Jcg

or T(A) eS*AtS for all A Jcg.

wheree= lifr4:sande=_+lifr=s.
We prove this conjecture except for the case r s. Note that T is not assumed to

be invertible in the conjecture.
Johnson and Pierce [5] proved the conjecture in the special cases where (r, s, t)

takes the form (n 1, 1, 0) or (k + 1, k, 0) (and, obviously, triples obtained from these
by interchanging r and s). They also obtained in 5] the following result.

THEOREM 1. Suppose that T: 2/gn - 2/g, is an invertible linear map. Suppose that
r, s, t) is an inertia triple which is not one of

{(n, O, 0), (0, n, 0), (0, O, n), (n/Z, n/Z, 0)}
and suppose that T preserves the inertia class G( r, s, t). Then T has theform ).

There are additional results in the literature that deal with inertia preservers.
Helton and Rodman 3 showed that if n >_- 3 and k is a fixed positive integer such that
2k 4: n and k < n, and if T: og -- t’n is an invertible linear map that preserves
G(k, n k, 0) and satisfies T(In) In, then Tis a unitary similarity or a unitary similarity
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This research was supported by the Fund for the Promotion of Research at the Technion.
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composed with transposition. Schneider [7] showed that if a linear map on 3tn maps
the set ofpositive definite matrices onto itself, then it must be a congruence or a congruence
composed with transposition. Johnson and Pierce [4] extended Schneider’s result and
showed that if k is a fixed integer such that 0 < k < n and T: 3g -- 3gn is a linear
transformation that maps G(k, n k, 0) onto itself, then either T(A) eS*AS for all
A on or T(A) eS*AtS for all A e n, where e if 2k 4: n, and e +1 if 2k n.
Finally, it should be noted that the obvious analogues ofthe results quoted above hold if
we consider S instead of3/gn.

We end the introduction with a few preliminary remarks. The rank of a matrix A
is denoted by o(A). If a is any subset of 1, 2, n } and A is an n n matrix. A[a]
denotes the principal submatrix ofA based on the row and column indices of a.

The set of n n positive semidefinite matrices is known to be a closed, pointed,
convex cone. The space 3g is a partially ordered vector space over the reals, where we
define for A, B e 3gn that A >_- B if and only ifA-B is positive semidefinite. Given any
n n positive semidefinite matrix Q, 4(Q), the face generated by Q is defined by

4(Q)= {AJCgn:A->-0 and3a>0 such thatQ>=aA}.

(For a definition ofa face in an arbitrary convex cone and some basic properties of faces,
cf. [11.)

Now suppose that p(Q) r. Then there exists a nonsingular n X n complex matrix
S such that

Q= S*(Ir() On-r)S’-S*[ IrO 0]S’0
It is well known that for A 6 n, A >= 0, A 6 O(Q) if and only if there exists B 3gr,
B >= 0, such that

A =S* S.
0 0

If A e ,, then A belongs to the subspace spanned by 4(Q) if and only if there exists
B o such that

A= S* S.
0 0

Given a linear map T on and a positive integer k such that 0 < k < n, we say
T is rank k nonincreasing, provided A 6 (n and o(A k imply p( T(A )) -< k.

2. Main result. Our purpose is to prove the following result, thus confirming the
conjecture of Johnson and Pierce, except for the case r s.

THEOREM 2. Let n >= 3 and let T: 2/gn ovg, be a linear transformation. Let
r, s, t) be an inertia triple such that r > O, s > 0 and r 4: s. If T preserves G( r, s, t),
then T has theform with e 1.

Remark 1. The obvious analogue ofTheorem 2 holds if one considers a linear map
on Sn preserving Gs(r, s, t). The proof follows along the same line given here for the
hermitian case.

Remark 2. Let T be a linear transformation on o’g,. Let S and Sz be any n n
nonsingular complex matrices. Define W: o n by W(A) SzT(SAS{)S{. Then
it is easy to check that T satisfies the assumptions of Theorem 2 if and only if W does,
and the same holds true for the conclusion of Theorem 2. Thus, whenever convenient,
we may replace T by W.
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The proofofTheorem 2 will be based on a sequence ofresults, some ofwhich might
be of independent interest. The next theorem follows from Theorem 3 of 3 and is also
stated explicitly in [5].

THEOREM 3. Let n >= 2 and let T: g/gn -- n be an invertible linear transformation
such that o( T(A )) whenever o(A 1. Then there exists a nonsingular n n complex
matrix S and e +_1 such that either T(A) eS*ASfor alia n, or T(A) eS*AtS
for all A ogn.

THEOREM 4 [6]. Let T: g/g -- o’/g be a linear transformation and suppose there
exists an integer k, 0 < k < n, such that o(A) k implies o(T(A)) <= k. Then, for any
integer l such that k <= l <= n, O(A l implies o( T(A )) <= l.

Thus, Theorem 4 states that if T is rank-k nonincreasing, it must be rank-/nonin-
creasing for all k =< 1 =< n.

THEOREM 5 [6 ]. Let T: n -- n be a linear transformation and suppose that
o(A < n implies o( T(A )) < n. Then, there exists a real c such that det T(A a det A
for all A g/gn.

Analogues on Theorem 5 and the next corollary were obtained by Botta 2 for the
space of all n n matrices over an algebraically closed field.

COROLLARY 1. Let T: n -- On be a linear transformation and suppose that
o(A < n implies o( T(A )) < n. Then, either T is invertible or the image ofT is contained
in the set ofsingular n n hermitian matrices.

Proof. By Theorem 5, there exists a real a such that det T(A) a det A for all
A o’gn. If a 0 the result holds, so we may assume a 4: 0. Hence, T maps the
set of nonsingular hermitian matrices into itself. Suppose T is not invertible. Then there
exists B e Ker T such that 0 < 0(B) < n. Obviously, there exists C o’gn such that
o(C) n- o(B) and B + C is nonsingular. Hence T(B + C) is nonsingular. But
T(B + C) T(B) + T(C) T(C), and T(C) is singular, a contradiction. V1

LEMMA 1. Let (r,s, t) be an inertia triple such that r>= s> O. Suppose
T: -- ,Jcgn is a linear transformation that preserves G(r, s, t). Then, for any
B /gn such that In (B) (s, s, n 2s) we have 7r(T(B)) <= s, (T(B)) <- s.

Proof. We may assume r > s, for the case r s is trivial. Let B 6 be such that
In (B) (s, s, n 2s). Then, there exists an n n nonsingular matrix S such that
B S*DS, where D Is ( -Is On-2s. Let A S*ES, where

E= ls)-lslr_sOn_r_s.

Then In (A + ttB) (r, s, t) for all tt > 0. Therefore, by assumption,

In (T(B + u-IA)) (r, s, t)

for all > 0. It follows by continuity that 7r(T(B)) =< r and u(T(B)) -< s. Next, consider
A #B. For any # > 1, In (A #B) (r, s, t), so In (T(ls-A B)) (r, s, t).
It follows that r(- T(B)) =< r and (-T(B)) =< s. Hence r(T(B)) -< min { r, s } s,
and similarly u(T(B)) -<- s. []

LEMMA 2. Let r, s, t) be an inertia triple such that r > O, s > O, and r + s < n.
Let T: -- g/gn be a linear transformation such that o(T(A)) <- r + s for any
A G(r, s, t). Then, (A) <= r + s implies (T(A)) <= r + s.

Proof. Let m r + s, so n m. It clearly suffices to show (T(A)) <= m
whenever A gn and o(A) m. Suppose first that A 6 o’g, and

In(A)=(r+ 1, s- 1, n-m).
Then there exists a nonsingular S such that A S*DS, where

D diag (a, 0/2,""" O/r, O/r+ 1,--/1," "",--/s-1, 0, "’", 0)
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and al, o2, ar+l,/l, s-1 are positive. Let

D, diag (al, O2, Otr, , --1, --s-1, 0, 0),

Bc S*DcS, and C, T(B,). Then, for any e < 0, B, G(r, s, t) so p(C) =< m. Hence,
every m + m + minor of B,, which is a polynomial in e, vanishes for all e < 0.
Therefore it vanishes for all real e, in particular for e ar + 1. Hence 0(T(A)) <- m.

Repeating the process, one obtains that o(T(A))<= m whenever o(A)= m
and r(A)> r. Similarly, we may conclude p(T(A))<-m whenever p(A)= m and
u(A) > s. [-1

Remark 3. In the proof of Theorem 2 we may clearly assume that r > s.
LEMMA 3. Let n >= 3 and let T: n "- ;gn be a linear transformation. Let (r, s, O)

be an inertia triple such that r > O, s > O, and r > s. If T preserves G( r, s, 0), then T
has theform with e 1.

Proof. It follows from Lemma that o(T(A)) <- 2s for any A G(s, s, n 2s).
Hence, by Lemma 2, p(T(A)) _-< 2s for any A e Jcg such that o(A) <= 2s. Since
2s < r + s n, it follows now from Theorem 4 that T(A) is singular whenever A is
singular. But by the assumptions of the lemma, it is impossible that the image of T
consists of singular matrices only, and therefore T must be invertible, by Corollary 1.
The result follows now from Theorem 1. ff]

Proof of Theorem 2. We prove the theorem by induction on n. We may assume
r > s, by Remark 3. Consider first the case n 3. Here we must have r 2 and s 1,
so r + s n. The theorem holds by Lemma 3.

We now describe the general step. Let m r + s, so n m. We may assume
m < n by Lemma 3. Let Q be any positive semidefinite matrix such that o(Q) m. We
show that T(Q) is also a positive semidefinite matrix of rank m, and that (Q), the face
generated by Q, is mapped by T onto 4( T(Q)).

By Remark 2, we may assume Q Im () On-m. Let D Ir (R) Is On-m, SO

In (D) (r, s, n m). By Remark 1, we may also assume T(D) D. Let

where H1,1 6 ]m and let

0 ]A=
0 0

FI,2 ]T(A)
F1",2 F2,2

be partitioned conformably. We claim that F2,2 0. Indeed, for any real e,

d- cA) [eFl,1 + (It () --Is) eFl,2
T(D

l eF,2 eF2,2

If e>0 is small enough, then D+eArG(r,s,n-m), so In(T(D+eA))=
(r, s, n m). But if F2.2 4:0 we get immediately that p( T(D + eA )) >= m + for e > 0
sufficiently small, a contradiction. Hence ,F2,2 0.

Now define a linear transformation T: o om as follows:

(H)=7"
0 0

[{1,2,...,re}l,

for any H e Om. By the properties of T and Lemma it is clear that if H e o,,, and
H e G(s, s, m 2s), then 0(i0(H)) -_< 2s. Hence, by Lemma 2, O(’(H)) <- 2s when-
ever H e , and 0(H) _-< 2s. Thus, i0 is rank-2s nonincreasing. Since 2s < r + s m,
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we may conclude from Theorem 4 that 7 maps any singular matrix in oqtCm to a sin-
gular matrix. Since T(D) D we have (Ir (R) Is) Ir (R) I., SO the image of 7
contains an invertible matrix. Hence, by Corollary 1, 7 is invertible. It follows from
Theorem 3 of[3] that there exists an invertible m m matrix such that 7(H)
X*HX for all H e m, or 7(H) x*ntx for all H e m (note that the e that appears
in Theorem 3 of[3] must be 1, as f(Ir -I) Ir 6) --Is). Thus, 7 preserves inertia
of every matrix in gm. In particular, if H e m and 0(H) 1, then 0(7(H)) 1,
while ifH is positive definite, so is 7(H).

Now we consider T(Q). By the definition of Q, we have

T(Q)
F*

where 7(I,,) is positive definite, and F
_
C m’n- m. By Lemma 2, p(T(Q)) =< m. This

implies that F 0. Similarly ifH m is positive definite, then

0 01
where (H) is positive definite. Since every hermitian matrix is the difference of two
positive definite matrices, we get that

T
0 0 0 0

for any H e Om. Since is invertible, we conclude that T maps 4(Q) onto 4(T(Q))
and the subspace spanned by 4(Q) onto the subspace spanned by 4(T(Q)). Also, for
any matrix B in the subspace spanned by 4(Q), we have In (T(B)) In (B).

We claim now that ifH e o is a rank-1 positive semidefinite matrix, so is T(H).
Indeed, such a matrix belongs to some face generated by a positive semidefinite ma-
trix of rank m. The preceding discussion shows that In (T(H)) In (H), so T(H) is a
rank-1 positive semidefinite matrix. Hence T is order preserving, that is, if A >- B then
T(A >- T(B). Using a similar reasoning, since m r + s >_- 3, if H e and In (H)
(1, 1, n-2),thenIn(T(H))=(1,1, n-2).

Our next goal is to show that T is invertible. We first show that ifH is any positive
semidefinite matrix of rank n 1, then so is T(H). We know that for such a matrix H,
T(H) is positive semidefinite. Therefore, by Remark 1, we may assume H I_ (R) O,
T(H) I (R) O_, for some -< n 1. Since T is order preserving, it is clear that given
any matrix H e

_
, there exists K e such that

Define now a linear transformation T: n-
T(H1) T

0 o])0
[{1,2,...,n- 1}].

Since T preserves the inertia class G(r, s, n m) in Jgn, it is clear that T preserves the
inertia class G(r, s, n m in JCtn 1. By the induction hypothesis, T preserves
inertia. Hence l n 1, and T maps 4(H) onto (T(H)), and the subspace spanned
by 4(H) onto the subspace spanned by b(T(H)).

We now show that the image of T must contain a nonsingular matrix. In fact,
we claim T(D + D2) is positive definite, where D1 In- (R) O1 and D2 O (R) In-1.
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Suppose this is false. Then, as any two positive semidefinite matrices may be simulta-
neously diagonalized by congruence, we may assume T(DI) In-1 (R) 01. T(D2)
diag (al, a2, an-1, 0), where ai > 0, 1, 2, n 1. By our earlier conclu-
sions, there exists a nonzero vector x (xi) e C n such that xn 0 and T(ele) xx*,
where el is the first standard unit vector. But xx* belongs also to the face (T(D2)).
Hence, there exists a nonzero vector y (yi) e C n such that Yl 0 and T(yy*) xx*.
We conclude that 0 xx* xx* T(ele yy*). But

In (ele’-yy*)=( 1, 1,n-2),

a contradiction.
Hence, the image of T contains a nonsingular matrix. We also know from Lemmas

and 2 that T is rank-2s nonincreasing, that is, 0(A) 2s implies o(T(A)) <-_ 2s. We
now conclude from Theorem 4, Theorem 5, and Corollary that T must be invertible.
The proof is complete by Theorem 1.
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Abstract. This paper studies the realization problem for a class of nonlinear systems. Necessary and sufficient
conditions are contained for realizability of a system and an algorithm is presented for the construction of a
realization.
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1. Introduction. Linear theory for control systems is fairly well developed. However,
most practical dynamic processes can be described precisely only by nonlinear models.
In recent years, the theory ofgeneral nonlinear systems ofthe form (t) =f(x(t), u(t)),
y g(x(t)), has been developed by using abstract theoretical methods [1 ]-[ 3]. In this
paper, we study the realization problem for a class of nonlinear systems arising from
practical dynamic processes, for example, the model ofthe fractionating towers in chemical
engineering [4]. The general form of this class of nonlinear systems is

m m

x(t+ 1)=Ax(t)+ , , u(t)Dx(t)+ , , ui(t)B,,
i=lk=l i=lk=l

y( t) Cx( t),

where the state x(t) ", ui(t) ’, 1, 2, ..., m, are inputs of the system, A and
D are n n matrices, B; and C are n and p n matrices, respectively, and time

0, 1, 2, .... A necessary and sufficient condition of realizability of this system and
an algorithm to construct the realization are given in 3. We first develop some prelimi-
naries in this and the next section.

For convenience of discussion but without loss of generality, we study only the
single-input system case (rn ):

x(t+ 1)=Ax(t)+ , u(t)Dx(t)+ , u(t)B,
(1.1) k=l k=l

y(t) Cx(t).

We will use the shortened notation , (A, D, ..., Dr, Bl, "’", Br, C) to refer to
system 1.1 ).

We first introduce additional notation for system 1.1 ). Let

u(t)

u(l)(t)= U(t).
lirit)
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and

u(J-l)(t
U(J-1)(t)U(t+j-- 1)

U(J)(t) U (J-1)(t)z(t+j- 1)

u(J-)(t)r(t+j-1)

for all j 2, 3, and 0, 1, 2, With u (J) (t), we can express the state and output
solutions of 1.1 with zero-initial-state (i.e., x(0) 0) as

x(t) Z Pu(J)(t-J), t>=
j=l

and

y( t) , CPu(J)( t-j), >= 1,
j=l

where Pj- is defined by

PI=[BI,B2, ,Br]

and

(1.2) P= [AP.- ,,D1Pj- I, ,DrPj- l], j>=2.

Letting Wj CPj, j >= 1, we then have

y(t)= ] Wu()(t-j), t>-_ 1.
j=l

This expression indicates that the relation between the inputs and outputs of (1.1) is
completely determined by the infinite matrix sequence { W }. We call Wj. } the input-
output (I/O) matrix sequence of system 1.1 ). Now here W is ap r(r + )J- matrix,
where j >= 1. In this paper, the notation W will always signify a matrix with such a size.

The purpose of this paper is to consider the realization problem for 1.1 ), which
consists of the following two subproblems:

For a given infinite sequence of matrices { W }, is there a system of the form
1.1 whose I /O matrix sequence is just { W } ? This is the so-called realizability

problem. If such a system exists, the sequence { W } is called realizable and
1.1 is called a realization.

(2) If W } is realizable, how can a realization be constructed; that is, how can we
construct a system of the form 1.1 whose I/O matrix sequence is just { W } ?

If { W } is realizable, then, in general, it may have a lot of realizations. A realization
of { W } is called minimal if its dimension is the smallest among all its realizations.

The results in 3 ofthis paper will provide a complete answer to these two problems.
For system 1.1 ), we introduce the following matrices:

R1 --C

and

Rj_ A
(1.3) Rj R_.,DI j>-2.

R_’D
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We define matrices Qq and Tk from P and Rj as follows:

Q P P2, Pu] q >=(1.4)

and

RI
(1.5) Tk R2 k>

2. Generalized Hankel matrix. It was well known that Hankel matrices play an
important role in the realization problem for linear systems. Here we extend this concept
to nonlinear systems by introducing what we call the generalized Hankel matrix of { Wj. }.

Let Sj W, j 1, 2, .... Since W is a p r(r + )- matrix, the number of
columns of each W, for j >- 2, is a multiple of (r + ). So we can divide $12 into equal
(r + blocks:

(2.1) Slj=[glj, Slj, ,Srllj] j>-2

where each S is a p r(r + )j-2 matrix, k 0, 1, ..., r. We use these blocks
to define

(2.2)

S+
sl +
S+

j>=l.

Note that $2 is defined in terms of Sklj+l, not Slkj Note also that S2j is a p(r +
r(r + )J- matrix; we can thus divide it into equal (r + blocks:

(2.3) S2j=[Sj,S, ,S_j], j>-2.

Define

S2j+

(2.4) S3j S2j.+’ j>

Si+

We can continue in this way and, in general, define

(2.5) Si_lj---[Si_lj, S1_lj,...,sri_lj], i>=2, j>-2

and

S/0- j+

(2.6) So S-.lj+ >=2, j>=

str._ lj+

where Sij is a p(r + )i- r(r + )J- matrix.
We first give the following lemma, which establishes a relationship among S0, Ri,

and P. It will be used in the proof of Theorem in the next section.
LEMMA 1. Assuming that { W } is the I/O matrix sequence of the system

1.1 ), then

(2.7) Sij=Riej forall i,j>=O.
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Proof. Since W:. } is the I/O matrix sequence, we have W CPj. for all j >- 1. This
means that (2.7) is true for and all j >= 1. Assume that (2.7) is true for and
all j >= 1. Then we can write

Si_Ij+I=Ri_IPj+I=Ri_I[APj,DIPj, ,DrPj], j>= 1.

From the definition of S0, we then have

Ri_APj Ri_A

Sij Ri- l.Ol ej Ri-.l Ol ej Riej" []

Ri- Drej Ri- Dr
We now define the infinite matrix

(2.8) H=

SII S12 S13
S_l & &3

:..
which we call the generalized Hankel matrix of W }.

The finite part Hkq ofH given by

(2.9) Hq=

is called the (k, q)-finite Hankel matrix of { }. nkq is an lk X mq matrix, where lk
p((( + r) k )/r) and mq + r) 1. Because of the definition in (2.5) and (2.6)
of SO, Hkq is determined by the first k + q terms of the sequence { }. Evidently,
we may write nkq in either of the following two ways:

all S72 Sl2 S2 S?q Slq Srlq

S?I S.22 SI.22 :i" Sr’22 :i" SO’2q Sl’-2q :’" Sr’2q

k s’Ok2 S’2 S’rk2 SOkq Sq Siq

or

Sll S12 Slq
S12 S73 S?q +1

S S3 S/

Si-12 Si 13 Sc-lq+

From these two forms, we see that Hkq+l and Hk+ e contain the same (r + sub-
matrices H:

82 83 Sq+1

(2.10) Hkq= S2 si3 Siq+
i=0,1 r.

Sik2 Sik3 Siko +1
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To be precise, define

and

where

0 0 0

Ui Ei2

E= I and
0

0

with I the r(r + )J- and jrj the p(r + )J- 1-dimensional identity matrices in the ith
positions of Ej and/, respectively. Then we have

(2.11) Hiq=Hkq+iUi ViHk+q, i=0, 1, ,r.

From (2.11 we obtain the following (r + commutative diagrams:

9"
Hk + q

9t,

(2.12) UilHkq IVi, i=0, l,..’,r.

3. The realization problem. To study the realization problem for (1.1), we first
consider the finite subsequence { W, W, WN} formed from the first N terms of
{ W/}. This is called realizable if there exists a system of the form 1.1 so that the first
Nterms ofthe system’s I /O matrix sequence are just { W, W, WN}. Such a system
is called a realization of { W, W2, "", WN}. Now the finite Hankel matrices determined
by { W, W2, W, } are Hk+ lq and Hkq+ given by definition (2.8), where k, q >= 0
satisfy N k + q.

We first have Theorem 1.
THEOREM 1. System 1.1 is a realization ofa finite matrix sequence

w1,

ifand only if
(3.1) nkq+ Zkaq+

for all k, q >= 0 such that k + q N. The same is true if( 3.1 is replaced by

(3.2) Hk+ lq= Tk+ 1Qq.
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Proof. Necessity. If Z (A, D, Dr, B, Br, C) is a realization of
{ W, W2, "", WN}, then

Wj=CPj, j= 1,2, ,N.

We therefore can conclude that S Ri.Pj, 1, 2, k, j 1, 2, q + from
Lemma 1. This is just (3.1).

Sufficiency. Assume that (3.1) holds for all k, q >- 0 such that k + q N. Specifically,
taking k and q N- 1, we get

H1N TIQN,

that is,

SI1, S12, SIN] R[P, P2, PN].

From this equality we get Wj. Sj CPj, j 1, 2, N, which means that the system
1.1 is just a realization of W, W2, Wu}. [-]

From the definition of Hi,q, it is straightforward to see that conditions (3.1) and
(3.2) are equivalent to the following conditions:

3.3 Hkq TkQq,

(3.4) nkq TkAQq

(3.5) nq TkOiOq, 1,2, r

for all k, q >_- such that k + q N. Therefore, we also have Theorem ’.
THZORZM 1’. The system 1.1 is a realization of W, W2, WN } ifand only

if( 3.3 )-(3.5 hold.
Now we can prove the following result from Theorem (or Theorem ’), which

gives a sufficient condition on the realizability of { W, W2, WN}.
THEOREM 2. Suppose that thefinite matrix sequence { W, W, WN} satisfies

3.6 rank (Hq) rank Hq + rank H+ q),

for some k, q >- such that k + q N. Then W, W2, WN } is realizable.
Proof. From the definition of Hq, we have

H,q+ t1,
&q’+

and

k+ lq=

Sk+ll Sk+lq

Therefore, from condition (3.6), we can conclude that there are two matrices K and L
such that

where

nkq + nkqK and Hk + lq-- LHkq

K=[Im,,*] and L

and Im, and Irk are identity matrices of dimensions mq and l, respectively.
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and

These two equalities give two commutative diagrams:

We can now add these to diagram (2.12) to obtain:

m, Hlq
l,

(3.7) 91", i=O, 1, ,r.

Denoting n rank (nkq), then nkq can be decomposed into a product oftwo rank n
matrices Q and P:

nkq Qp,

where Q and P are lk n and n mq matrices, respectively. So we obtain a commuta-
tive diagram:

Therefore, (3.7) can be rewritten as follows:

i=0, 1,’",r.

P and Q are rank n, P is an onto mapping and Q is an injection. So, by the Zeiger fill-
in Lemma (see [5, Chap. 10]), there are n n matrices A, D, ..., Dr so that the
following diagrams are still commutative:

/AinQ
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and

(3.9) i= 1,2,...,r;

that is,

HOkq QAP and H:q QDiP, 1,2, r.

Now let Bi, 1, 2, ..., r, be the ith column ofP (P is an n mq matrix), and let C
be the first p rows of Q. Then we obtain a system

Z=(A,D, ,Dr, B1, ,Br, C).

We want to prove that is just a realization of W1, W2, WN). To do this, we
need only to prove that Q Tk and P Qq. To this end, note from (3.9) that

(3.10) AP=PKUo and DiP=PKUi, i= l,2, ,r.

From the characters ofK and U;, we have

0 0 0
El

(3.11) KUi Ei2 i=0,1,2,...,r.

E_I

Let P [B1, B2, Br] and Pi be the matrix formed from the [(r + )i- ]th column
to the [(r + )i + 1] th column of P, 1, 2, q. Then P [P, P:z, Pq]. From
(3.10) and 3.11 we obtain

APt P

0

DP =P 0

I
DrPI P l i

(r + )th column to the (2r)th column of P,

(2r + )th column to the (3r)th column of P,

(r + r + th column to the (r + 2) r] th column of P.
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Therefore, P2 [AP1, DIP1, DrPl]. In a similar way, we obtain

Pi [APi-1,DIPi- 1, ,Drei-1], 1,2, ,q.

These indicate that Q of 2; is just P, and Tk of Z is just Q, so the proofis complete. Vq

We now prove the main result in this paper.
THEOREM 3. An infinite matrix sequence { W is realizable ifand only ifthere are

two positive integers k and q so that

3.12 rank Hk + iq +j) rank Hkq

for all i,j O, 1, o...

Proof. Necessity. Assume that W is realizable and let

2; (A,D1, ,Dr, B1, ,Br, C)

be its realization with minimal dimension n (that is, the matrices A and Di are ofminimal
dimension n n). Then it is not difficult to see that rank (T,) rank (Q) n. Thus,
there exist two positive integers k and q such that

3.13 rank (Tk) rank (Qq) n.

Now letting N k + q, then it is clear that Z is also a realization of the finite matrix
sequence { W, W2,’", WN}. Therefore, from Theorem we have

Hkq-- TkQq.

Thus, from (3.13) we have rank (Hkq)= n. Furthermore, for any positive integers
and j, 2; is also a realization of {W1, W2,..., WN+i+j}. Thus, we also have
rank (nk+iq+j) El. Therefore, rank (nk+iq+j) rank (Hkq).

Sufficiency. Assume that (3.12) is true for all positive integers and j. Let
N k + q. Then from Theorem 2, we conclude that { WI, W2,’", WN} is realiz-
able. Letting 2; (A,D1, ,Dr, B1, ,Br, C) be the minimal realization of
{ Wl, W2, WN}, we then have

Wj CPj, j 1,2, ,N.

Now letting CP W for all j >= N + 1, we obtain an infinite matrix sequence

(3.14) {W1,’’" WN, ’rN+ ZN+2,""" }
from the system 2;. Clearly, the proof ofthe sufficiency will be completed if we can show
that I. W for all j >= N + 1.

To this end, denote the Hankel matrix of (3.14) by . Then

I Hkq H1 ](3.15) /k+lq+l
H k+lq+

where

and

Slq +
S2q,+

Sk +

g2-- [Sk+ ll,Sk+12, ,Sk+ lq].
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On the other hand, we have

(3.16)

Note that

nkq HI ]Hk+lq+l=
H2 Sk+ lq+

Hkq ] Hk + q.Hkq HI] Hkq + and
HE J

Therefore, from (3.12), we have

rank nkq

and

HI]= rank[Hkq]=H2 rank(Hkq)=n

rank (H,+ lq+ l) n,

where n is the dimension of 2;. Moreover, we can also assert that rank (Hk + lq+l) n.
In fact, since nkq ZkQq and rank (Hkq) n, we have rank (Tk) rank (Q) n. Note
that for all positive integers k and q, Qq is an n [(r + )q 1] matrix and Tk is
a p[((r+ 1)k- 1)/r]n matrix. We therefore conclude that rank(Tk/l)
rank (Qq/l) n. It is clear that

+ q+ T,+I "aq+ 1,

so rank (H+ q+ 1) n.
Summarizing these facts about + lq + and H+ lo + (see 3.15 and (3.16)),

we have

rank (/+ lq+ 1) rank (H+ lq+ 1)

rank (H,q)

(3.17) rank [Hkq H]

rank
H

To complete this proof, we first need to develop a simple result in linear algebra.
LEMMA 2. Let

H=
C D C

rank (H)= rank ()= rank (A)= rank [A

then we must have D :.
Proof. Assume that rank (H) n. Because rank [A

B] rank
C

B] rank (H) n, [A B]
can be transformed by elementary operations into the form

AI

0 0
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where [Al Bl] is a matrix with n rows. This implies that there is a matrix P such that

P[A B]=
0 0

Since elementary transformations do not change the rank of a matrix, rank (A1) n.
Now we can write

and

Because

POH= 0 0
0 I C D

[ JP /= 0 0
0 I C

rank

there is a unique matrix L such that

C LA1.
On the other hand, because rank (H) rank (H) n, we also have

rank([ P00I H)=rank([ P00I /)=n.
Therefore, there are two matrices M and 20 such that

[C D]=M[AI Bl] and [C BI].

So

C MA1 and C jrAl

and

D MBI and JO Bl.
Note that C LA1 and the matrix L is unique. Therefore, we must have M 2t L,
and hence D D. This completes the proof of the lemma.

Returning now to 3.17 ), from this lemma we can conclude that k+ lq + Sk + lq +
in/Qk + lq + and Hk + lq+ 1. We therefore have IN+l WN+I. Induction now establishes
I9 W9 for all j >_- N + 1, so the proof of Theorem 3 is complete. Vl

Finally, from the discussions above, we can develop the following algorithm to
construct a realization of { W } whenever it is realizable.

Let W be an infinite matrix sequence, where W is a p r(r + )9- matrix,
j= 1,2,....

Calculate So as in (2.1)-(2.6).
(2) Find two positive integers k and q that satisfy condition 3.1 2 ).
(3) Let n be the rank of Hkq and decompose Hkq as

where Q and P are rank n.
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(4) Calculate A, Di, Bi, and C as follows:

A (QTrQ)-QTHgqPV(PP’)-I,

Di Q:rQ)-IQT"HcqPT"(PPT)-, 1,2, ,r,

the ith column of P, 1,2, , r,

C the first p rows of Q.

This algorithm results in Z, (A, D1, "’", Dr, B1, Br, C), which is a realization
of {W }.

4. Reaehability, observability, and minimal realization. From the previous discussion
we have seen that the matrices Qn and Tn play an important role in the realization
problem. In this section we will further show that they are closely connected with the
reachability and the observability of 1.1 ).

Any n matrix G can be regarded as a set of column vectors in N n. We denote
the subspace generated by this set of vectors by span { G }. For 1.1 we use x(t, x0, u)
and y(t, x0, u) to denote the state solution and output solution, respectively, with the
initial state x0 and the input u(t).

DEFINITION 1. For 1.1 ), a state 2 e N is called reachable if there is a time T > 0
and an input u(t) such that x( T, 0, u).

It is well known that the set ofall reachable states ofa linear system forms a subspace
ofthe state space. However, this is not generally true in the case we consider here because
ofthe nonlinearity of 1.1 ). In order to consider the reachability, we define the reachable
subspace for 1.1 to be the subspace generated by the set of all reachable states. We
denote this subspace by SR. The system 1.1 is called reachable if SR . n.

DEFINITION 2. For system 1.1 ), a state e n is called unobservable if, for any
two inputs u and u2, y(t, , u y(t, , u) for all >_- 0.

As in the case of linear systems, the set of all unobservable states of 1.1 forms a
subspace of n, which we denote by SN. The system 1.1 is called observable if SN 0
(zero space).

DEFINITION 3. The system 1.1 is called canonical if it is reachable and observable,
i.e., SR n and Su 0.

The main results we will prove in this section are that SR span { Qn and Sv
ker (Tn). We will also show that the realization generated by using the algorithm in 3
is minimal.

To do this, we first need to introduce the following concept.
DEFINITION 4. A subspace S ofn is called (A, D)-invariant ifAS c S and DiS

S,i=l,2,...,r.
For 1.1 ), let S span P }. We denote the smallest (A, D)-invariant subspace

containing S by S. We first have Theorem 4.
THEOREM 4. S span { Qn }.
Proof. We construct a series of subspaces of N as follows:

S1 span { el },

Sj=Sj.- +ASj.- + DiSj-1, j>-2.
i=1

It is clear that Sj._ c S for all j >- 2. Since n is a finite-dimensional linear space, there
is an integer N, 0 < N =< n, such that SN SN+, j >= 1. From this we therefore have

Sn=Sn+=Sn-+-ASn + DiSh.
i=1
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This means that AS,, c Sn and DiSn Sn, 1, 2, r, i.e., Sn is (A, D)-invariant.
Thus, we have Sn D S. On the other hand, we can also prove Sn c S. To do this, we
first prove that if an (A, D)-invariant subspace K satisfies Sj Kc Sj+ , then K Sj.+ ,.
In fact, since Sj. + S + AS + i DiSj, Sj c K, and K is (A, D)-invariant, we have
Sj.+ c K. Thus, S+, K. In general, we can further prove in the same way that, for
any j < l, if K is an (A, D)-invariant subspace satisfying S K St, then K Sl. By
this fact and the observation S c Sl c S,, we then have S, Sl.

To complete the proof, we must show that S, span { Q, }. In fact, we can prove
a more general result: S span Qj. }, j _>- 1. To do this, we use induction. First observe
that this equality is true for j from the definition of S span { P1 span { Q, }.
Assume that the equality is true for all positive integers less than j. We now prove it is
true for j. From the induction hypothesis we can write

Sj= Sj_ -t-ASj_ -t- Z DiSj_

span { P,, Pj_, } + span {AP,, ,AP_, } + E span { DIP,, DiPj-1 }.

Since

and

span {API, ,APj-1 } span {AP1, ,APj-2 + span {AP_ },
span { DIP,, ,DiP- } span { DIP,, ,DiP-2 } + span { DiPj.-, },

span {AP_ + span { DiPj- span {APj_ ,,DP_ ,, ,OrPj_ }

span P },
we then have

Sj. span { Pl, P-l + span { P
+ span {API, ,APj.-z + Z span { DIP1, ,DiPj.-2 }

span {P1, ,Pj} + span {API,’",APj-2} + , span {DiP1,’",DiPj.-2}

span { P_,,P } + span P, P_2 } + span { aP1, APj._2 }
+ Z span DiP, DiPj-2 }

span {P
span {P, ...,P}
span Q }.

To prove our first main result SR span Qn }, we now need only prove that SR
Sl and appeal to Theorem 4.

THEOREM 5. SR S.
Proof. For any real c , x( 1, 0, c) =, c’B S. Taking r different real

numbers el, c2, "’, Cr, since the Vandermonde determinant

Cl C2 Cr

Crl el crr
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is not zero, the set of vectors [Ci, Ct2" C], 1, 2, r, forms a basis in r. For
any [dl, d2, dr] 91 r, we therefore have

From this we have

c,r.][dl,d2, ,dr] , i[ci,i,
i=1

d, , Xici, k 1,2, r.
i=1

(/E dgBk E XiCki Bk-- k Bk ear
k=l k

because Yk cki B, e SR. This means that SI c SR.
A lengthy calculation shows that SR is (A, D)-invariant. Therefore, SR D S. On

the other hand, for any x e SR, x ,= ,.ixi, where Xl, Xd forms a basis in SR
since each x is reachable, we then have

x;= x(, O, u)

W(-I,...,i)B(i-1)+B(-I),
i=1

where

k k k

and

(l) N u (l)B,
k

It is clear that B(i and B( are in S, and hence in S. Since Se is (A, D)-
invafiant x is in S. This means
COOA. The system 1.1 is reachable ifand only/frank (Q) n.
Now we prove the second main result, S ker (T).
Let CI Cr and [A rC_ , DIj-1,"" DrCj-11, j 2. From Theorem 4,

we then have that the smallest (A D r)-invafiant subspace containing Scr span Cr }
is just span { CI, C }. From the duality, we then have the following theorem.

THEOREM 6. The largest (A, D)-invariant subspace contained in ker C) is just
(span { CI, C } )z, where 2 denotes orthogonal complement.

THeOreM 7. S ker (T).
Pro@ From Theorem 6 and the observation

(span C1, C )a ker (T),

to prove this theorem we need only to prove that S K, where K is the largest (A, D)-
invafian subspace contained in ker (C). If x0 e K, then Axo and Dxo, 1, 2, r
are in K also. A lengthy calculation shows that x0 e S. Therefore, K c S. On the other
hand, for any x0 e S, we have y(t, x0, Ul y(t, xo, u). From this equality, we have
Axo ker C and Dxo ker C for all 0. Thus,

CA tXo 0 for all >_- O,
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and

CDxo=O, i=l,2, ,r for allt>_-C.

These mean that x0 6 K. Thus, SN c K. D
COROLLARY. The system 1.1 is observable ifand only/frank (Tn) n.
We present our final theorem without proof, since it is entirely analogous to the

linear case.
THEOREM 8. If { W is realizable and (A, D, Dr, B, Br, C) is a

realization of { W }, then is minimal ifand only ifZ is canonical.
From this result, it is easy to see that the realization constructed by the algorithm

given in 3 is a minimal realization of { W }.
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1. Preliminaries. We denote the space of n n complex matrices by ///n and the
subset of hermitian [skew-hermitian] matrices by n []. A matrix A e //n is
said to be centrohermitian [skew-centrohermitian if and only if aij a-_ ;+ l,n-j /1

ai -dn- / 1,- + i, j l, n. We denote the set of centrohermitian skew-cen-
trohermitian] matrices by gC/n 9/]. A matrix A /// is said to be perhermitian
skew-perhermitian ifand only ifaij a-_+ 1,n + aij --tin -j+ l,n- + i, j 1, n.
We denote the set of perhermitian [skew-perhermitian] matrices by n[]. A
matrix A ///n is said to be perdiagonal if and only if ao 0 whenever + j :/: n + 1, i,
j 1, n. In particular, we shall use J (i,n-j +1) to denote the unit perdiagonal
matrix that has l’s on the secondary diagonal (i.e., the diagonal from upper-fight to
lower-left) and O’s elsewhere.

The concept of a centrosymmetric matrix in the context of its determinant goes
back to Muir [13] and Aitken [1]. Ligh [12] attributes the idea to Zehfuss [20] in 1862.
The investigation ofcentrosymmetric matrices by Good 6 and Ray 17 was motivated
by the study of certain Toeplitz matrices. Cruse [4] encountered the group of n n
centrosymmetric permutation matrices in his study of problems from combinatorial
theory.

While many papers have discussed bits and pieces ofbasic theory for centrosymmetric
matrices (cf. 3 ], 6 ], 12 ], 16 ], 18 ], and 19 ), we observe with Lee 11 that cen-
trohermitian matrices have received very little attention. Whereas the notions of centro-
symmetric and centrohermitian agree for matrices with real entries, they yield quite
different theories in the complex case. The centrohermitian concept appears to be a more
natural generalization of real centrosymmetric, just as hermitian appears to be a more
natural generalization of real symmetric.

In this paper we develop a body of theory on centrohermitian and skew-centroher-
mitian matrices. In particular, we develop some basic results for these matrices, discuss
their interface with the perhermitian matrices, consider their spectral properties, and
characterize linear transformations that leave the set ofcentrohermitian matrices invariant.
This theory at times parallels and at times is quite different from that in our companion
paper 8 for perhermitian matrices.

2. Basic results. In this section we shall enumerate many of the basic facts con-
cerning centrohermitian [skew-centrohermitian] matrices beginning with a character-
ization.

2.1. For A //t’n, the following are equivalent:
(i) A 6 (n [A 6 cg]
(ii) A JAJ A -JAJ]

Received by the editors September 6, 1988; accepted for publication (in revised form) March 6, 1989.

" Department of Mathematics, Idaho State University, Pocatello, Idaho 83201.
Department of Mathematics, Hartnell College, Salinas, California 93901.
Department of Mathematics, Pacific Union College, Angwin, California 94508.

128



ON CENTROHERMITIAN MATRICES 129

(iii) JA 6 cg,, JA 6 d-
(iv) AJ_ qYn [AJ6]
(v) iA iA ]
We observe that if A 6 , ], then so are A, A *, and A tr. Also, by (ii), a

centrohermitian matrix A is seen to be unitafily similar to its conjugate, A. Fuher, by
(v), results for skew-centrohermitian matrices may be immediately obtained from those
for centrohermitian matrices, and conversely.

2.2. If AI, A cg; and c, Cs , then Z]= cA;]. It follows that , and; are both real vector spaces.
2.3. When n is even, letting j 1, n/2 and k 1, n, we have that the

n 2 / 2 matrices E + E,_j + ,,_ g + and the n 2 / 2 matrices iE iE,_; + 1,,- g+ , form a
basis for , over . When n is odd, lettingj 1, (n 1)/2, k 1, n,
and l (n + / 2, we have that the (n(n )) / 2 matrices Ejk + E,_+ ,,_ g + 1, the
(n (n )) / 2 matrices iEk iE,_j + 1,- g + , the (n / 2 matrices E,j + El,,-+ , the
(n )/2 matrices iEl, iEl,,-+, and the matrix El, form a basis for , over. Thus, , is of dimension n 2 as a real vector space. Multiplying each of the above
matrices by i, we obtain a basis of n 2 matrices for the real vector space of skew-centro-
hermitian matrices.

2.4. IfA is perdiagonal, then AA, AA .
2.5. IfA, B 6 , ], then AB . It follows that the set ofcentroher-

mitian matrices forms an algebra. While the set of centrosymmetfic matrices also forms
an algebra (cf. Thm. 7 of[19]), the set of perhermitian matrices does not (cf. result 2.5
of[8]).

2.6. IfA 6 , ]and B 6 ], then AB .
2.7. If A 6 , [] and A is nonsingular, then A- 6 , []. In

conjunction with 2.5 and 2.6, it follows that whenever defined, all integer powers of
centrohermitian matrices are centrohermitian, and integer powers of skew-centroher-
mitian matrices are either centrohermitian (even powers) or skew-centrohermitian (odd
powers).

Since AA * for all A , ], and the Moore-Penrose inverse ofA
can be written as A + A*p(AA*) for some polynomial p with real coefficients (cf.
p. 526 of [5]), we immediately obtain the following.

2.8. IfA 6 ], then A + 6 ].
2.9. If A , then the determinant of A, det A, is real. If A 6 cg, then

det A is real [pure imagina] if n is even [odd].
2.10. If A 6 ,, then the adjoint of A, adj A 6 . If A 6 , then

adj A 6 , ]ifnisodd[even].
2.11. If A 6 Z, then there exist unique P, Q 6 , such that A P + iQ. For

this result, P (A + JJ) and Q (1/2i)(A JJ). Note that this parallels the
Toeplitz (Caesian) decomposition A H + iK with unique H, K , and the decom-
position 2.11 of 8 ].

Our next result relates principal submatfices of a centrohermitian or skew-
centrohermitian matrix with principal submatfices of its conjugate. Note that
A[p,..., Ps[ P,"’, P] denotes the principal submatfix of A which retains both
the rows and columns indexed by p, p.

2.12. IfA , ], then for s 1, n, we have

A[p, ,Ps[P, ,Ps]=JA[n-ps+ l, ,n-p+ [n-ps+ l, ,n-p+ l]J

[=-JA[n-ps+ 1, ,n-p + [n-p+ 1,

,n-p+l]J].
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Taking determinants we immediately get relationships between the corresponding
minors. In particular, the sum of all principal minors of size s for A e cgn must
be real.

An interesting relationship exists among the real vector spaces of centrohermitian,
perhermitian, and symmetric matrices; viz., the intersection of any two of these sets is
contained in the third. Restating, we have the following.

2.13. IfA e /n, then any two of the following three conditions imply the third.
() x a[a]
(2) A
(3) A is symmetric.
The analogous result for centrosymmetric and persymmetric matrices also holds.

3. Spectral results. Since the coefficients ofthe characteristic polynomial for a ma-
trix are sums of principal minors of the matrix multiplied by _1 (cf. p. 157 of [10]),
result 2.12 yields the following.

3.1. IfA e Jcg, then the characteristic polynomial ofA has all real coefficients.
3.2. If A e ] has an eigenvalue X of algebraic multiplicity k, then A

must also have X [-X] as an eigenvalue of algebraic multiplicity k.
Hermitian matrices are known to be similar to real matrices (cf. Theorem 2 of 2

as are perhermitian matrices (cf. result 3.3 of 8 ]). The next result, which is due to Lee
11 ], gives us that all centrohermitian matrices are simultaneously similar to real matrices.
Lee observes that any nonsingular matrix Q satisfying JQ Q will give the desired
transformation and that infinitely many such Q’s exist.

3.3. There exists a nonsingular matrix Q e /’ for which A e cgg cg] if and
only if Q-AQ /’n(R) [//(iu)].

3.4. IfA e cgJC’n, then all the elementary symmetric functions ofA are real.
As in the perhermitian case, we find that there is no proper subset of the complex

plane that contains the spectrum of all centrohermitian matrices. Indeed, given any
number z e 12, the matrix diag (z, f) is centrohermitian with z as an eigenvalue. Clearly,
a similar construction gives matrix examples ofany order greater than 2. Also, centroher-
mitian matrices need not be normal, nor even diagonalizable (e.g., Elz + E32 .//’3).

Weaver 19] has studied the eigenvector structure for centrosymmetric matrices
and has shown that X, x) is an eigenvalue, eigenvector pair ofa centrosymmetric matrix
if and only if (X, Jx) is also. The corresponding result for centrohermitian matrices is as
follows.

3.5. If A c, then (X, x) is an eigenvalue, eigenvector pair ofA if and only if
(X, J2) is also.

4. Centrohermitian-lreserving linear transformations. We now address the problem
of characterizing centrohermitian-preserving linear transformations; i.e., linear transfor-
mations on /’n that leave / invariant. We utilize the notation of Poluikis and Hill
[15] and Oxenrider and Hill [14]. Two bijections are defined from {(i,j):i,j
1,...,n}to (1,...,n 2} by[i,j] (i- l)n+jand(i,j) (j- 1)n+ i. These
correspond to the lexicographical ordering (( i, j) < (r, s) if and only if < r or (i r
and j < s)) and the antilexicographical ordering ((i,j)< (r,s) if and only ifj < s or
(j s and < r)), respectively, on (i, j) i, j 1, n }.

The following equalities, which may be verified by calculation, will prove useful in
establishing many of the equivalences in the characterization theorem.

nZ-[k,l]+ [n-k+ 1,n-l+ 1]
(.) k,l=l, ,n.

n2-(k,l)+l=(n-k+ 1,n-l+ 1)
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As in [15], if" is a linear transformation on ,//fin, then we let (’-) e ’n2 be the
matrix representation of" with respect to the basis of unit matrices { Ej }i,j= l,... ,n c

’ ordered antilexicographically. Intuitively this order may be thought ofas transforming
a matrix A e J’ into vec A e C"2 by stacking the columns of A into one big column
vector (cf. [9] and [10]). We then have vec -(A) (-) vec A.

It is also useful to write T e ’2 in the block form T (To) e ’n(’), where
To (ts) J (i,j, r, s 1, n). With this notation, we note that Tis centrohermi-
tian if and only if n + l,n

rs n r+ l,n-Js++ll i, j, r, s 1, n ).
Oxenrider and Hill [14] have studied eight element reorderings of matrices in

J/(J/.) that naturally arise from rearranging the rows or columns, lexicographically
or antilexicographically, into n n blocks ordered lexicographically or antilexicograph-
ically. These reorderings are defined by

F(T) ( T) r,s),( .-( T) tt r,s) ( T)i t<rs i,j],[r,s], rs i,j), rs i,j],( rs i,j),[r,s],

O(T) A(T) ij A(T) ij t[r,s](i,j), ( T)srs t(i,j),(r,s) t(r,s),[i,j] rs t[r,s],[i,j]rs

As noted in 14 ], these reorderings do not preserve the matrix properties ofdeterminant,
rank, and trace, nor do they preserve normal, hermitian, or perhermitian matrices. Also,
only I’, , f, and 0 yield characterizations of hermitian-preserving and perhermitian-
preserving linear transformations (cf. 15 and 8 ). It is remarkable then, that all eight
reorderings preserve centrohermitian matrices and give characterizations of centroher-
mitian-preserving linear transformations.

We now state the main result of this section, noting the similarity to Theorems
and 2 of 15 and Theorem 4.1 of 8 ].

THEOREM 4.1. Let " be a linear transformation on /gn. Then the following are
equivalent"

" is centrohermitian preserving.
(2) " is skew-centrohermitian preserving.
(3) There exist A, At "/[/[n with JAkJ At-k+ (k 1, t) and

G (go) c for which

"(X) gijaiXA;.
i,j

-n-i+ l,n(4) t tn r+ l,n-Js++] (i,j, r, s 1, n) where (’) ((t)).
5 (" is centrohermitian.
6 I’((") is centrohermitian.
7 ql((" is centrohermitian.
8 ((") Ia( (" )tr)) is centrohermitian.
(9) O((’-))(=((")tr))is centrohermitian.
10 0((") is centrohermitian.
11 ,( (’-) is centrohermitian.
12 A((") is centrohermitian.
13 z((- is centrohermitian.

(14) The block matrix " Eij) is centrohermitian.
15 " * is centrohermitian preserving.

Proof. Result 2.1 (v) immediately gives , (2).
Using a proof technique analogous to Theorem of[7] (viz. by computing ’(B)

for each of the basis elements in result 2.3, and forcing these to be centrohermitian) we
get (1) (4).
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The equivalence of (4) and (5) follows immediately from the definition of centro-
hermitian and the fact that t t(i_

Making use of(.) and the result analogous to (4) (5), we have that A((--)) is
centrohermitian

iff m( (- ) ij m( (," ) n - 1,n1,n-Js++ll (i,j,r,s= 1,’." ,n)

iffttr,s],(i,j)=t[n_r+,n_s+l],(n_i+,n_j+) (i,j,r,s= 1, ,n)

iff ttr,s],(i,j) tn2-[r,s]+ 1,n2-(i,j)+ (i,j,r,s= 1, ,n)

iff (-) is centrohermitian,

thus establishing 13 5 ). A similar argument establishes the equivalences (6) ., 5
through (12) 5 ).

By Lemma 2 of [15] we have that the block matrix (-(E0)) ((-)), which
gives (7), (14). Also, since { Eo} is an orthonormal basis for /gn, we have that
the matrix representation of the Hilbert adjoint of" is (-*) (-)*, thus yielding
() (5).

For (3) ), suppose that - has the form indicated in (3) and that C is cen-
trohermitian. We then have

z(,(c))=
i,j=

gt-i+l,t-j+lAt-i+lCA-j+l
i,j=l

gijAiCA
i,j=

yielding (C) centrohermitian whenever C is; thus, - is centrohermitian preserving.
For (5) 3 ), let ( be centrohermitian. Then by 5 (7), -1((-) is

also centrohermitian. Letting n 2, G -((’-)), and A, ..., At be the unit
matrices Eo ordered antilexicographically (i.e., A< i,j> Eia), we have by that JAkJ
At-k+ (k 1, t) and

i,j=

trwhere (R) denotes the Kronecker product. Since Eo Eo, Proposition 12.1.4 of 10
gives us that

’(X) Z goAiXA
i,j

and the result is established.
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THE ROLE OF ELIMINATION TREES IN SPARSE FACTORIZATION*
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Abstract. In this paper, the role of elimination trees in the direct solution of large sparse linear
systems is examined. The notion of elimination trees is described and its relation to sparse Cholesky
factorization is discussed. The use of elimination trees in the various phases of direct factorization
are surveyed: in reordering, sparse storage schemes, symbolic factorization, numeric factorization,
and different computing environments.
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1. Introduction. The elimination tree plays an important role in many aspects
of sparse matrix factorization. It provides structural information relevant to the sparse
factorization process. The purpose of this paper is to provide a unified study of this
important structure and to survey its uses in various phases of sparse factorization.

Throughout this paper, unless otherwise specified, A is assumed to be a large
sparse n-by-n symmetric positive-definite matrix. We consider direct methods for the
solution of the linear system

Ax=b.

The matrix A is factored into LLT, where L is lower triangular and is the Cholesky
factor of A. The solution vector x is then obtained by forward and backward substitu-
tion using L. The elimination tree of A is defined using the structure of the Cholesky
factor L of A. It can therefore be characterized using only the structure of the given
matrix A.

The structure of an elimination tree was used implicitly long before its importance
was recognized. The term elimination tree was used by Duff [6], although the actual
structure studied by him is slightly different from the one in this paper. Jess and
Kees [34] use this term to refer to a tree structure introduced by them for studying
parallel elimination. Their structure is, in fact, a special case of the elimination tree
studied here. Schreiber [55] is perhaps the first one to formally define the elimination
tree structure. In [36], Liu uses the term "elimination tree" to refer to the structure
introduced by Schreiber. It is this tree structure that we are going to consider in this
paper.

Variants of the basic elimination tree structure appear in the literature under
different names. It is used as a dissection tree to study nested dissection [18], [31] in
the context of optimal sparse matrix reordering. The element merge tree introduced
by Eisenstat, Schultz, and Sherman [13] in their element model has a structure close
to the elimination tree. Duff and Reid [10] use an assembly tree to determine the
assembly order in the multifrontal method, and its structure is a generalized version
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of the elimination tree. The row merge tree used by Liu in [38] can be viewed as an
extension of the elimination tree for the study of sparse orthogonal factorization. This
paper gives a unified treatment of this structure, which has proved to be a valuable
tool in sparse elimination.

The reader is assumed to be familiar with the graph-theoretic terminology used
in the study of sparse elimination: fill, ordering and permutation, elimination graph
model, chordal graphs, and other related concepts. All the necessary material can be
found in [8] and [22]. Moreover, the basic terminology and concepts in the study of
trees will be assumed: parent/child, ancestor/descendant, paths, root, subtree, leaf,
and others. The reader is referred to [1].

In this survey paper, we use many results that have already appeared in the
literature. Such results are quoted and properly referenced, and their proofs are
usually omitted. However, results that are generally known among sparse matrix
researchers, but have not been formally dealt with, are treated in greater detail. This
is to provide a good foundation for future works on elimination trees.

Another objective of this paper is to point out the relevance of the elimination tree
in many existing sparse algorithms. The connections may not be stated in previous
discussions of these algorithms in the literature. Here, we provide the direct link to
this tree structure. The paper also contains some new results on the elimination tree,
one of which is its use in the intersection graph representation of chordal graphs in

4.2.
An outline of this paper follows. In 2, the notion of an elimination tree is

formally defined in terms of the Cholesky factor L of a sparse matrix A. A simple
matrix example is introduced, and it will be used throughout the remainder of this
paper. We also offer two new views of the elimination tree: one as the transitive
reduction of the directed graph of L, and another as a depth-first search tree of the
filled graph.

Section 3 provides properties of the elimination tree that are relevant to the sparse
Cholesky factor L. Nonzeros in the factor matrix can be characterized in terms of
paths in the elimination tree. Both the row and column structures of L can also be
expressed in terms of structures of this tree. Section 4 gives some observations on the
use of elimination trees for chordal graphs.

In 5, we consider efficient ways of determining the elimination tree for a given
sparse matrix A. An efficient algorithm can be formulated in terms of the basic set
union operations, introduced by Tarjan [58]. Some experimental results are provided
to offer some practical observations in this regard.

Sections 6-10 examine the role of the elimination tree in various aspects and
different phases of sparse factorization. Section 6 considers the use of elimination
trees for finding equivalent matrix reorderings. It includes reorderings that preserve
the elimination tree structure, and those that completely restructure it. In 7, we
study various sparse storage schemes that makes use of elimination tree structures.

Section 8 examines the connection of the elimination tree with the symbolic fac-
torization phase. Existing symbolic factorization algorithms are shown to use this
tree structure implicitly. Many numerical factorization schemes also use this tree
structure. In 9, we consider its role in the multifrontal method, the minimal stor-
age scheme, the general row merging scheme, and sparse indefinite factorization. In
specific computing environments, the elimination tree can also be used to improve on
the basic factorization scheme, and we consider it in 10. Finally, 11 contains some
remarks on future research directions.
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2. On elimination trees.

2.1. Trees in sparse matrices. Undirected graphs are useful tools in the study
of symmetric matrices. See, for example, [8], [22], and [52]. A given symmetric
sparse matrix A can be structurally represented by its associated graph G(A)
(X(A),E(A)), where nodes in X(A) correspond to rows and columns of the matrix
and edges in E(A) correspond to nonzero entries. We shall use (u, v} to indicate an

edge between two nodes u and v.
In this section, we briefly review properties of sparse matrices whose associated

graphs are trees, in preparation for the introduction of elimination trees in the next
section. Without loss of generality, we assume that the given matrix is irreducible so
that its graph is connected. Let A be an n-by-n symmetric positive-definite irreducible
matrix and let G(A) be its associated graph, which is a tree. It is well known that
such a matrix A is a perfect elimination matrix; that is, it has a permutation P such
that the permuted matrix PAPT does not suffer any fill in its Cholesky factorization

Orderings that will produce no extra fill are sometimes referred to as perfect
elimination orderings [52]. Such orderings for tree structures are easy to obtain.
Indeed, the popular minimum degree ordering on G(A) will be appropriate. Or,
more simply, take any node in the associated tree as the root, any ordering that
numbers children nodes before their parent node will introduce no fill. In particular,
a postordering [1] of the rooted tree will be one such ordering.

For a given rooted tree, we define a topological ordering of the tree to be an

ordering that numbers children nodes before their parent node. This is consistent
with the notion of topological orderings for directed acyclic graphs (directed graphs
without cycles) used in the literature [58]. A topological ordering of a directed acyclic
graph is one such that for every directed edge from a node u to v, u is ordered before
v. In the case of a rooted tree, if we treat each tree edge as a directed edge that goes
from a child to its parent, our definition of a topological ordering of a rooted tree is
the same as that used for directed acyclic graphs.

Assume the matrix A (whose associated graph is a tree) has already been ordered
by a topological ordering. Let xl,x2,"’, Xn denote the nodes in the associated
graph/tree, where node xj corresponds to the jth row/column of the matrix A. Note
in the topological ordering, except the root, each node at its elimination is connected
to only one uneliminated node (namely, its parent). It follows then that in the lower
triangular part of A, each column has exactly one off-diagonal nonzero except the
last column.

Such matrix structure can be represented by the subscripts of the off-diagonal
nonzeros in the columns. For each column j < n of A, let

PARENT[j] p, where apj 0 and p > j.

For completeness, we let PARENT[n] 0. The function PARENT[.] uniquely
characterizes the associated tree G(A) of A. If we consider the tree G(A) as rooted
at xn, for each node xj other than the root, its parent node in the tree is given by

XPARENT[j]"

2.2. Notion of elimination trees. Trees form a class of data structure that
is easy to store and manipulate. However, in practice, it is rare that sparse matrices
have associated graphs in the form of trees. In this section, for a general symmetric
positive-definite sparse matrix, we introduce a tree structure that is useful in the
study of sparse factorization. It may be viewed as a generalization of the tree in 2.1.
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Let A be a given n-by-n sparse symmetric positive-definite irreducible matrix.
Consider its Cholesky factorization A LLT. As before, let G(A) be the undirected
graph associated with A, and let xl,x2,..., xn be the sequence of nodes. Moreover,
let G(F) be the associated filled graph, where F L / LT is the filled matrix of A.
It is well known that G(F) has the same set of nodes and is a supergraph of G(A).

Consider the Cholesky factor L and the filled matrix F of A. Since the matrix A
is irreducible, it can be readily verified that each of the first n- 1 columns of L has at
least one off-diagonal nonzero. For each column j < n of L, remove all the nonzeros
in this column except the first nonzero below the diagonal. Let Lt be the resulting
matrix and Ft Lt -FLT. The graph G(Ft) is a tree structure, and it depends entirely
on the structure of the original sparse matrix A and its initial ordering. We use T(A)
to denote this tree structure and refer to it as the elimination tree of A.

An example is given in Fig. 2.1, which illustrates the structures of the matrices
A, F, and Ft. Each diagonal entry is labeled by the corresponding node in the graph.
Off-diagonal nonzeros are indicated by "o" while "o" is used to denote a fill in the
matrix. The corresponding graphs of G(A), G(F), and T(A) are given in Fig. 2.2. A
dotted line in G(F) is used to indicate a filled edge in the graph. Note that some of
the tree edges in T(A) are filled edges of G(F) (for example, the tree edge between
nodes g. and h). This same example will be used throughout the remainder of this
paper.

The elimination tree T(A) has the same node set as G(A) and is a spanning tree [1]
of the filled graph G(F) of A. We define the node xn to be the root of this tree T(A).
The elimination tree structure can be conveniently represented by the PARENT[.]
vector of Ft. In terms of the triangular factor L, we have, for j < n,

PARENT[j] min (i > j lij 0 ).

It should be pointed out that this is a generalization of the PARENT[.] vector
introduced in 2.1; since when G(A) is a tree and is ordered with no fill, we have
aij 0 if and only if lij O. Indeed, in this case, G(A) G(F) T(A).

In general, G(A) is a subgraph of G(F) due to fills. However, the two elimination
trees T(A) and T(F) are identical (since F is a perfect elimination matrix with no
additional fill). Often, we simply use T to refer to this tree. The next result contains
another simple property of the elimination tree. It follows directly from the definition
of the PARENT vector.

PROPOSITION 2.1. If xi is a proper ancestor node of xj in the elimination tree,
then > j. D

To facilitate discussions in subsequent sections, we introduce the subtree notation.
We use T[x] to represent the subtree of T(A) rooted at the node x, which includes all
descendants of x in the tree T. Since xn is the root of the tree, we have T(A) T[xn].
If y E T[x], then the node y is a descendant of x, and x an ancestor of y. Note that
every node is an ancestor and a descendant of itself.

To simplify discussion, we shall use T[x] to denote both the subtree itself and the
set of nodes in this subtree. This means that, on the one hand, T[x] is a subtree of the
elimination tree T(A) and, on the other hand, the node set T[x] defines a subgraph
of the graph G(A). No attempt shall be made to distinguish between a set of nodes
of G(A) and the subgraph of G(A) that it induces. That is, we shall use T[x] as a
node subset and as a subgraph of G(A) interchangeably. Note that the node set T[x]
also induces a subgraph in the filled graph G(F).
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FIG. 2.1. An example of matrix structures.
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FIG. 2.2. Graph structures of the example in Fig. 2.1.
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2.3. Motivation from column dependencies. It is interesting to provide an
alternative view to introduce the notion of elimination trees. This motivation comes
from the dependency in numerical values among columns of the Cholesky factor. We
state the following relation without proof.

PROPOSITION 2.2. For > j, the numerical values of column L.i depend on
column L.j if and only if gij O. [:]

The immediate consequence of this observation is that the filled graph G(F)
captures the column dependencies among the Cholesky columns. To be precise, if we
use a directed edge from node xj to node xi to indicate that column depends on
column j, a directed filled graph will give the exact relation. Indeed, for each edge in
the filled graph, we simply provide a direction that points from the node with a lower
subscript to the higher one. The resulting directed graph is actually the graph of the
(unsymmetrie) Cholesky factor LT.

If we are interested only in the. column dependency relation, we can simplify this
directed graph by a process commonly known in graph theory as transitive reduction
[1]. That is, if there is a directed path of length greater than one from xj to xi, and
a directed edge from xj to xi, the edge from xj to xi is deemed redundant and can
be removed. The removal of all such redundant edges from the directed filled graph
gives its transitive reduction.

The transitive reduction of the directed filled graph generates precisely the elim-
ination tree structure. We can therefore view the elimination tree as providing the
minimal amount of information on column dependencies in the Cholesky factor. To
better illustrate this connection, we provide in Fig. 2.3 the directed filled graph of the
example in Fig. 2.2. We also include the transitive reduction of this directed graph
and the final elimination tree structure.

3 3
7 7

8 6 8 6

9 9

Directed Filled Graph Transitive Reduction

)10

Elimination Tree

FIG. 2.3. Directed filled graph and its transitive reduction of the example in Fig. 2.2.

2.4. Interpretation as a depth-first search tree. As noted earlier, the elim-
ination tree is a spanning tree of the filled graph G(F) of the given matrix A. It can
be obtained from the transitive reduction of the directed graph of LT. In this sec-
tion, we show that this tree structure can also be obtained from a depth-first search
exploration of the undirected filled graph G(F).

Depth-first search is a standard technique of systematically exploring nodes in a
graph. It serves as a fundamental tool in devising many efficient graph algorithms
(see, for example, [33], [57]). The search starts with an initial node x; and x is marked
as visited. Then each unvisited node adjacent to x is searched in turn, using depth-
first search recursively. The readers are referred to [1] and [58] for details. The edges
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that lead to new (unmarked) nodes during a depth-first search of a connected graph
G form a rooted tree, called a depth-first search tree. In other words, if the edge (u, v}
leads the search from the marked node u to the unmarked node v, then u is the parent
node of v in the depth-first search tree. This means the first node visited is the root
of this search tree.

An edge of G that connects a node to one of its proper ancestors, except its
parent, in a depth-first search tree is called a back edge. (Hopcroft and Tarjan [33],
[57] use the term fronds to refer to back edges). An edge of G that connects two nodes
that are not ancestors of each other is called a cross edge. The following important
property of a depth-first search tree is well known, and its proof can be found in [57].

THEOREM 2.3. [57]. For a depth-first search tree of an undirected connected
graph G, each edge of G is either a tree edge or a back edge of the tree. (That is, there
is no cross edge).

We provide a different view of the elimination tree in terms of a depth-first search
tree in the next theorem. A direct constructive approach is used in the proof, since
it gives better insight into the connection.

THEOREM 2.4. The elimination tree T(A) of a connected graph G(A) is a depth-
first search tree of the filled graph G(F) of A.

Proof. Let xl,x2,..., Xn be the node ordering of the filled graph G(F). Consider
the depth-first search of G(F) subject to the following tie-breaking rule" when there
is a choice of more than one node to explore next, always pick the one with the largest
subscript. The rule implies that the search will start with Xn as the initial node.

It remains to show that the resulting depth-first search tree is the same as the
elimination tree T(A). Since both are spanning trees of the filled graph G(F), it is
sufficient to show that every tree edge of the depth-first search tree is also an edge
in the elimination tree. Consider a tree edge from Xp to xj in the depth-first search
tree; that is, during the search, the edge (Xp, xj) in the filled graph leads to the node
xj. We leave it to the reader to verify that the subscript p is greater than j and is
indeed the same as PARENT[j] min { > j i : 0 }. [:l

It follows from Theorem 2.4 that properties of depth-first search trees also apply
to elimination trees. In particular, by Theorem 2.3, every edge in the filled graph is
either a back edge or a tree edge of the elimination tree. In his thesis [48], Peters
establishes this observation and refers to the filled graph as a palm. (The notion of
a palm tree is introduced by Hopcroft and Tarjan [33] to refer to a directed graph
with an underlying rooted spanning tree such that every directed edge in the graph
connects a node to its ancestor in the tree.)

To illustrate the result of Theorem 2.4, we use the filled graph example of Fig.
2.2. It is easy to verify that

j,i, h,g, f, c, a, e, b, d

is the sequence of node visits during a depth-first search subject to the tie-breaking
strategy in the proof of Theorem 2.4. For example, after the node j has been visited,
we can choose any one of b, d, e, h, or as the next node. Since x9 has the largest
subscript, it is selected next in the search. After node i, node h x8 will be selected
out of the three possible candidates: d, e, and h. Note that after node f has been
visited, there is no unvisited node adjacent to the node f, so that the search backs
up to the node g and finds an unvisited neighbor c of g.

In Fig. 2.4, we display the filled graph G(F) and the resulting depth-first search
tree. Back edges are also included in the figure and they are represented by curve
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directed lines.
identical to the elimination tree of Fig. 2.2.

5

G(F)

Without the back edges, the underlying depth-first search tree is

10

3 f(6

Depth-first search Tree

FIG. 2.4. A depth-first search tree of the filled graph in Fig. 2.2.

3. Elimination trees and Cholesky factorization.

3.1. Path characterization of filled edges. The elimination tree T(A) is de-
fined in terms of the Cholesky factor L of the matrix A. This tree structure contains
a lot of information pertinent to the sparse factorization process. In [55], Schreiber
establishes a number of interesting properties of elimination trees that are relevant
to the study of sparse Gaussian elimination. The next result is restated here in our
terminology without proof. In what follows, unless otherwise stated, we assume that
i, j, and k are subscripts and they satisfy > j > k.

THEOREM 3.1. [55]. If ij O, then the node xi is an ancestor of xj in the
elimination tree. U

COROLLARY 3.2. Let T[xi] and T[xj] be two disjoint subtrees of the elimination
tree. Then for all xs e T[x] and xt e T[xj], st O.

Proof. Assume for contradiction that there exist nodes xs E T[xi] and xt T[xj]
such that 8t 0. Without loss of generality, let s < t. By Theorem 3.1, the node xt
is an ancestor of xs. This implies that Xs T[xt] C_ T[xj]. Therefore, the subtrees
T[xi] and T[xj] have the node xs in common and cannot be disjoint.

Theorem 3.1 provides a necessary condition in terms of the ancestor-descendant
relation in the elimination tree for an entry to be nonzero in the filled matrix. Indeed,
the result is implicit from the connection between the elimination tree and the depth-
first search tree in Theorem 2.4. Every nonzero/ij corresponds to an edge {xi,xj} in
the filled graph so that by Theorem 2.3, it is either a tree edge or a back edge of the
elimination tree. Every such edge, therefore, always connects an ancestor-descendant
pair in the elimination tree. Corollary 3.2 is simply a restatement of the fact that
there is no cross edge in the elimination tree.

We now consider a necessary and sufficient condition for an entry to be nonzero in
the filled graph. Rose, Tarjan, and Lueker [53] characterize edges in the filled graph
based on the special type of paths in the original graph G(A). We quote the following
"path theorem" from them.

THEOREM 3.3. [53]. Let > j. Then lij 0 if and only if there exists a path

Xi Xpl ’’" Xpt Xj

in the graph G(A) such that all subscripts in {pl,"" pt} are less than j.
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Note that the path length in this "path theorem" can be one (that is, t 0).
The subscript condition implies that any intermediate nodes along this path must be
eliminated before xj (and xi). We now extend this path condition in terms of subtrees
in the elimination tree.

THEOREM 3.4. Let > j. Then Iij 0 if and only if there exists a path

Xi Xpl ’’’ Xp, Xj

in the graph G(A) such that {Xp,,..., Xp,} C_ T[xj].
Proof. If part. Assume that such a path exists. Since xj is a proper ancestor of

every node in {Xpl,..., Xp,}, by Proposition 2.1, each subscript is less than j. Then
by Theorem 3.3, lij O.

Only if part. Assume lij 0. By Theorem 3.3, there exists a path

X Xpo Xpl’’" Xpt Xpt+l --Xj

in the graph G(A) such that all subscripts in {pl,"’, pt} are less than j. It remains
to show that each node in {Xpl ,..., Xp, } belongs to T[xj]. There is nothing to prove
if t 0. Consider the case when t > 0. Assume for contradiction that not every
intermediate node belongs to the subtree T[xj]. Let s > 0 be the largest subscript
such that Xps does not belong to T[xj]. By the choice of the subscript s, we have
Xp+l E T[xj].

Since the path is in G(A), this implies that {Xps,Xp+} is an edge in G(A) and
hence also in G(F). But Xp+l cannot be an ancestor of Xp,, for otherwise Xp would
belong to the subtree T[xj]. Therefore, by Theorem 3.1, Xps must be an ancestor
of Xp+l. Now that both xj and Xp are ancestor nodes of Xp+l, and xj is not an
ancestor of Xp,, the node Xp, must be a proper ancestor of xj. This contradicts the
fact that Ps < j and Proposition 2.1.

3.2. Row structure of the Cholesky factor. Theorems 3.3 and 3.4 char-
acterize edges in the filled graph in terms of paths. In [36], this author extends a
property established by Schreiber [55], and the result provides a different necessary
and sufficient condition for entries in the Cholesky factor L to be nonzero. We quote
this alternative characterization below.

THEOREM 3.5. [36]. lij 0 if and only if the node xj is an ancestor of some
node xk in the elimination tree, where aik O. [J

The same result was also given by Tarjan and Yannakakis [59, page 570]. They
credited the result to Whitten [60], who presented it at the 1978 SIAM Symposium on
Sparse Matrix Computations. Pictorially, the result of Theorem 3.5 can be depicted
as follows:

The result of Theorem 3.5 can be used to characterize the row structure of the
Cholesky factor. Let us define Tr [xi] to be the structure of the ith row of the Cholesky
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FIG. 3.1. Row subtrees for the matrix example of Fig. 2.1.

factor L, that is,

T,[xi] { xj gij O, j <_ }.

It follows from Theorem 3.1 that

T,[x] C_ T[xi],

and from Theorem 3.3 that if aik 0, the row structure Tr[xi] includes all nodes
on the path from xk to xi in the elimination tree. Schreiber [55] shows that the row
structure Tr[xi] is a pruned subtree rooted at the node xi in the elimination tree. We
shall refer to Tr[xi] as the ith row subtree of L.

Each row subtree Tr[xi] is completely determined by its set of leaves, since the
leaves specify the locations in which the subtree T[xi] should be pruned. The next
corollary characterizes such leaves, and it follows immediately from Theorem 3.5.

COROLLARY 3.6. [36]. The node xj is a leaf in the row subtree Tr[xi] if and only
if aij O, and for every proper descendant xk of xj, aik O. D

Note that each leaf xj in the row subtree Tr[xi] corresponds to an edge
in the original graph G(A). In Fig. 3.1, we illustrate the sequence of row subtrees for
the example of Fig. 2.1. For convenience, in the figure, each node is labeled by its
subscript. Consider the row subtree Tr[xlo], which has three leaf nodes {x2, xa, x8).
Since the node x7 is the only child of these leaves, the row subtree Tr[xl0] can be
obtained by pruning the subtree T[xT] from T[x0].

Therefore, the entire row structure for L is characterized by the elimination tree
T(A) and the structure of the original matrix A. The observation that each row
structure is a pruned subtree of the elimination tree has a number of interesting
applications. It will be used later in this paper to compute the number of nonzeros in
L (3.4), to test if an ordering is perfect elimination (4.1), to design a compact row
storage scheme (7.2), and to perform symbolic factorization by rows (8.2).

3.3. Column structure of the Cholesky factor. The previous section char-
acterizes the row structures of the Cholesky factor L in terms of the elimination tree.
The result of Theorem 3.1 partially characterizes the column structure of the Cholesky
factor. For column j of L, the subscript set of nonzeros in this column is contained
in the ancestor set of xj in the elimination tree. In the next theorem, we provide a
complete characterization of the column structures using the elimination tree.
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For a graph G and a node v in G, we use Adjc(v) to denote the set of nodes
adjacent to v in the graph. We further extend this Adj operator to subsets. For a
subset S of nodes, we define the adjacent set of S in G to be

Adjc(S) { x S e Adja(v) for some v e S }.

Note that the adjacent subset Adja(S) does not include any nodes in S.
THEOREM 3.7. The structure of column j o.f the Cholesky factor is given by

Adj((A)(T[xj]) U {xj} {xi lij#O, >_ j}.

Proof. Consider column j of the Cholesky factor. Since the diagonal entry
tjj # O, the node xj belongs to the subset. If/ij # 0 with > j, by Theorem 3.5, this
is equivalent to the fact that the node xj is an ancestor of some node xk with aik 60.
This means xi E AdjG(A)(Xk), where xk belongs to the subtree T[xj]. Or simply, this
is equivalent to xi Adj(A)(T[xj]). El

Consider node c in the example of Fig. 2.2. The subtree T[c] contains nodes a

and c, so that

Adjv(A)(T[c]) { g, h },

which gives precisely the locations of off-diagonal nonzeros in the column associated
with the node c in the Cholesky factor of A. We now provide some observations based
on the result of Theorem 3.7.

COROLLARY 3.8. Adja(A)(T[xj]) U {xj} is a clique in the filled graph G(F). El
COROLLARY 3.9. For the subset of nodes T[xj],

Adja(A) (T[xj]) Adja(f)(T[xj]).

Proof. The result follows from Theorem 3.7 and the fact that F is a perfect
elimination matrix with no additional fill. El

By Corollary 3.9, we can use the notation Adj(T[xj]) to refer to both Adja(A)(T[xj])
and Adjc(f)(T[xj]). We do so if the underlying graph is clear from the context. For
convenience, we also use Adj(xj) to refer to Adja(A)(Xj), which is in general a subset
of Adja(f)(xj). In other words, the adjacent operator Adj, by default, applies to the
graph G(A).

3.4. Nonzero counts of the Cholesky factor. The result of Theorem 3.5
can be used to devise efficient algorithms for counting nonzeros in the Cholesky factor
matrix L. Let r/(L,) and r/(L,j) be the number of nonzeros in the ith row and jth
column of the factor L, respectively. These quantities can be computed efficiently
using the following algorithm. Here, marker[,] is a working integer vector used in
the algorithm to mark nodes that have been considered in the current row structure.
A similar description of this algorithm is also given by Zmijewski and Gilbert [62].
In [4], Bank and Smith provide an algorithm that essentially computes the nonzero
count of L and the structure of the elimination tree simultaneously.

Algorithm 3.1. Nonzero Count.

for j:= 1 ton do
y(L,j):=l;

fori:= 1 ton do
begin
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(L,):=I;
marker x :=
for k < and ak # 0 do
begin { traverse and mark nodes in the row subtree Tr [xi }
j:=k;
while marker xj do
begin
y(Li, ):=(/i, )+ 1;
(L,j):=(L,j)+I;
marker xj :=
j := PARENT[j]

end
end

end.

It is easy to verify that Algorithm 3.1 takes time proportional to the number of
nonzeros in the Cholesky factor L and space proportional to the number of nonzeros
in the original matrix A. It traverses through nodes in each row subtree Tr[xi] to
obtain the count (n,)=1 T[x] I.

The column nonzero counts {vl(L,j)} are also computed in Algorithm 3.1 during
the traversal of the row subtrees. These quantities are useful in setting up columnwise
storage schemes. This implies that the storage requirement for values of L can be
obtained with only the structure of A and the elimination tree. Moreover, the number
of arithmetic operations can also be computed using the column nonzero counts.
Indeed, if (L) is the number of nonzeros in the factor L and #(L) is the number of
multiplicative operations to perform the Cholesky factorization, we have [22]

n

rl(L) Z I(L,j),
j=l

(L) [(L,)- 1] [r(L,)+ 2]/2.
j=l

Therefore the storage and computational cost for the factor L can be determined
without the formation of the actual structure of L. This will be a useful utility
routine for any sparse matrix package.

The row nonzero counts {(Li,)} are also useful even in the context of numerical
sparse Cholesky factorization by columns. For 1 <_ <_ n, (Li,) 1 represents the
number of column modifications required to transform this column of A to that of
L (see Proposition 9.1 in 9). Some implementations of parallel sparse factorization
make use of this information [19], [62].

3.5. Connectivity consideration. The path characterizations of filled edges
in Theorems 3.3 and 3.4 provide some relation between fills and connectivity. In this
section, we present a more thorough consideration of subtrees in the elimination tree
and connected components for subgraphs in G(A) and G(F). As before, we assume
that the graph G(A) is connected (or equivalently, the matrix A is irreducible). Recall
the subtree notation T[x] introduced at the end of 2. For a given node x, the subtree
T[x] identifies a node subset and hence also defines a subgraph of G(A) and of the
filled graph G(F).



146 JOSEPH W. H. LIU

THEOREM 3.10. For each node xj, the subgraph of G(A) {G(F)} consisting of
nodes in T[xj] is connected.

Proof. We prove by induction on the number of nodes t in T[xj]. The result is
obviously true if there is only one node in T[xj]. Assume that the result holds true
for all subtrees of size less than t, and t > 1. Let x81,’", xs, be the children nodes
of xj. By the inductive assumption, each subgraph consisting of nodes in T[xs], for
1 _< k _< m has fewer than t nodes and is hence connected in G(A). Moreover, for
each k, (xj,xs } is an edge in the filled graph G(F). By Theorem 3.4, there exists
a path from x to xj through nodes in T[xs]. This proves the claim that the node
subset T[xj] is a connected subgraph in G(A). Since G(F) is a supergraph of G(A),
T[xy] must also be a connected subgraph in G(F).

COROLLARY 3.11. For each node xj, the set of nodes in T[xj] forms a connected
component in the subgraph of G(A) (G(F)} consisting of all nodes except those in
Adj(T[x]).

COROLLARY 3.12. For each node xj, the set of nodes in T[xj] forms a connected
component in the subgraph of G(A) (G(F)} consisting of all nodes except proper
ancestors of xj.

Proof. Since Adj(T[xj]) is a subset of proper ancestors of the node xj, the result
follows from Corollary 3.11.

To illustrate these results, consider the example in Fig. 2.2. The subtree T[g]
consists of nodes (a, c, f, g}. This set is a connected subgraph of G(A) (as proved
in Theorem 3.10). Furthermore, the adjacent set Adj(T[g]) is given by (h}, whose
removal from G(A) gives two connected components, one of which is (a, c, f, g}. The
removal of the set (h, i, j} of proper ancestors of g also leaves T[g] as one of the
remaining components.

It follows from Corollary 3.11 that if

T[xj] U Adj(T[xj]) X(A),

then the subset Adj(T[xj])separates the nodes of T[x] from those of X(A)-(T[xj]U
Adj(T[xj])}. This observation is used in [45] to devise an effective graph partitioning
algorithm by node separators.

4. Elimination trees and chordal graphs.

4.1. Testing chordality. In this section, we shall present some uses of the no-
tion of elimination tree in the study of chordal (or triangulated) graphs. An edge is
said to be a chord of a cycle if it joins two nonconsecutive nodes on the cycle. An
undirected graph is said to be chordal if every cycle of length at least four has a chord.
It is well known that chordal graphs are exactly those graphs with perfect elimination
orderings. Filled graphs are examples of such chordal graphs. A thorough treatment
of chordal graphs as a subclass of perfect graphs is given by Golumbic [32].

We first consider the use of elimination trees for testing if a given undirected graph
is chordal. Since chordal graphs are exactly those with perfect elimination orderings,
the chordality of a graph can be established by finding a perfect elimination ordering.
Rose, Tarjan, and Lueker [53] and Tarjan and Yannakakis [59] have provided linear
algorithms for testing chordality.

One key step in their chordality test algorithms is a linear algorithm that de-
termines if a given ordering is a perfect elimination ordering for a graph G(A). We
shall describe this step using the connection of an elimination tree. Let xl,x2,’.., Xn
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be the ordering of the graph G(A). For each j, if column j of A does not have any
nonzero entry under the diagonal, define pj O. Otherwise, let

pj min{i>j aijO}.

Note that {pj } is defined in the similar way as PARENT[.], except that entries
in A are used instead of those in L. Of course, if A does not suffer any fill in its
Cholesky factorization, then PARENT[j] pj.

THEOREM 4.1. xl, x2,’’’, Xn is a perfect elimination ordering for G(A) if and
only if for every row of A, ai,p, 0 for every nonzero aik with k < i.

Proof. If part. Assume for contradiction that there exist and k with k < such
that aik 0 and ai,p O. By the definition of Pk, we have

k < Pk

_
and ap,k O.

Therefore, the given ordering cannot be a perfect elimination ordering, since the
elimination of the node xk will create a fill at location ii,p,.

Only if part. Assume that xl,..., Xn is a perfect elimination ordering for G(A).
Let T(A) be the elimination tree of A. This implies that PARENT[i] p for

1,..., n. Consider any nonzero ak with k < i. The node xk belongs to the row
subtree Tr[xi] rooted at xi. Therefore, the parent node XpARENT[k Xpk of Xk also
belongs to this row subtree. It follows from Theorem 3.5 that ii,p, is nonzero. Since
the ordering is a perfect elimination ordering for G(A), ai,p, must also be nonzero.

Theorem 4.1 contains a simple test to see if an ordering is a perfect elimination
ordering for a given graph G(A). In essence, it is comparing to see if the ith row
structure of A is the same as the ith row structure of L (which is the row subtree
Tr[xi]), for 1,..., n. The following algorithm is from Tarjan and Yannakakis [59].

Algorithm 4.1. Test for Perfect Elimination Ordering.

fori:= 1 ton do
begin

marker xi :=
for k < and aik 0

marker x :=
for k < and aik 0

if marker[Xp
Pi :=max { 0,

end;
return true.

do

do
then return false

min { s > ai 0 } }

It is easy to see that Algorithm 4.1 determines if an ordering is perfect elimination
for a graph G(A) in time proportional to the number of nodes and number of edges in
G(A). The chordality-testing algorithms of Rose, Tarjan, and Lueker [53] and Tarjan
and Yannakakis [59] make use of Algorithm 4.1. Both consist of two steps:

Step 1. Find an ordering P for the graph G(A) such that P is a perfect elimination
ordering for A if and only if G(A) is chordal.

Step 2. Apply Algorithm 4.1 to see if the ordering P is a perfect elimination ordering
for G(PApT).
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It is clear from definitions that a minimal Jill ordering for A is a perfect elimina-
tion ordering if and only if G(A) is chordal. Therefore, any minimal fill ordering will
serve the purpose for Step 1. The lexicographic ordering, a special form of breadth-
first search, by Rose, Tarjan, and Lueker [53] can be used to determine a minimal fill
ordering in linear time. Tarjan and Yannakakis [59] provide a simpler linear algorithm
based on what they call maximum cardinality search, to determine an ordering satisfy-
ing the requirement in Step 1. Combining Algorithm 4.1 with either the lexicographic
ordering or the maximum cardinality search, we have therefore an overall linear al-
gorithm for testing the chordality of undirected graphs. It is interesting to note the
implicit role played by the elimination tree in these chordality-testing algorithms.

4.2. Intersection graph representations of chordal graphs. It is known
that a graph is chordal if and only if it is the intersection graph of a family of subtrees
of a tree [17], [32]. In this section, we show how to construct such a tree representa-
tion explicitly using the elimination tree of a chordal graph. The approach of using
elimination trees in arriving at this tree representation is new.

For completeness, we first define intersection graphs. Let F be a family of non-
empty sets. The intersection graph of F is obtained by representing each set in F by
a node and connecting two nodes by an edge if and only if their corresponding sets
intersect (see, for example, Golumbic [32]).

Let A be a symmetric matrix with graph structure G(A) and filled graph G(F).
We assume that xl,x2,..., xn is the node elimination sequence. Let T(A) be the
corresponding elimination tree, with Tr [x], , Tr [xn] as the sequence ofrow subtrees.

LEMMA 4.2. Iij 0 if and only if Tr[xi]
Proof. For definiteness, assume > j. It follows from definition that lij # 0 if

and only if x E Tr[x]. Therefore, if lj 0, then x e Tr[x] N Tr[x] and hence
Tr[xi] N T,[xj] # O.

On the other hand, if the intersection of the two row subtrees is nonempty, say
x8 T,.[x] Tr[xj], this implies that the node xj lies on the path from x8 to x in
the elimination tree. Hence xj Tr[xi] and that implies that

THEOREM 4.3. The chordal graph G(F) is the intersection graph of the row
subtrees in the elimination tree T(A).

Proof. The result follows directly from Lemma 4.2.
The result in Theorem 4.3 gives a constructive approach to determine the inter-

section graph representation of any chordal graph. Indeed, for a given chordal graph
G, we can first find a perfect elimination sequence x,..., xn for G. Obtain the elim-
ination tree of this node sequence and the associated row subtrees Tr[x],..., Tr[xn].
Then the chordal graph G is given by the intersection graph of these row subtrees in
the elimination tree.

4.3. Separators for chordal graphs. A separator of a connected graph is a
subset of nodes whose removal renders the remaining subgraph disconnected. In
[30], Gilbert, Rose, and Edenbrandt have devised an efficient algorithm to determine
O(v/)-separators for chordal graphs, where m is the number of edges in the graph.
Their algorithm uses implicitly the structure of an elimination tree. In this section,
we explore this connection. Let A be a sparse matrix with G(A) as a chordal graph
and assume that it is ordered with no fill. Let T(A) be its corresponding elimination
tree.

A minimal fill ordering P on the matrix A is one such that no ordering of A will generate a
filled graph that is a proper subgraph of the filled graph of PAPT [52].
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The separator algorithm by Gilbert, Rose, and Edenbrandt [30] finds a set of size
at most O(x/-), whose removal divides the graph into connected components, each
with no more than n/2 nodes. Their approach can be interpreted as first obtaining
from the elimination tree T(A) the smallest subscript j such that T[xj] has more than
n/2 nodes. Then, the desired O(v/-)-separator is given by the set S Adj(T[xj])U

It follows from Corollary 3.8 that this set S forms a clique in the chordal graph.
Being a clique, the set must have size no greater than O(v/-). Furthermore, by the
construction of S, the removal of S leaves no component with more than n/2 nodes.
Our discussion here presents a different view of the separator result in the paper [30]
and interprets the algorithm in terms of the elimination tree.

5. Determination of elimination trees.

5.1. Basis of the algorithm. For an n-by-n symmetric matrix A, we consider
the problem of determining the structure of its elimination tree T(A), that is, com-
puting the parent vector PARENT[i], 1,..., n, of T(A). We can obtain the
parent vector using the following code.

fori:- 1 ton do
begin

PARENT[i] := 0;
for k < and /k # 0 do

if PARENT[k] 0 then PARENT[k] i;
end.

Note that the inner for-loop uses the row structures of the Cholesky factor L.
For this purpose, we can generate the location of each row nonzero of L as needed,
without storing the entire structure of L. The row structure characterization of the
factor matrix in 3.2 is applicable here. Indeed, for each row i, we can generate the
structure of row of L using the structure of the original matrix A and the current
values of PARENT[k], k 1,..., i-1. That will result in an algorithm for computing
the parent vector in time proportional to the number of nonzeros in L and in space
proportional to the number of nonzeros in A.

5.2. The algorithm using set union operations. In [36], Liu further extends
the row approach of the last section to obtain more efficient ways of finding the
elimination tree structure. The key observation is that the problem of computing the
PARENT[,] vector of T(A) from the graph G(A) can be expressed in terms of basic
set operations for the set union problem. Following Tarjan [58, Chap. 2], we consider
the three set operations:

makeset(x): create a new singleton set with element x;
find(x): return the representative of the set containing x;
link(x, y): form the union of the two sets containing x and y, and return the new

representative of the union set.

Implicitly assumed here is that each set is represented by a rooted tree, where each
tree node corresponds to a member of the set, and the root is the representative.

We now describe the determination of the elimination tree from the graph G(A).
The following algorithm finds the PARENT[.] vector for the elimination tree T(A)
using the above three basic set operations. A temporary vector realroot[.] is used
to store the actual root of the subtree under consideration in the partially formed
elimination tree.
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Algorithm 5.1. Elimination Tree.

fori:= 1 ton do
begin

makeset( );
realroot[i] := i;
PARENT[i] := 0;
vroot :- i;

for k < and aik 0 do
begin

u := find(k);
t := realroot[u];
if PARENT[t] 0 andt then
begin

PARENT[t] := i;
vroot := link(vroot, u);
realroot[vroot] :=

end
end

end.

Within this framework, the various enhancement techniques as described by Tar-
jan in [58] can be applied. In particular, the notion of path compression to change
the structure of the tree during a "find" by moving nodes closer to the root can be
used to reduce the amount of time for later "find"s. In that case, two structures
are maintained throughout the course of the algorithm, one for the actual elimination
tree and the other for the compressed tree structure. Moreover, the use of union by
ranks in the "link" operation keeps the resulting tree shallow by choosing a more
appropriate representative for the union set. It has the desirable effect of balancing
the tree.

In [36], Liu provides a detailed description of the algorithm to determine the elim-
ination tree structure using path compression. He also notes that path compression
with balancing will produce a theoretically more efficient scheme. An explicit descrip-
tion of this scheme then appears in the work of Zmijewski and Gilbert [62]. We refer
the reader to these two papers.

A direct use of the analysis by Tarjan [58] provides the following complexity
bounds. Let m be the number of nonzeros in the matrix A.

THEOREM 5.1. Algorithm 5.1, using only path compression, determines the elim-
ination tree in O(m log2 n) time.

THEOREM 5.2. Algorithm 5.1, using path compression with balancing, determines
the elimination tree in O(ma(m,n)) time, where (,, ,) is a functional inverse of
Ackerman’s function.

In [16], Fischer defines a class of trees in order to establish a lower bound for the
set union algorithm without balancing. It is interesting to note that we can use the
same example to construct sparse matrix structures so that Algorithm 5.1 with only
path compression will require time proportional to m log2 n. In other words, the time
bound in Theorem 5.1 is the best possible.

It is appropriate here to mention two parallel algorithms to determine the elim-
ination tree structure. Zmijewski and Gilbert [62] provide a distributed version of
Algorithm 5.1 using both path compression and balancing. Gilbert and Hafsteinsson
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[29] use the divide-and-conquer approach to devise an efficient parallel algorithm to
determine the tree structure.

5.3. Experimental results on balancing. The time bound in Theorem 5.2
involves the inverse Ackerman function c, which is an extremely slow growing func-
tion. For all practical purposes, it can be regarded as a constant value of 5. (For
more details on this function, the readers are referred to [58].) From the theoretical
complexity bound, Algorithm 5.1 using path compression with balancing is superior
to the one without balancing.

Both schemes (with and without balancing) were implemented to compute the
structure of elimination trees of large sparse matrices. We applied them to the model
square grid problem (with 9-point difference operator), where the nodes were ordered
by the minimum degree ordering algorithm. The time in CPU seconds on a SUN 3/50
is tabulated in Table 5.1.

TABLE 5.1
Time to determine elimination trees.

Grid Algorithm 5.1 using path compression
without balancing with balancing

30x30 0.10
50x50 0.26
80x80 0.82
100 x 1O0 1.08
180x 180 3.82

0.18
0.50
1.30
2.08
6.66

We note from Table 5.1 that the scheme without balancing runs almost twice as
fast as the one with balancing, even when the grid size is 180 (n 32,400). Runs
on practical sparse matrix examples from the Harwell-Boeing collection give similar
results. Therefore, in practice, we recommend the simpler code of using Algorithm
5.1 without balancing.

6. Elimination trees and matrix reordering.

6.1. Topological orderings. In this section, we consider equivalent reorderings
based on the structure of the elimination tree. Let A be a given symmetric matrix.
Following [43], we call two orderings P and Q equivalent if the structures of the filled
graphs of PAPT and QAQT are the same (that is, the filled graphs are isomorphic).
For convenience, we shall call P an equivalent reordering of the matrix A if the filled
graph of A has the same structure as that of PAPT. It is known that equivalent
orderings require the same amount of arithmetic for the sparse Cholesky decompo-
sition of their permuted matrices (see, for example, [11], [52]). Therefore, in terms
of both storage and computational costs, equivalent reorderings are as good as the
original ordering. However, we may use them to take advantage of other aspects of
elimination, some of which will be illustrated in later sections.

The structure of an elimination tree provides some flexibility and freedom in re-
ordering the nodes. We first consider the class of topological orderings. As defined
in 2, a topological ordering on a rooted tree is one that numbers the children nodes
before their parent node. Given an initial node ordering on the matrix A and its corre-
sponding elimination tree T(A), let P be a permutation matrix for A that corresponds
to a topological ordering of the nodes in T(A).
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THEOREM 6.1. As unlabeled graphs, the filled graph of G(PAPT) and the filled
graph of G(A) are isomorphic.

Proof. Let F be the filled matrix of A. Put PAPT and let/ be the corre-
sponding filled matrix of . We want to show that G(F) and G(/) are structurally
identical.

Let xl,x2,..., Xn be the node elimination sequence for the matrix A and let
1,&2,’", n be that for the matrix .. Consider two nodes xi and xj in A. Let
xi &e and xj in the sequence for . It is sufficient to show that {xi,xj} is an

edge in the filled graph G(F) if and only if { e, &} is an edge in G(F).
Assume that {x,xj} is an edge in G(F) and > j. By Theorem 3.1, x is a

proper ancestor of xj in the elimination tree T(A). Since P is a topological ordering,
the node e is labeled after so that ? > g. Furthermore, by Theorem 3.4, there
exists a path in the graph G(A)

such that (Xpl,..., Xp } C_ T[xj]. By the property of the topological ordering of P,
these nodes xpl ,..., xpt are labeled before in the matrix . Therefore, by Theorem
3.3, {2e,2} is also an edge in the filled graph G().

Conversely, let { &e,2} be an edge in G(F). For definiteness, let > . Note
first that xi does not belong to the subtree T[x], for otherwise, it contradicts the
topological ordering property of P. By Theorem 3.3, there exists a path in G(A)

such that all subscripts i5,’", iSt are less than . By the property of the topological
ordering of P, the nodes in { : ,...,, } cannot be ancestors of xj. From the above
path, we know that all the nodes on the path belong to the connected component
containing the node xy in the subgraph of G(A) excluding the set of proper ancestors
of xj in the tree. By Corollary 3.12, these nodes all belong to the subtree T[xj]. In
other words, we have a path in G(A) from 2 xj to &e xi through nodes in the
subtree T[xj] and x is outside of T[xj]. Again by Corollary 3.12, this means that x
is a proper ancestor of xj so that > j. Therefore, using Theorem 3.4, {xi,xj} is also
an edge in the filled graph G(F).

COROLLARY 6.2. As unlabeled trees, the elimination tree T(PAPT) and the
elimination tree T(A) are isomorphic.

The result of Theorem 6.1 implies that every topological ordering of the elimina-
tion tree is an equivalent reordering of the given sparse matrix. The amount of fills
and the number of arithmetic operations for the factorization will be preserved by
every topological ordering of the elimination tree. Indeed, by Corollary 6.2, even the
structure of the elimination tree is preserved.
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For a given elimination tree, there are many possible topological orderings. One
important example is the class of postorderings [1]. In a postordering, the nodes within
every subtree of the elimination tree will be numbered consecutively. The root of a
subtree will always be labeled last among nodes in the subtree. For the elimination
tree of Fig. 2.2, the ordering P

d, f,a, c,g, h, b, e, i,j

is a postordering on the tree T(A). In Fig. 6.1, we display the structure of the filled
matrix/ of PAPT, the graph G(/) and the tree T(PApT).
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6.1. A postordering of the elimination tree in Fig. 2.2.
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Topological orderings on an elimination tree are notions similar to consistent or-
derings introduced by Peters [48]. He also provides a proof of a result equivalent to
Theorem 6.1. It leads him to observe that if A LLT and P is a topological ordering
of T(A), then PLPT is lower triangular and is the Cholesky factor of PAPT. Fur-
thermore, his concept of preserving palm can also be expressed in terms of topological
orderings on the elimination tree.

6.2. Root selection of elimination trees by reorderings. In the previous
section, for a given sparse matrix A, we have shown that every topological ordering of
its elimination tree T(A) is an equivalent reordering for A. Furthermore, the structure
of the elimination tree is preserved by such topological orderings. However, in general,
equivalent reorderings for A may not retain the elimination tree structure.

We now show that for any node x in G(A), there is an (essentially) equivalent
reordering such that the resulting elimination tree is rooted at x. Let F be the filled
matrix of A. We need the following result from Rose [52].

THEOREM 6.3. [52]. For any node x in G(F), there is a perfect elimination
ordering on G(F) such that the node x is numbered last. U

COROLLARY 6.4. For any node x in G(A), there is an ordering P on G(A) such
that the node x is numbered last, and such that the filled graph of G(PAPT) is a
subgraph of the filled graph of G(A).

Proof. Let G(F) be the filled graph of G(A). By Theorem 6.3, there is a perfect
elimination ordering P on G(F) such that the node x is numbered last. In other words,
the factorization of the permuted filled matrix PFPT does not create additional fill.
This implies that fills created in the factorization of PAPT will be accounted for by
G(PFpT). Therefore the filled graph of G(PAPT) is a subgraph of G(PFPT)
G(F).

In Corollary 6.4, the ordering P is at least as good as the initial ordering for A in
terms of fill. In the case when the matrix A has been ordered initially by a minimal
fill ordering, then the filled graph of C(PAPT) will be the same as the filled graph of
G(A). Otherwise, the ordering P may be a better ordering so that the filled graph of
G(PAPT) is a proper subgraph of the filled graph of G(A). The following theorem is
a direct consequence of Corollary 6.4.

THEOREM 6.5. For any node x in G(A), there is an ordering P on G(A) such
that the node x is the root of the elimination tree T(PApT), and that the filled graph
of G(PAPT) is a subgraph of the filled graph of G(A).

For a better understanding of the result, it is instructive to consider the graph
example of Fig. 2.2 (or Fig. 6.1). Say, we want a reordering on G(A) such that node
b is the root of the elimination tree. One such reordering is

a, c, f, g, h, d, i, e, j, b.

For this reordering, we display the new labeling and its corresponding elimination
tree in Fig. 6.2. Note that the structure of the resulting elimination tree is quite
different from the original one in Fig. 2.2. For this example, the filled graph structure
is preserved, since the original ordering is a minimal fill ordering (in fact, a minimum
fill ordering).

6.3. Tree restructuring by elimination tree rotations. Reordering so that
a given node x becomes the root of the resulting elimination tree is a special case of a
more general technique, called elimination tree rotation, introduced by the author [43].
The essence of elimination tree rotation can be described as follows. For any given
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FIG. 6.2. An equivalent reordering of the graph in Fig. 2.2.
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node x in the elimination tree, the ordering obtained from an elimination tree rotation
(actually a composite of basic rotations) at x will maintain the relative ordering of
the nodes that are not ancestors of x. But the ancestors nodes of x will be reordered
such that the nodes in Adj(V[x])U {x} are numbered last.

The overall effect of such a reordering will retain the structure of subtrees outside
the ancestor set of x. Moreover, the nodes in Adj(T[x])kJ {x} will be "promoted"
up, one of which will form the root of the resulting elimination tree. Since this set
is a clique in the filled graph (by Corollary 3.8), they can be renumbered among
themselves in any order so long as they are labeled last. Picking x to be the last node
will give a tree rooted at x.

The matrix reordering example of Fig. 6.2 is obtained by an elimination tree
rotation of the tree in Fig. 6.1 at the node b. Therefore, the nodes in the clique of
G(F)

Adj(TIb]) U {b} { b, e, j }

are labeled last in the reordering. Of these three nodes, b is selected as the last so
that the resulting elimination tree will be rooted at b. The relative ordering of the
remaining seven nodes is maintained in the new reordering.

Orderings from elimination tree rotations form an important class of equivalent
reorderings in restructuring the tree. The criterion on the tree structure for the best
equivalent reordering depends on the application. For example, having a balanced
(or unbalanced) tree structure may be a desirable criterion. Another one would be to
reduce the height of the elimination tree. Some applications will be discussed in later
sections. For more details on elimination tree rotations, the reader is referred to [43]
and [46].

7. Elimination trees in sparse storage schemes.

7.1. Relative row-index scheme for Cholesky factors. The most commonly
used storage scheme for sparse Cholesky factors is the one proposed by Sherman [56].
His compressed column storage scheme stores the nonzeros in the Cholesky factor
column by column. The subscript information is provided in an auxiliary vector in a
compressed form by taking advantage of columns whose initial row subscripts are final
subsequences of those in the previous column. The scheme maintains absolute row
index information for the column structures. The relevance of this storage scheme in
sparse factorization is also addressed in [15] and [54].
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In [55], Schreiber suggests the use of relative row indices to store the structural
information for columns of the Cholesky factor. The possible advantages, as pointed
out by Schreiber, are: improved efficiency in performing column updates, better uti-
lization of vectorized machines, reduced overhead storage requirement (by packing
more relative row indices into a word). One important use of relative indices is in
some implementations of the multifrontM method [2].

We now provide the basis for his scheme using the terminology established in this
paper. As before, let A be a given sparse symmetric positive-definite matrix initially
ordered by some fill-reducing ordering. Let T(A) be the corresponding elimination
tree.

THEOREM 7.1. Let Xp be the parent of the node xj in the elimination tree. Then
Adj(T[xj]) C_ Adj(T[xp]) [J {Xp}

Proof. The result follows from the fact that T[xj] C_ T[xp].
By Theorem 3.7, the set Adj(T[xj])(J {xj} provides the structure of column j

of the Cholesky factor. Theorem 7.1 implies that the structure of column j without
the diagonal element is contained in the column structure of p. (Note that in matrix
terms, p is the row subscript of the first off-diagonal nonzero in column j of the factor
L.) The relative row-index scheme of Schreiber makes use of this observation. For
an off-diagonal nonzero lij in column j, it follows from Theorem 7.1 that ip is also
nonzero. Instead of storing the absolute row index for the nonzero/ij, Schreiber
suggests storing the relative location of the corresponding entry ip in the structure
of column p.

Let us use the matrix example in Fig. 2.1 to illustrate Schreiber’s scheme. Using
the given ordering, we consider column j 2 or node b. The parent of b in the
elimination tree is the node e so that p 5. The structure of column 2 is given by

2, 5, 10,

while that of column 5 is

5, 9, 10.

These absolute row subscripts will be stored in a compressed form by Sherman’s
storage scheme. However, in Schreiber’s relative row-index scheme, the structure of
column 2 is maintained implicitly by the following sequence of relative indices:

-, 1, 3,

since the absolute indices of 5 and 10 appear in locations 1 and 3 of column p 5. It
is important to realize that the structure of the parent column p will also be stored
in the relative row-index form.

Schreiber [55] provides a complete set of numerical Cholesky factorization and for-
ward/backward substitution algorithms using this relative row-index storage scheme.
He employs the fact that all column modifications of column j in the Cholesky fac-
torization are from columns k < j, where xk T[xj], the row subtree of xj (see
Proposition 9.1 in 9). Moreover, the actual numerical values from such a column k
can be passed onto column j through the columns associated with nodes on the path
from xk to xj in the elimination tree. Therefore, the relative row indices are sufficient
to accumulate contributions to column j. The reader is referred to [55] for details.

7.2. Compact row scheme for Cholesky factors. The compressed column
storage scheme by Sherman is especially suited for the column-Cholesky factorization
algorithm. Moreover, the compressed subscript approach is demonstrated to be very
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effective in reducing the amount of overhead storage for the structure of the Cholesky
factor. The amount of subscript overhead used is problem dependent.

In [36], Liu proposes an alternative row storage scheme, and the integer overhead
for subscripts is shown to be no more than the number of nonzeros in the original
matrix A. The scheme is based on the result on the row structure of the Cholesky
factor established in 3.2. Since the structure of row of the factor is given by the
ith row subtree (see, for example, Fig. 3.1), it is sufficient to store the leaves of the
row subtree. But each such leaf corresponds to one nonzero entry in the original
matrix (by Theorem 3.5). This implies that for row i, its row subtree structure can
be represented by no more than the number of nonzeros in row of the matrix A.

In this row storage scheme, whenever the structure of row is needed, its entire
set of subscripts will be generated from the row subtree. This is accomplished by a
postorder tree traversal of the subtree. But in order to obtain the set of (column)
subscripts for the row in ascending sequence, we perform an equivalent reordering of
the matrix using a postordering (as described in 6.1). Subsequent postorder traversal
of any subtree will always produce subscripts in ascending order. It is instructive to
note that this observation is not applicable to the row subtrees in Fig. 3.1, since the
ordering used is not a postordering of the elimination tree (see Fig. 2.2). However, it
works for the reordering used in Fig. 6.1. For more details of the row storage scheme,
the reader is referred to the paper [36].

Bank and Smith [4] propose a row scheme, which is quite similar to the one
described in [36]. The techniques of postorder reordering and elimination tree com-
putation are also applicable to their scheme.

7.3. Data structures for sparse QR and LU factors. In [27], George and Ng
describe a novel implementation of sparse Gaussian elimination with partial pivoting.
For a given sparse matrix M (not necessarily symmetric), their scheme determines
from the structure ofM a static data structure that will accommodate nonzeros in the
factor matrices for all possible partial pivoting sequences. Their static data structure
consists of two parts: one for the lower triangular factor and the other for the upper.

Define the symmetric matrix A MTM. The static structure for the upper trian-
gular factor of M is given by the Cholesky factor of the symmetric matrix A. Indeed,
for any permutation P, if the row-permuted matrix PM is decomposed by Gaussian
elimination into LU, George and Ng show that the structure of U is contained in that
of the Cholesky factor of A MTM.

As for the lower triangular part, it turns out that its structure can be determined
in terms of the elimination tree T(A) of the matrix product A. It is shown in [26] that
each row structure of the lower triangular factor is contained in the structure given
by a chain of tree edges in the elimination tree T(A), that is, a sequence of nodes
with subscripts

i, i2 PARENT[i] ,..., it PARENT[it_].

This not only saves overhead storage in implementing the static data structure, but
also reduces the factorization time. It is beyond the scope of this paper to consider the
details. The reader is referred to [26]. It should be pointed out that the same static
data structure is also useful in the sparse orthogonal decomposition of the matrix M.

8. Elimination trees in symbolic factorization.

8.1. Symbolic factorization of A by columns. Efficient algorithms have been
devised to perform the symbolic factorization of a given large sparse symmetric matrix
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A. In the literature, symbolic factorization refers to the determination of the column
structures of the Cholesky factor L of A. Rose, Tarjan, and Lueker [53] provide an
algorithm (called "FILL_IN") for this purpose. In [21], George and Liu describe a sim-
ilar symbolic factorization scheme, the output of which is tailored for the compressed
column storage scheme of Sherman.

In this section, we relate the basic algorithm for symbolic factorization in [21] and
[53] to the structure of an elimination tree. Indeed, both approaches are based on the
following result, which can be regarded as an extension of Theorem 7.1.

THEOREM 8.1. For any node xj in the elimination tree, Adj(T[xj]) is given by

(Adj(x)-{x,..., x_}) U {Adj(T[xs])-{x} xs isachildof x }.

Proof. By definition of T[xj], we have

adj(xj)- { xl,..’, xj_ } C_ Adj(T[xjl

By Theorem 7.1, for each child node xs of xj,

Adj(T[xs]) {xj} C_ Adj(T[xj]).

On combining the two, we therefore have shown that the given set is contained in
Adj(T[xj]).

On the other hand, consider any xi E Adj(T[xj]). From Proposition 2.1, note
that xi cannot be one of {x,..., xj}. By Theorem 3.7, {xi, xj} is an edge in the
filled graph of A. By Theorem 3.5, there exists a node xk such that the node xj is an
ancestor of xk and {xk,x} is an edge in G(A). If x x, then clearly x Adj(x).
Otherwise, let xs be the child node of xj, which is also an ancestor of xk. Then by
Theorem 3.5, {x,xs} is also an edge in the filled graph. Therefore, by Theorem 3.7,
xi e Adj(T[xs]). In other words, in both cases, xi must also belong to the given set.
This completes the proof. [:l

Theorem 8.1 provides the basis for the formulation of an efficient symbolic factor-
ization algorithm to compute the column structure {Adj(T[xj])}. Such formulation
requires the structure of the elimination tree T(A). However, since the parent of the
node xj (j < n) in the elimination tree can be obtained readily from Adj(T[xj]), a
predetermination of the elimination tree structure is not necessary. We can therefore
formulate the following symbolic factorization algorithm.

Algorithm 8.1. Symbolic Factorization by Columns.

forj:=lton do
begin

Adj(T[x ]) :=Adj(x) { x xj_ }
for xs in the children list of xj do

Adj(T[x ]):= Adj(T[xj ]) U Adj(T[xs ]) {x}
if Adj(T[xj ]) q} then
begin
p:= min { xi e Adj(T[xj ]) };
add xj to the children list of Xp

end
end.

Algorithm 8.1 uses implicitly the fact that x,..., xn is a topological ordering
of the elimination tree T(A). Indeed, when the structure of column j is determined,
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we assume that the column structures of its children nodes have all been computed.
This is always the case if we compute the column structures in increasing order of the
subscript j (from Proposition 2.1).

In terms of the actual implementation of the children lists, we need to use only
one extra integer n-vector CLIST[,]. It can be arranged so that at the beginning of
step j, the list of children nodes of the node xj in the elimination tree is given by the
sequence

CLIST[j], CLIST[CLIST[j]],...

The space for this list can be reused for children lists of subsequent nodes. In other
words, at step j, CLIST stores the complete children list for the node xj and partial
children lists for nodes xi, with > j. This makes it possible to represent the n
children lists during the course of the algorithm using only an n-vector. The symbolic
factorization routine in SPARSPAK [22] uses this observation.

8.2. Symbolic factorization of A by rows. In an unpublished manuscript
[60], Whitten describes a symbolic factorization algorithm that will determine the
structure of the Cholesky factor L by rows. The algorithm can be viewed as using the
row structure characterization of L in terms of row subtrees of the elimination tree
(Theorem 3.5). For each row of L, we traverse the row subtree Tr [xi] as in Algorithm
3.1 for computing the number of nonzeros in L. The nodes visited are collected to
form the ith row structure of L. A detailed description of this approach is given by
Tarjan and Yannakakis [59].

An interesting feature of this algorithm is its potential for parallelism. Assume
that the parent vector of the elimination tree has been precomputed. Then the struc-
tures of all n rows can be computed totally independent of each other. Zmijewski and
Gilbert [62] use this observation to design a parallel symbolic factorization scheme for
message-passing multiprocessors.

8.3. Symbolic factorization of A MTM using M. In the sparse orthogonal
factorization of a matrix M [20], [38] or the static storage approach of sparse partial
pivoting [27] of a square matrix M, it is necessary to compute the structure of the
Cholesky factor of the symmetric matrix MTM. One obvious approach is to construct
explicitly the structure of A MTM and apply the symmetric symbolic factorization
algorithm to A.

In [28], George and Ng provide an efficient algorithm to perform the symbolic fac-
torization of MTM using the structure of the matrix M. This removes the redundant
step of determining the structure of MTM. Although their algorithm description does
not involve elimination trees, their scheme can also be formulated nicely in terms of
such trees. Here, we provide this alternative formulation.

To use the symbolic factorization of Algorithm 8.1 for the structure of the matrix
A MTM, we need to know the adjacent set of each node xj in G(A). But this is
related to the structure of M by the next result.

PROPOSITION 8.2.
Adjo(A)(Xj) {xi xj mrj 6 O, mri 0 for some row r}. D

In words, the structure of row/column j of A is given by the union of all the row
structures Mr, of M where mrj is nonzero. A direct application of Algorithm 8.1 to
AdjG(A)(Xj) will determine the symbolic factorization of A MTM. But forming
the entire structures of Adjc(A)(Xj) (for j 1,..., n) from M could be expensive.
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In what follows, we shall show that for the purpose of performing the symbolic
factorization of MTM, we only need to form part of AdjG(A)(Xj). Define

FAdjc(A)(Xj) {xi xj mr1 mr,j-1 0, mrj O, mri 0 for some row r}.

To simplify our notation, we shall use Adj(xj) and FAdj(xj) to refer to Adjc(A)(Xj)
and FAdjG(A)(Xj), where A MTM. It follows from the definition that

FAdj(xj) C_ Adj(xj).

However, the next theorem says that as far as adapting Algorithm 8.1 to the sym-
bolic factorization of MTM is concerned, it is sufficient to use {FAdj(xj)} instead of
{Adj(xy)}.

THEOREM 8.3. For any node xj in the elimination tree of T(MTM), Adj(T[xj])
is given by

FAdj(xj) [J { Adj(T[xs])- {xj} x8 is a child of xj }.

Proof. It follows from Theorem 8.1 that it is sufficient to show that

Adj(xj) {x,...,xj_} c_ FAdj(xj) U {Adj(T[xs]) {xj} x is a child of xj).

Consider xi E Adj(xj)with > j. If xi FAdj(xj), there is nothing to prove.
Otherwise, by Proposition 8.2, there exists a row r of M and a subscript k < j such
that

mrk O, mrj 0, mri O.

This implies that ajk, aik, and aij are nonzeros. By Theorem 3.1 on the elimination
tree of A MTM, the node xi is an ancestor of xj, which in turn is an ancestor
of Xk. Let xs be the child of xj, which is also an ancestor of xk. Since aik 0, by
Theorem 3.5, i 0. By Theorem 3.7, xi e Adj(T[x]) {xj}. D

The following algorithm performs the symbolic factorization scheme using the
structure of M. Its correctness follows from Theorem 8.3.

Algorithm 8.2. Symbolic Factorization of A MTM.
for j:= 1ton do
begin

Adj(T[xj ]):=
for each row r of M with first nonzero in location j do

Adj(T[xj ]):= Adj(T[xj ]) t2 {xi xj mri O}
for x8 in the children list of xj do

Adj(T[xj ]):= Adj(T[xj ]) U Adj(T[xs ]) {xj}
if Adj(T[xj ]) then
begin
p:=min ( xi e Adj(T[xj ]) )
add xj to the children list of Xp

end
end.

Note that Algorithm 8.2 is essentially the same as Algorithm 8.1. The only dif-
ference is the use of the for-loop to initialize the structure of the factor column to
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FAdj(xj) instead of Adj(xj) as in Algorithm 8.1. This formulation connects the algo-
rithm by George and Ng [28] with the elimination tree structure and the original sym-
metric symbolic factorization scheme. The use of an extra integer vector CLIST[,]
to keep track of the children nodes during the algorithm can also be adapted from
Algorithm 8.1.

9. Elimination trees in numerical factorization.

9.1. Sparse column-Cholesky factorization. Most implementations of sparse
Cholesky factorization use some variants of the column-Cholesky scheme, whereby the
sparse Cholesky factor is computed and accessed by columns. They include the Har-
well MAxx series of routines for sparse solvers, the Waterloo SPARSPAK [24], and
the Yale sparse matrix package [12]. Specifically, we can express the column scheme
algorithmically as follows:

fori’- 1 ton do
begin

tn ani

1

end

In this formulation, the temporary vector (ti,..’, tn)T is used here only for clarity.
Its storage can overlap with that of (iii,’", ini)T. This formulation is applicable to
both dense and sparse matrices. In the sparse case, contributions to column come
from those preceding columns of L with nonzero iik. These are given precisely by
the row structure of Li., which is shown to be a subtree in the elimination tree.
Recall from 3 that Tr[x] is the row subtree, and it is a pruned subtree of T[xi]
rooted at the node xi. Although the elimination tree has no direct role in the sparse
column-Cholesky approach, it does offer the numerical dependencies on columns of
the Cholesky factor. The column dependency in Proposition 2.2 can be justified as
follows.

PROPOSITION 9.1. The column L,i can be computed using A,i and those columns
L,k, where xk e Tr[x]. [3

9.2. The multifrontal method for symmetric systems.

9.2.1. Frontal matrices and the elimination tree. The multifrontal method
by Duff and Reid [10] is an important advance in direct solution of sparse systems. To
factor a given large sparse matrix, the method uses a novel way of reorganizing the
computation so that the entire sparse Cholesky factorization is performed through
the partial factorization of a sequence of dense and smaller submatrices. The reorga-
nization is based on the structure of the elimination tree (Duff and Reid use a slight
variant, called an assembly tree). As before, let xl,x2,..., x, be the ordering of the
nodes in the graph G(A). Recall that the node xj corresponds to the jth row/column
of the matrix A.

In the multifrontal method, each node xj is associated with a frontal matrix Fj,
which is dense and much smaller. The size of the frontal matrix Fj is given by the
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number of nonzeros in column j of L

(L,j) Adj(T[xj]) U {x} I;

and its first row/column corresponds to the node xj. Once fully formed, the first

row/column in Fj can be eliminated from this matrix. Let Fj denote the remaining
frontal matrix after the elimination of xj from Fj. We now describe the relation
among these frontal matrices {/j } and {Fj } using the structure of the elimination
tree.

For a given row/column j, consider the matrix B obtained by first removing all
the rows and columns of A except those in T[xj] U Adj(T[xj]), and then zeroing out
all the entries except those in the rows and columns of T[xj]. For example, consider
the matrix and elimination tree of Fig. 6.1. For node c x4, the corresponding B
matrix is given by

a

0 0
0 0

Note that the last two rows/columns correspond to the nodes g and h. Here, we use
"0" to emphasize that zero value is assigned to the location under consideration. We
provide the following observations without proof.

PROPOSITION 9.2. The frontal matrix j is the same as the remaining matrix

after the rows/columns of T[xj] {xj} have been eliminated from B. D
PROPOSITION 9.3. The matrix Fj is the same as the remaining matrix after the

rows/columns of T[xj] have been eliminated from B.
From Proposition 9.3, the matrix Fj contains updates from the elimination of

columns associated with T[xj]. Moreover, these observations imply that the frontal
matrix/j can be assembled (or formed) using column A,j of the given matrix and
the remaining frontal matrices {F8 } of its children nodes (if any) in the elimination
tree. The algorithmic form of the multifrontal method can then be described in terms
of the elimination tree as follows.

Algorithm 9.1. Multifrontal Method.

forj’= 1 ton do
begin

allocate space for the frontal matrix/
for each child xs of xj in the elimination tree T(A) do

assemble the remaining frontal matrix Fs into Fj
assemble column A, j into Fj
perform one step of Cholesky factorization on Fj to give L, j and Fj

end.

The assembly of the remaining frontal matrix Fs or column A,j into/j is per-
formed by simply adding nonzero entries from Fs or A,j into appropriate locations of
/. Note that the first row/column of the frontal matrix/j corresponds to the node
xj, whose elimination from Fj_gives the nonzero entries of L,j. Therefore, the first
column of the frontal matrix Fj is (logically) full. This implies that the remaining
submatrix Fj is also full. This is perhaps the main characteristic of the multifrontal
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method, which allows sparse factorization be performed via a sequence of full subma-
trices.

The multifrontal method was originally developed for the direct solution of sym-
metric indefinite sparse linear systems [10]. But it is already clear from this paper of
Duff and Reid that the scheme can be used for sparse Cholesky factorization. In [51],
Reid adapts this method in his TREESOLVE package, an out-of-core factorization
scheme for large, sparse finite-element systems. Duff and Reid [9] demonstrate that
the multifrontal method is especially effective on vector machines, such as the CRAY.
Recently, Liu [41] showed that the method even has significant advantage over con-
ventional sparse Cholesky schemes on virtual memory paging systems. The readers
are referred to [2] and [3] for more recent development of the multifrontal method.

The role of the elimination tree in the multifrontal method should be clear from
Algorithm 9.1. It provides the assembly connection among the frontal matrices. In-
deed, each tree edge in the elimination tree corresponds to one assembly operation of
some F8 into its parent’s frontal matrix.

9.2.2. Matrix reordering for the multifrontal method. Implicitly assumed
in Algorithm 9.1 is that in the assembly of the frontal matrix /j, the remaining
frontal matrices (F8 } of its children nodes are readily available. In other words, after
performing one step of Cholesky factorization on Fj, we need to store the remaining
submatrix Fj for the assembly of its parent’s frontal matrix. To reduce the amount
of such storage, it is important to use Fj as early as possible to release its storage
space for subsequent remaining frontal submatrices. This can be achieved by using a
postordering of the elimination tree T(A) of the matrix A. With a postordering, the
logistics can be handled nicely by the use of a stack of remaining frontal matrices,
as suggested by Duff and Reid [10]. Each F8 when required is always at the top of
the stack. On the other hand, when Fj is formed, it is simply pushed into this stack.
This stack of full triangular matrices (each Fj is symmetric) represents the working
storage overhead for the implementation of the multifrontal method.

In [39], Liu provides an analysis of this working storage requirement in terms of
the elimination tree structure. Based on the analysis, it is observed that the way in
which children nodes are arranged can also affect the amount of working storage. But
the reordering obtained from a rearrangement of children nodes still corresponds to
a topological ordering of the elimination tree. By Theorem 6.1, it is an equivalent
reordering (that is, it preserves the filled graph). Therefore, we are free to rearrange
children nodes in the elimination tree.

Liu [39] shows that an optimal child sequence can be obtained by arranging the
children nodes in descending order of some easily computed quantities. Significant
reduction in working storage is achieved with a small investment in reordering time.
This technique is recommended for any implementation of the multifrontal method.

This storage reduction technique uses a reordering that preserves not only the
filled graph, but also the elimination tree. If we remove the restriction on preserving
the elimination tree, further working storage reduction is possible. In [43], Liu applies
reorderings that restructure the elimination tree (as discussed in 6.3) to achieve more
saving in this working storage overhead. The technique used will obtain an equivalent
reordering (preserving the filled graph), that will give an "unbalanced" elimination
tree. For the justification of this, we refer the reader to the paper. For an illustration,
we note that the reordering given in Fig. 6.2 is a more desirable ordering than the
one in Fig. 6.1 in terms of working storage requirement.
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9.3. Minimal storage sparse elimination algorithm. In reference [14],
Eisenstat, Schultz, and Sherman propose an interesting variant of sparse Gaussian
elimination for machines with limited core storage (without the use of auxiliary stor-
age). The method trades an increase in computation for a decrease in storage by
recomputing rather than saving most nonzeros in the triangular factor matrix. They
have appropriately called it the minimal storage sparse elimination algorithm.

Central to their algorithm is a structure called the element merge tree. The tree
structure can be interpreted as a variant of the elimination tree. We shall describe
this minimal storage algorithm in terms of the elimination tree. Let A be the given
n-by-n sparse symmetric positive-definite matrix and let T(A) be its elimination tree.
We assume that the ordering for A is already a postordering on the elimination tree
T(A).

Let xj be the last node that has two or more children nodes. To simplify the
exposition, we assume that xj has two children nodes, one of them must be xj-1 (a
property of a postordering). Let Xk be the other child. Pictorially, we can view that
tree as follows"

The crucial observation in the scheme by Eisenstat, Schultz, and Sherman is that if
solutions to the variables {x,..., x,} are known, the problem can be reduced into
two smaller independent systems, one involving variables in the subtree T[x] and the
other T[xj_ 1].

In matrix terms, we note that the given linear system can be partitioned as follows"

0 Av ET v bv
E Ev Aw w bw

where the solution vector x is partitioned into three parts u, v, and w. The subvector
u corresponds to unknowns xl,..., x in the subtree T[x], v to x+1,..., xj_ in
T[xj_l], and w to xj,..., Xn. The matrix A and right-hand vector b are partitioned
accordingly. The zero block submatrix in A follows from the fact that the two subtrees
T[xt:] and T[xj-x] are disjoint and Corollary 3.2. It is easy to see that if the solution
w is known, the linear system is reduced to two smaller subsystems:

Au b-ETw, A.v b.-ETw.

The elimination trees for the submatrices Au and Av are given by the subtrees T[xk]
and T[xj_], respectively. The scheme can then be interpreted in terms of the elimi-
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nation tree as a removal of the nodes {xj,..., x} from the elimination tree T(A) to
yield two trees for the independent subsystems:

Note that these two subsystems can be solved by applying the same approach re-
cursively. The objective then becomes the determination of the variables {xj,..., xn}
in w with limited core storage. The scheme by Eisenstat, Schultz, and Sherman can
be best described using frontal matrices as described in 9.1. Indeed, [14] is perhaps
the first paper that uses the multifrontal principle. We describe their overall scheme
as follows.

Step 1. Determine the remaining frontal matrix Fk by eliminating nodes in the
subtree T[xk].

Step 2. Determine the remaining frontal matrix Fj-1 by eliminating nodes in the
subtree T[xj_ 1].

Step 3. Subtract Fk and Fj-1 from appropriate entries in A to give the modified
submatrix A. Let b be correspondingly modified to become b. Then solve
the linear subsystem Aw b.

Step 4. Solve Auu bu ETu w, and Avv bv Ev
The important point here is that during the formation of the frontal matrices Fk

and Fj-1, the columns of L are discarded as they are computed. This saves storage
for the factor matrix; and in exchange, part of columns of L have to be recomputed
when solving for the unknowns in u and v.

9.4. Row merging scheme for orthogonal decomposition. In [38], Liu in-
troduces the notion of a row merge tree for sparse orthogonal decomposition by Givens
rotations. In that paper, the connection between a row merge tree and an elimination
tree is addressed, and the relation of row merging for sparse QR factorization with
the multifrontal method for sparse Cholesky factorization is also briefly mentioned.
Here, we give a more detailed account of the relation among elimination tree, row
merging, and the multifrontal method.

Let M be an m-by-n large sparse matrix with full column rank. The problem is
to determine the triangular factor R in the orthogonal decomposition of M into

0),
where Q is an m-by-m orthogonal matrix. It is well known that the factor R is
mathematically equivalent to the Cholesky factor of the symmetric matrix .4 MM.

Assume that the columns of M have been prearranged by some fill-reducing or-
dering on A MrM (as suggested by George and Heath [20]). Let T(A) be the
elimination tree of A. The general row merging scheme [a8] will organize computa-
tion for the sparse orthogonal decomposition using the structure of the elimination
tree. The way computation is organized is similar to the multifrontal method for
sparse Cholesky factorization. Indeed, it is appropriate to view the general row merg-
ing scheme as one that performs the multifrontal method on A MTM without ever
forming A. Instead, the given matrix M is used.
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In the multifrontal method (Algorithm 9.1), each node xj is associated with a
frontal matrix/j, and a logically full submatrix Fj. At step j, the numerical compu-
tation consists of the formation of the frontal matrix/0j through assembly, and the
elimination of a variable from this frontal matrix to give F.

In the case of the general row merging scheme for the given matrix M, the com-
putation associated with each node xj of the elimination tree T(MTM) is a merging
process involving a set of full upper trapezoidal submatrices together with some orig-
inal rows of the matrix M. The original rows from M are those with the first nonzero
in location j; while each child node of xj will contribute one such upper trapezoidal
submatrix to the merging operation. The merging operation uses a sequence of Givens
rotations to reduce the set of upper trapezoidal submatrices and selected rows from
M, to form another full upper trapezoidal submatrix, part of which will in turn be
passed to the parent node of

Let us denote by Zj the full upper trapezoidal submatrix for node xj and by Zj
the remaining submatrix after the removal of the first row from 2j. We state without
proof the following observations on Zj and Zj.

PROPOSITION 9.4. The size of the submatrix {Zj} is the same as that of

PROPOSITION 9.5. If QR is the orthogonal decomposition of the matrix M, then
the j th row of the upper triangular factor matrix is given by the first row of 2j.

The general row merging scheme can be described in terms of the submatrices
and Zj. Note the similar logic structure as in the multifrontal method of Algorithm
9.1.

Algorithm 9.2. General Row Merging Scheme.

for j:=l ton do
begin

allocate space for the upper trapezoidal submatrix Zj;
for each child xs of xj in the elimination tree T(MT M)

merge the remaining trapezoidal submatrix Zs into

for each row r of M with first nonzero at location j do
merge row Mr into Zj;

remove the first row of Zj to give the jth row of R and Zj;
end.

do

The similarity between Algorithm 9.2 and Algorithm 9.1 is clear. Essentially, the
"assemble" operation is replaced by the "merge" operation. It is also interesting to
point out that Algorithm 9.2 can be viewed simply as an extension of the symbolic
factorization scheme for A MTM in Algorithm 8.2. Logical manipulation of the
structure of M is now replaced by the actual numerical computation involved in
forming rows of the upper triangular factor R. In this paper, we are concerned with
the exposition of the connection between the general row merging scheme and the
elimination tree. For details of the merging scheme, the reader is referred to [23] and

9.5. Factorization of symmetric indefinite systems. In [10], Duff and Reid
introduce the multifrontal method as an efficient scheme to solve sparse symmetric
indefinite systems. Let A be an n-by-n symmetric indefinite matrix. The elimination
tree structure T(A) is still defined. Assume that the ordering on A is already a
postordering on the tree T(A).
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If the matrix A were positive definite, the multifrontal method would form the
frontal matrix j at step j and proceed to eliminate variable xj from this frontal
matrix. However, since A is now indefinite, the variable xj may not be a suitable
numerical pivot in the frontal matrix/j (though it is a good structural pivot). In
such case, Duff and Reid allow the frontal matrix Fj to be extended to include more
rows/columns, thereby enlarging the set of pivot candidates.

As noted by Liu [44], the scheme of Duff and Reid uses the technique of de-
layed elimination. When a node is deemed as unsuitable to be a numerical pivot, its
elimination will be delayed to a later stage. This is different from the conventional
approach for factoring dense indefinite matrices, where advanced elimination is used
to eliminate the suitable node as part of a 22 block pivot [5].

The connection between the elimination tree and delayed elimination is discussed
in [44]. The elimination tree represents a class of ideal elimination sequences in which
no pivoting is performed. With the added stability requirement, we can still use the
elimination tree structure to provide a selection guide for 1 1 and 22 pivots. At
step j, pivots can only be selected from the uneliminated nodes of the subtree T[xj].
If no satisfactory pivots can be found, the scheme will proceed to work on the next
node xj+l. On the other hand, if uneliminated nodes from this subtree are selected as
pivots, the amount of structural damage to the resulting tree will be contained. In this
way, the resulting sequence of stable pivots will form an elimination tree that deviates
as little as possible from the original tree. We shall refer the interested readers to [44]
for more details.

10. Elimination trees in computing environments.

10.1. Factorization on a paging environment. In 6, we consider equivalent
matrix reorderings on a given sparse matrix A using the structure of its elimination
tree T(A). They all preserve the structure of the filled graph of A, and will require
the same amount of storage and computational cost in factoring A. Those based on
topological orderings on the tree T(A) will also preserve the elimination tree structure
as considered in 6.1. There are also some that will restructure the tree, as given by
those from rotations in 6.2.

For a given computing environment, a meaningful question to ask is to find the
"best" equivalent reordering for the factorization of the sparse matrix A. Even find-
ing a "good" equivalent reordering for a particular environment will be of practical
significance. In this section, we consider some conimon computing environments and
offer some suggestions for obtaining "good" reorderings. The recommendations are
based on intuitive understanding of the environment and the factorization process,
and are further substantiated by numerical experiments. Further work is still needed
for theoretical justification of these recommendations. The recent work by Pothen
[49] is on the complexity of finding optimal elimination trees.

We first consider the sparse Cholesky factorization on a virtual memory paging
system. In this environment, it is desirable to have columns of the matrix organized so
as to reduce the amount of paging activity. This obviously depends on the numerical
factorization algorithm used. In [42], Liu considers the conventional sparse column-
Cholesky factorization scheme as discussed in 9.1.

From Proposition 9.1, in the factorization scheme by columns, each column of
the factor matrix is computed by a number of column modifications, governed by
the locations of the nonzeros in its corresponding row. Each row structure is itself a
(pruned) subtree of the elimination tree T(A). Therefore, a reasonable recommenda-
tion is to order nodes in each subtree consecutively, so that columns for each subtree
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will be stored in contiguous memory locations. In this way, columns required for the
computation of L,j will reside relatively close to column j. This tends to improve on
the locality of the factorization scheme.

A postordering on the elimination tree is an appropriate choice. It is demonstrated
that for some practical problems, the amount of CPU time for factorization can differ
by almost 100 percent for two equivalent reorderings [42].

10.2. Out-of-core sparse factorization. In the situation when the storage re-
quirement of the matrix factor L of A exceeds the space available in main memory,
it is necessary to exploit the use of auxiliary storage. The multifrontal method as
described in Algorithm 9.1 lends itself readily to such an environment. After per-
forming one step of Cholesky factorization on the frontal matrix to give L,j and
Fj, the out-of-core version will store the factor column L,j into secondary storage.
This will not affect subsequent steps of the factorization, since this column L, is no
longer necessary. Indeed, contributions from it have already been accumulated in the
remaining frontal matrix Fj.

The amount of primary storage to perform the entire factorization of this out-
of-core multifrontal method is precisely the same as the working storage requirement
for the in-core version. Therefore, the use of tree rotations to give an "unbalanced"
tree structure and the technique of optimal children resequencing on the resulting
elimination tree can also be applied here to reduce the amount of storage for the
out-of-core scheme. The relevance of the elinination tree is clear for this situation.

In [40], Liu proposes an alternative general sparse out-of-core scheme, which is
based on reorganization of the data storage vector during the course of sparse factor-
ization by columns. Column segments of the factor matrix that are no longer needed
will be discarded to make room for new columns. The elimination tree is again a
relevant structure in determining the primary storage requirement. The techniques of
unbalanced tree and optimal children resequencing are also applicable here, although
the formula for storage requirement is slightly different. Interested readers can consult
[40] for the explicit formula.

10.3. Models for parallel factorization. Parallel machines offer a different
computing environment. The use of multiprocessors in the parallel Cholesky fac-
torization of large sparse matrices has attracted the attention of many researchers.
Jess and Kees [34] use the elimination tree structure as a large-grained task model
for sparse factorization. In [37], Liu presents a systematic and unified treatment of
computational task models for parallel sparse factorization. It is shown that the elimi-
nation tree is an appropriate large grained model irrespective of whether computation
is performed by row, by column or by submatrix. The next result follows directly from
Proposition 9.1.

PROPOSITION 10.1. Let T[xi] and T[xj] be two disjoint subtrees of the elimination
tree T(A). The columns L,i and L,j can be computed in parallel with no overlap in
data access.

COROLLARY 10.2. All the leaf nodes in the elimination tree can be eliminated in
parallel.

Nodes that can be eliminated in parallel are called parallel pivots. In this context,
it is desirable to maximize the number of parallel pivots for each step without sacrific-
ing the fill-reducing quality of the ordering. Here, each step refers to the elimination
of a set of parallel pivots. The approach that Jess and Kees [34] take is to consider
equivalent matrix reorderings that will maximize the number of parallel pivots. They
provide an algorithm to determine such an equivalent ordering using the filled graph
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of the matrix. In [47], a linear algorithm is given that achieves the same result. Fur-
thermore, it is shown in [46] that the resulting elimination tree has minimum height
among all trees from the class of equivalent reorderings. Recent works by Lewis and
Peyton [35] and Pothen [50] provide further insight into the algorithm by Jess and
Kees and contain improvement to [47].

Another recent use of elimination tree in the context of parallel factorization is
in the assignment of computational tasks to individual processors in a multiprocessor
environment. For shared memory architectures, Liu [37] shows how the structure of
the elimination tree can be used to schedule computational tasks to the processors.
In the case of local memory systems, it is desirable to assign tasks to processors to
achieve load balancing and to reduce communication traffic between processors. In
[25], George, Liu, and Ng show how an assignment of tasks to processor nodes of a
hypercube architecture can be performed to satisfy these objectives. The key idea
used is to map tasks associated with a subtree of the elimination tree to a subcube of
the hypercube.

Duff [7] considers the parallel version of the multifrontal method. The way in
which elimination can be performed in multiple independent fronts is governed by the
structure of the elimination tree. Other recent works on parallel sparse factorization
that involve the elimination tree include George et al [19], Gilbert and Hafsteinsson
[29], and Zmijewski [61].

11. Other related notions and future research directions. It is quite ev-
ident that the elimination tree is a valuable structure in the study of sparse matrix
factorization. Our exploration of its usage in this paper is by no means exhaustive.
Some useful block partitionings have been defined based on the elimination tree struc-
ture. One of them has been referred to as a supernodal partitioning [2], [3]. In its
simplest form, a supernodal partitioning can be defined as follows. Let Xp be the
parent node of xj in the elimination tree. These two nodes xj and Xp belong to the
same block in the partitioning if

Adj(T[xj]) Adj(T[xp]) U (Xp},

and xj is the only child of Xp. (Note that by Theorem 7.1 the above condition is
equivalent to Adj(T[xj])l= Adj(T[xp])l+l.) The set of nodes in each block is
collectively referred to as a supernode. It can be readily verified that each supernode
defines a clique in the filled graph and they share the same set of adjacent nodes
outside the clique. Furthermore, the nodes of each supernode corresponds to a chain
in the elimination tree. The notion of supernodal partitioning plays a central role in
devising highly efficient multifrontal codes on vector machines [2], [3].

The compressed column storage scheme by Sherman [56] can also be viewed as
using a generalization of this notion of supernodes. If we number the nodes of each
supernode consecutively, each supernode corresponds to a full diagonal block of the
Cholesky factor. Since the columns associated with each supernode have identical
column structures outside the diagonal block, we need to store only one copy of the
column structures for each supernode. The success of Sherman’s compressed column
storage scheme can be attributed mostly to this property of supernodes.

In his thesis [48], Peters considers a different partitioning based on the elimination
tree structure. If Xp is the parent node of xy, these two nodes belong to the same
partition if xj is the only child of Xp. He refers to it as a proper perfect preserving
partition. His motivation is to use the partition to devise a solution method that only
requires full envelope (or profile) solves.
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In this paper, we have not discussed the notion of clique trees [35] defined for
chordal graphs (or filled graphs). A clique tree has a structure closely related to that
of an elimination tree. An application of it to sparse matrix reordering for parallel
elimination can be found in [35].

We have discussed some of the roles of elimination trees in sparse QR and LU
factorizations in 7.3, 8.3, 9.4, and 9.5. The direct solution of unsymmetric sparse
linear systems is a relatively less developed area. With more advances in sparse QR
and LU algorithms for unsymmetric systems in the future, we expect to see more
impact from this tree structure.

The elimination tree structure provides information on data dependency in the
factorization process. It captures the essential ingredient for parallel elimination.
With the explosion in research work on parallel algorithms, this tree will definitely
play a central role in future development. The height of the elimination tree represents
an effective but crude measure for the amount of work in parallel elimination. Finding
practical and more refined criteria in terms of the tree will be a fruitful research area.

Another important research direction is in the characterizations of the best elim-
ination tree structure for a given computational environment, be it on a parallel
architecture, a vector machine, or a virtual memory system. Current recommenda-
tions on desirable structures are mostly based on intuition and experience. A vigorous
approach to provide theoretical justification seems to be an interesting and important
area.
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1. Preliminaries. We denote the space of n n complex matrices by //n and
the subset of hermitian [skew-hermitian] matrices by o/n []. A matrix A
is said to be perhermitian [skew-perhermitian] if and only if aiy a-n-y+ 1,n-i+
[ao --dn-y + 1,n-i+ 1], i, j l, n. We denote the set ofperhermitian [skew-perher-
mitian] matrices by o ]. A matrix A e / is said to be perdiagonal if and
only if aiy 0 whenever + j :/: n + l, i, j 1, n. In particular, we shall use
J (tSi,_y/ to denote the unit perdiagonal matrix that has ’s on the secondary diagonal
(i.e., the diagonal from upper-fight to lower-left) and O’s elsewhere.

Perhermitian matrices are a natural generalization of the real persymmetric matrices
that are discussed by Golub and Van Loan (cf. p. 125 of[10]). Cantoni and Butler [2],
Goldstein 8 ], 9 ], and Lee 17 have investigated the eigenstructure and other properties
of certain proper subsets of gCgn. Real Toeplitz matrices, another subset of n, have
been studied in a wide variety of contexts (cf. 5 ], 7 ], 11 ], 21 ], 22 ], and 23 ]).

In this paper we develop a body of theory for perhermitian and skew-perhermitian
matrices. In particular, we develop some basic results for these matrices, consider their
spectral properties, and characterize linear transformations that leave the set of perher-
mitian matrices invariant.

A companion paper [13] on centrohermitian matrices follows. (A matrix A
is said to be centrohermitian if aiy 6- i+ ,n-y + 1, i, j 1, n.) While in some cases
the theory for centrohermitian matrices parallels the development here, in others it is
strikingly different. The interface between perhermitian and centrohermitian matrices is
also discussed in 13 ].

2. Basic results. In this section we shall enumerate many of the basic facts con-
cerning perhermitian [skew-perhermitian] matrices, beginning with a characterization.

2.1. For A e /gn, the following are equivalent:
(i) A ggt [A
(ii) A JA*J [A=-JA*J]
(iii) JAe [JA
(iv) AJ g/tn AJ -(v) iA -d iA
We observe that if A n gcg], then so are , A *, and A tr. Also, by (ii), a

perhermitian matrix A is seen to be unitarily similar to its conjugate transpose, A*.
Further, by (v), results for skew-perhermitian matrices may be immediately obtained
from those for perhermitian matrices, and conversely.
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2.2. If A, As 6 On ] and c, Cs , then j=s c.iAi ,
t]. It follows that n and are both real vector spaces.

2.3. Letting j,k= 1,...,n, we have that the (n(n-1))/2 matrices
{E9k + En-,+ ,n-9+ }+=<n, the (n(n 1))/2 matrices iEi iE,,_g+ ,,_j.+ }j+_n,
and the n matrices E,,_/ } form a basis for ’gn over . Thus, nis ofdimension
n - as a real vector space. Analogously, the n 2 matrices {Ej.k E,_/,,_j.+ }j+_-<n,
{ iE + iE,,_+ ,,_j+ }+_,,, and { iE,,,_+ form a basis for o’g over .

2.4. IfA is perdiagonal, then AA, AA n.
2.5. If A, B n o’g], then AB o’/gn if and only if AB BA. This

precludes any multiplicative structure (ring or algebra) on g]. Note the
difference from the set ofcentrohermitian matrices which does form an algebra (cf. result
2.5 of [13]).

2.6. IfA ] and B 3t n], then AB if and only if
AB BA.

2.7. If A 6 [] and A is nonsingular, then A- 6 n []. In
conjunction with 2.5 and 2.6, it follows that whenever defined, all integer powers of
perhermitian matrices are perhermitian, and integer powers ofskew-perhermitian matrices
are either perhermitian (even powers) or skew-perhermitian (odd powers).

In general, perhermitian skew-perhermitian matrices are not normal. IfA 3gn

’ is normal, however, then we have AA * 6 3. Since the Moore-Penrose inverse
can be written as A + A *p(AA *) for some polynomial p with real coefficients (cf. p.
526 of [6]), we obtain the following.

2.8. IfA g oCg] is normal, then A + g ].
2.9. IfA ,, then the determinant ofA, det A, is real. IfA e ;, then det A

is real pure imaginary if n is even odd ].
2.10. If A oCgn, then the adjoint of A, adj A 6 g,. If A ;, then

adj A 3g 3] if n is odd [even].
2.11. If A 6 /, then there exist unique P, Q 3g such that A P + iQ. For

this result, P 1/2)(A + JA*J) and Q 1/2i)(A JA *J). Note that this parallels
the Toeplitz (Cartesian) decomposition A H + iK with unique H, K 3g and the
decomposition 2.11 of 13 ].

Our next result relates principal submatrices of a perhermitian or skew-
perhermitian matrix with principal submatrices of its conjugate transpose. Note that
A [p, Ps[ P, Ps denotes the principal submatrix ofA that retains both the rows
and columns indexed by p, ps.

2.12. IfA f], then for s 1, n, we have

A[p, ,PsIP, ,Ps] JA*[n-ps+ 1, ,n-p + ]n-p+ 1, ...,
n-p + ]J

[=-JA*[n-ps+ 1, ,n-p + 11n-p+ 1, ...,
n-p + 1]J].

Taking determinants, we immediately get relationships between the corresponding
minors. In particular, the sum of all principal minors of size s for A 3gn must
be real.

3. Spectral and perspectral results. Since the coefficients of the characteristic poly-
nomial for a matrix are sums of principal minors of the matrix multiplied by +1 (cf.
p. 157 of 16 ), result 2.12 yields the following.
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3.1. IfA on, then the characteristic polynomial ofA has all real coefficients.
3.2. If A n[] has an eigenvalue k of algebraic multiplicity k, then A

must also have ), [-] as an eigenvalue of algebraic multiplicity k.
3.3. IfA ovg, o], then A is similar to a matrix with all elements real [pure

imaginary ].
This follows from Carlson’s Theorem 2 of[3].
3.4. IfA , then all the elementary symmetric functions ofA are real.
3.5. IfA gt is nonsingular and r(AJ) 0, then

if n is even

-(A)
n-1

ifnisodd.
2

This follows from Johnson’s Corollary 3 of[15]; it can alternately be derived from
result 3.17. (Note that r(X) denotes the number of eigenvalues ofX that have positive
real part.)

While many spectral results for o’g, are analogous to those of on, others are not.
For example, the spectrum of any hermitian matrix is a subset of the real line, but there
is no proper subset of the complex plane that contains the spectrum of all perhermitian
matrices. Indeed, given any number z C, the matrix diag (z, Z) is perhermitian with z
as an eigenvalue. Clearly, a similar construction gives matrix examples of any order
greater than 2. Also, while all hermitian matrices are normal, perhermitian matrices may
not even be diagonalizable (e.g., E12

This leads us to seek an alternate "perspectral" theory. Its construction begins by
defining a pereigenvalue X of a matrix A /g to be a zero of det (XJ A). We shall
refer to )kJ A, det ()kJ A), and det (XJ A) 0, as the percharacteristic matrix,
polynomial, and equation of A, respectively, and denote the set of all pereigenvalues of
A as ap(A).

If), is a pereigenvalue ofA, we define a corresponding pereigenvector to be a nonzero
x e C" for which ()kJ- A)x 0. We note that this is equivalent to Ax XJx, yielding
a specialization of the generalized eigenvalue problem Ax XBx (cf. 19 and pp. 251-
265 of 10 ]). Also, since j2 I, we have Ax XJx if and only if JAx Xx, so that
(X, x) is a pereigenvalue, pereigenvector pair of A if and only if it is also an eigen-
value, eigenvector pair of JA. This immediately yields the following results.

3.6. IfA e o o], then %(A = i].
3.7. Pereigenvectors corresponding to distinct pereigenvalues of a matrix are linearly

independent.
3.8. The pereigenvalues ofan upper or lower pertriangular matrix are the secondary

diagonal elements. (A matrix A e g, is said to be upper lower] pertriangular if ajk 0
wheneverj+k>n+ [j+k<n+ 1].)

3.9. Every matrix A //n satisfies the percharacteristic equation of JA, and JA
satisfies the percharacteristic equation ofA. (These results follow directly from the Cayley-
Hamilton theorem.)

Similarity transformations p-lAp are an integral part of matrix spectral theory.
Defining A, B / to be persimilar if and only if there exists a nonsingular P e /, for
which B jp-1JAP yields corresponding perspectral results. Note that A is persimilar
to B via P if and only if JA is similar to JB via P.

3.10. Persimilar matrices share the same percharacteristic polynomial, and hence,
the same perspectrum.
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3.11. A matrix A ///’n is persimilar to a perdiagonal matrix with the pereigenvalues
ofA on the secondary diagonal if and only ifA has n linearly independent pereigenvectors.
In fact, JP-JAP D with D perdiagonal if and only if the columns of P are linearly
independent pereigenvectors of A.

3.12. IfA 6 3gn 3], then A is persimilar to a real [pure imaginary] perdi-
agonal matrix.

We define a perjordan block to be a matrix of the form JB, where B is a Jordan
block. A perjordan form for a matrix is then a block perdiagonal matrix with each sec-
ondary diagonal block being a perjordan block.

3.13. IfA /,, then A is persimilar to a perjordan form with the pereigenvalues
ofA of the secondary diagonal. Note that in fact, A is persimilar to J times the Jordan
form for JA.

Since pereigenvectors ofA have their elements reversed when multiplied by A (i.e.,
A(x... Xn) tr k(Xn’’" Xl)tr), it is natural to extend the concept of quadratic forms as
follows. Given A 6 ///,, the function PA(X) (-k-’" "-;)A(x"" x)tr is said to be a
perquadratic form in {x, x }. This is easily seen to be equivalent to PA(X)
X* JAx; hence, the perquadratic form for A is just the quadratic form for JA.

3.14. The perquadratic form pA(x) is real for all x (2 n if and only ifA 3gn.
A perhermitian matrix A is said to be positive perdefinite [positive persemidefinite]

if and only if the generated perquadratic form PA(X) is positive [nonnegative] for all
nonzero x C". We also define det A[n Ps + 1, n p + l[p, ,ps] to be a
perprincipal minor ofA.

3.15. A matrix A 6 gcgn is positive perdefinite [positive persemidefinite] if and
only if all pereigenvalues ofA are positive [nonnegative].

3.16. A matrix A 3g, is positive perdefinite [positive persemidefinite] if and
only if all perprincipal minors ofA are positive [nonnegative].

3.17. If A is positive perdefinite, then A is diagonalizable with all real ei-
genvalues and the inertia ofA (i.e., the integer triple indicating the number ofeigenvalues
with positive, negative, and zero real part) is given by

InA
n+l n-1
2 2--,0)

if n is even

if n is odd.

This follows from Carlson’s Corollary 3 of[ 3 and the observation that A is positive
perdefinite if and only if JA is positive definite.

Finally, we note that with the natural definitions, results may be obtained for peruni-
tary and pernormal matrices that are analogous to those for unitary and normal matrices.

4. Perhermitian-preserving linear transformations. We now address the problem
of characterizing perhermitian-preserving linear transformations; i.e., linear transfor-
mations on ///, that leave ten invariant. As in [20 ], if ’- is a linear transformation
on /n, then we let ’) /,2 be the matrix representation of- with respect to the
basis of unit matrices { E0 }i,j= 1, ,, c /, ordered antilexicographically; i.e., with respect
to the order defined by (i, j) < (r, s) if and only ifj < s or (j s and < r). Intuitively
this order may be thought of as transforming a matrix A 6 /’n into vec A 6 C "2 by
stacking the columns of A into one big column vector (cf. 14 and 16 ]). We then
have vec (A) (-) vec A.

It is also useful to write T ///n: in the block form T (To.) //(//), where
To=(tOr)6/, (i,j,r,s= 1, ,n). We note that the bijections I’ and on
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g,(/,) used in [20], [1], and [18] can be represented as r(T)s= t}] and
’(T)fs trs (cf. p. 4 of [20]). Intuitively, I’ rearranges the n 2 rows of T into n n
blocks ordered lexicographically, and rearranges the n 2 columns into n n blocks
antilexicographically.

Hermitian-preserving linear transformations have been characterized in the literature
as transformations that can be represented in the form

’.’,9(H) Z doAiHA
i,j=

for some A, As //l, and D (d/) /s, where D is hermitian, (2) diagonal
with real entries, or 3 diagonal with each diagonal entry being 1, 1, or 0 (cf. 12 and
20 ). Similarly, the completely positive linear transformations have been characterized

as transformations of the same general form where D is positive semidefinite, (2)
diagonal with nonnegative entries, or (3) diagonal with each diagonal entry being (cf.
[4] and [20]). It is natural to hope then, that the perhermitian-preserving linear trans-
formations could be characterized as transformations of the same general form where D
is perhermitian, (2) perdiagonal with real entries, or (3) perdiagonal with each sec-
ondary diagonal entry being 1, -1, or 0. This hope, along with other characterizations
analogous to Theorems and 2 of [20] and Theorem 4.1 of[13], is realized in the
following theorem.

THEOREM 4.1. Let - be a linear transformation on tn. Then the following are
equivalent:- is perhermitian-preserving.

(2) " is skew-perhermitian-preserving.
(3) There exist A l, At //[n with JAkJ At-it+, k 1, t) and G

(go) ot for which

"(X) gijAiXA;.
i,j

(4) There exist A At ./Pin with JAkJ At- / k 1, t) and 3’1,

3"t " for which

’(X)-- Z 3"eAt-i+ 1XA?
i=1

(5) There exist A,, At [n with JAJ At- k +, (k 1, t) and 3",,

3"t {- 1, 1, 0 } for which

"(X)-- 3"imt-i+lXA.
i=1

-n-r+ l,n-s+(6) ts tn i+,,n-j+ (i,j, r, S 1,’’’, n) where (-) ((ts)).
(7) I’( (" ) is perhermitian.
8 ((-) is perhermitian.

(9) 2((’)) I’(()tr)) is perhermitian.
(10) 0((-)) ((-)tr)) is perhermitian.
11 The block matrix (-" (Eo)) is perhermitian.

(12) - * is perhermitian-preserving.
Proof. Result 2.1 (v) immediately gives (2). For 3 ), suppose that

is perhermitian-preserving and define the transformation o:n -’ /’n by (X) JX.
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Since X is perhermitian if and only if JX is hermitian (cf. Result 2.1 (iii)), we have that- must equal the composite oo’.,zo for some hermitian-preserving transformation
,u,z where A, As "///[n and D 6 gCgs. If we now let 2s, define Ak JAr-/ J
(k s + 1, ..., t) and define G e /gt to have the 2 2 block structure

G=
JD 0

then we have that G t, gt-+ ,j dj (k 1, s) and

"(X)=J NijAiJXA?
i,j=

gt-i+l,jJAiJXA7
i,j=

., gijJA + JXA[
i=s+lj=l

2 giAiXA?
i,j

where the last equality makes use ofthe zero blocks in G and the fact thatA JAt-+ J
(k= s+ 1, ,t).

Conversely ((3) )), suppose that - has the form indicated in (3) and that P
is perhermitian. We then have

J N gijAiPA2 J= 2 o(JAjJ)(JP* J)(JAiJ) *
i,j i,j

gt-j+l,t-i+ 1At-j+ 1PA-i+I
i,j=

, g:APAf"
i,j

so that ’(P) is perhermitian whenever P is; thus, " is perhermitian-preserving.
The equivalences (4) and (5) can be established in a similar fashion.
Using a prooftechnique analogous to Theorem of 12 (viz., by computing"(B)

for each of the basis elements in Result 2.3, and forcing these to be perhermitian), we
get (1) (6).

-n-g / 1,n-/r++ 1 we obtainNoting that (t) is perhermitian if and only if ts tn-s+l,n-
(6) (7) (8). By Lemma of 20 and Theorem of 18 ], we have that I’( Ttr)
xIt(T) tr Q(T) and ( Ttr) I(T)tr t9(T) for all T e ///n(/n). Therefore, since
T is perhermitian if and only if Ttr is perhermitian, we have (7) (10) and (8)
(9). Also, by Lemma 2 of [20] we have that the block matrix (-(Eij)) ((-)),
which gives (8) 11 ).

Finally, since E0 } is an orthonormal basis for /’,, we have that the matrix rep-
resentation ofthe Hilbert adjoint of- is (" * ) (") *, thus yielding 12 ).

We note that (-) being perhermitian is independent of " being perhermitian-
preserving. While this is analogous to the hermitian-preserving transformations, it is in
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stark contrast to the centrohermitian-preserving transformations (cf. Theorem 4.1
of[13]).
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A MATRIX EQUATION APPROACH TO THE DESIGN
OF LOW-ORDER REGULATORS*

L. H. KEEL- AND S. P. BHATTACHARYYA

Abstract. This paper presents an algorithm for stabilizing a linear multivariable system with a controller
of fixed dynamic order. This is an output feedback stabilization problem. An algorithm attempts to solve this
via a sequence of approximate pole assignment problems. The approximation is driven by the optimization of
a performance index consisting of a weighted sum of the condition number of the closed-loop eigenvectors and
the norm of the difference between the computed and actual controls.

The algorithm can be used for generating low-order solutions to the regulator problem. The problem treated
here is useful in design problems that involve parameter optimization and is also important in practical situations
where stabilization is to be accomplished with a fixed number of available parameters.

Key words, regulator, eigenstructure, output feedback, state feedback, stability

AMS(MOS) subject classification. 93D 15

1. Introduction. The regulator or feedback stabilization problem is the basic problem
that control theory attempts to solve. Many design procedures can only be initiated after
a nominal stabilizing controller has been found. However, except for very special cases,
there are no direct procedures available to solve this problem when the controller order
is fixed. Existing solutions to the regulator problem can only generate controllers that
are of high enough order that arbitrary pole placement becomes possible. This includes
the LQG theory ], observed state feedback 2 ], and arbitrary pole placement approaches
3 ], 4 ]. Controllers that are robust with respect to unstructured perturbations evidently

suffer from the same difficulty ofhigh order (see examples given in 5 ]). We also mention
that adaptive control theory is notorious for producing high-order solutions.

It is certainly essential in practice, to have low-order solutions to the stabilization
problem. This requirement arises because the controller must eventually carry out several
functions such as tracking, disturbance rejection, desensitization against parameter vari-
ations, provide good transient response, small steady-state error, prevent various signals
from saturating, etc., in addition to the basic task of stabilization. Many ofthese require-
ments are in conflict with each other in ways that cannot be handled analytically and
the only recourse left to the designer is to iteratively redesign the controller using ad hoc
methods and graphical displays until a satisfactory solution is obtained. This redesign
must be carried out in the parameter space of the stabilizing controller. If the basic
stabilizing controller order is unnecessarily high this parameter space is also of high
dimension and the subsequent design process can become unwieldy. From this prospec-
tive, the high order of controllers produced by "modern" control theory is one of the
severest limitations of this theory.

We attempt to alleviate this problem by presenting, in this paper, a direct algorithm
in the state space domain, for designing low-order stabilizing controllers. This algorithm
first attempts to stabilize the closed-loop system with a fixed-order controller. This cor-
responds to an extended output feedback stabilization problem for which no analytical
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solution is available. We attempt to solve this iteratively. At each iteration a state feedback
matrix assigning a prescribed set of eigenvalues is found and this matrix is approximated
by output feedback. This is done successively by readjusting the desired closed-loop pole
locations in the left half of the complex plane to minimize a performance index that
measures the deviation of the actual eigenvalues from the desired ones. A low-order
solution is found by sequentially increasing the controller order until stabilization is
achieved.

The algorithm that is given depends on the parameterization of the state feedback
pole assignment problem derived in [6]. This is briefly described in the next section. In

3, the fixed-order output feedback stabilization problem is formulated as an optimization
problem and 4 describes how the performance index can be decreased by increasing
the controller order. Examples are given in 5 and some of the gradient evaluations of
4 are derived in the Appendix.

2. The Sylvester equation formulation. An algorithm was introduced in [6] for
solving the pole assignment problem using state feedback. This algorithm consists of
solving for X and then for F

(2.1) AX-X -BG,

(2.2) FX= G

for given (A, B, J) with an arbitrary choice of G. In (2.1) and (2.2) A, X, and J are
n n matrices. From a result in [7] the solution X of (2.1) genetically has full rank if
(A, B) is controllable and (G, ) is observable. Let ,(T) denote the ith eigenvalue
of T and k(T), the spectrum or eigenvalue set of T. It follows that ifX has full rank the
solution F has the property:

(2.3) (A+BF)=().
The advantages of this algorithm are:

(a) The algebraic variety F(A) of matrices F that assign a prescribed set of eigen-
values A can be obtained by setting A ,(A) for a fixed A, and letting thefree parameter
G run through the set of all possible real values.

(b) Efficient numerical procedures [8] are available for the solution of Sylvester’s
equation (2.1).

Based on this parameterization of F(A), algorithms were given [9] and [10] for
optimizing the conditioning of the closed-loop eigenvectors and 11 for minimizing the
norm of the state feedback matrix F. Here, we extend these results by considering mea-
surement rather than state feedback and by treating the problem of stabilization rather
than arbitrary pole placement.

3. Output feedback controllers. Consider the linear time-invariant plant S cascaded
with the pth order feedback compensator C"

(3.1) S’=Ax+Bu, ym=Cx,

(3.2) C:c Acxc + BcYm, u Ccxc + DcYm.
The closed-loop system is

(3.3)
BC A x
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or

(3.4) Xc 0 Op 0 I Bc Ac 0 Ip Xc

.p At, Bp Kp Cp Xp

and the transfer function of the pth-order compensator is

(3.5) C(s) := Cc(sI-Ac)- Bc + Dc.
Formula (3.4) shows that any fixed-order compensator design problem is equivalent

to a static output feedback problem. In particular, the problem of stabilization with a
fixed-order controller p is equivalent to that of stabilizing Ap + BpKpCp by choice of Kp.
The general solution of this problem is unknown. The best available special results are
those of Brasch and Pearson [3] and Kimura [4] that deal, respectively, with arbitrary
eigenvalue assignment and "almost" arbitrary eigenvalue assignment.

Let A denote a symmetric set of n + p complex numbers (i.e., complex numbers
occur in complex conjugate pairs) and let

(3.6) Kp(A): {KplgpR(m+P)(r+P),,(Ap+Bpgpfp)A}
where Ap R(n+p)(n+p), Bp R(n+p)(m+p), and Cp R(r+p)(n+p) are as in (3.4).

The result of Brasch and Pearson [3] states that if (A, B, C) is controllable and
observable with controllability index Uc and observability index o, and p >_- min u, o },
then Kp(A)4: for every choice of A. The result of Kimura [4] states that if
p >_- n m r + then X(Ap -+- BpKpCp) can be made arbitrarily close to any set A
of n / p symmetric complex numbers.

The lower bound on the order of a stabilizing controller established by the above
results is in general too conservative. This stems from the fact that both results essentially
require arbitrary pole placement. In fact for specific choices of A, Kp(A) will "almost
always" be empty unless p, the compensator order, is high. To lower the compensator
order we therefore relax the specification of A in (3.6) to a simply connected region
f c C- and consider the family

(3.7) Kp(ft) KplKpR(m+P)(r+P),X(Ap+ BpKpCp)ftcC-}.
It is reasonable to expect that Kp(ft) will in general be nonempty for values of p

much less than the lower bounds given by the results of Brasch and Pearson or Kimura
and numerical examples support this.

The effective characterization of the family Kp(ft) is an unsolved open problem.
Our approach to this problem will be to consider the state feedback family:

(3.8) Fp(a) {Fpl FpC:R(m+P)(n+P),(Ap+ BpFp)cacC

and determine an Fp
_
Fp(f) and then find Kp such that Fp KpCp is small in the

hope that such a Kp __Kp(ft). The advantage of this approach is that the family __Fp(f)
can be characterized conveniently as shown later. For the remainder of this section we
drop the subscript p for convenience.

In general, even if liE-KCll is small it is not true that X(A + BF) and
X(A + BKC) are close. The latter can be achieved by making the eigenstructure of
A + BF as orthonormal as possible. Let am,x (T) and ffmin (T) denote the largest and
smallest singular values of T. It is well known [8 ], [12] that the perturbation of the
eigenvalues of the diagonalizable matrix (A + BF) for changes in the entries is small if
the condition number k(X) := IlXl[2 ]IX-Ill2 of the eigenvector matrix X is small. Let
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F-KC’= T so that A+BKC=A+BF-BT. Then using the formula in [12]
we have

Xi(A + BKC)- Xj(A + BF) <= BZllzk(X)

(3.9) =< Bl[zll TI[k(X)

--< nil211 F- KCIIFk(X),

which shows that control over the eigenvalue locations ofA + BKC can be obtained only
if both F- KCll and k(X) are kept small. One way of doing this is to minimize

J= a,k(X) + ,211 F- gc[I 2F
(3.10) O.max(X)

a + 0/2 trace { (F- KC) 7"(F_ KC)
O’min (X)

by letting ,(A + BF) range over the region ft c C-. Similarly, by letting A + FDC
A + BKDC a dual problem can be formulated as

(3.11) jD__/10"max (XD)
+/32 trace {(Fz-BKD)r(Fo-BKz)}.

O’min (XD)

The idea of improving the conditioning of the eigenstructure and of minimizing
the norm of F- KC was first introduced in Keel and Bhattacharyya [13 ], [14]. Here
an improved version of this algorithm is presented. In particular, we convert the con-
strained optimization problem to an unconstrained problem and extend the class of
regions f c C- to more general and useful regions. These details are given next.

4. Stabilization algorithm. In the Sylvester equation approach described in 2,

(4.1) AX-XA -BG,

(4.2) FX= a
and let X(A) c 2 C-. Under the assumption ,(A) f3 ,(A) and (A, B) controllable,
(G, A) observable, the unique solution Xwill "almost surely" be nonsingular by deSouza
and Bhattacharyya 7 and then (A + BF) X(A) with F GX-I. By letting X(A)
range over ft this algorithm generates the family ofF(f), by letting G be a free parameter
run through all possible values this formula generates the family __F(f) defined in (3.8).

If A is a complex diagonal matrix in (4.1), it is clear that X in (4.1) is the corre-
sponding complex eigenvector matrix. However we want to treat these matrices as real
for computational convenience. The following Lemma 4.5 shows that A can be taken as
a real matrix without loss of generality. Before we state Lemma 4.3 it is necessary to
introduce some facts.

DEFINITION 4.1. A real square matrix A is called a pseudodiagonal matrix if it is
of the form

0/9/1

(4.3) A 0/2 /2
2 0/2

0/3

with 0/i, /i real.
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DEFINITION 4.2. A complex square matrix is called normal ifA *A AA *.
LEMMA 4.3 15 ]. A complex square matrix is unitary similar to a diagonal complex

matrix ifand only if it is normal.
LEMMA 4.4. Any real pseudodiagonal matrix is normal.
Proof. Taking the ith block from (4.3) such as

(4.4) Ai
i oi.i

we have

(4.5) AiA T (o + t52i O)0 c2i+t =A?Ai.

Thus, each block is normal. Now let

(4.6) A diag (A

(4.7) AA * diag (A1A

(4.8) A *A diag (A *Al
Since AA * A *A, the statement is true.

A2 An),

A2A AnA ),

AA2"" "A *nA,).

LEMMA 4.5. Let (A + BF)X XJ and (A + BF)Y Y/i, where
A, B, , X and F are real matrices with appropriate dimensions.

(2) is real pseudodiagonal, is complex diagonal, and
(3) X and Y are nonsingular. Then,

(4.9) k(X)=k(Y).

Proof. From Definitions 4.1 and 4.2, J is known to be normal and unitary similar
to the complex diagonal matrix . Thus

(4.10) = UflU*.
Write

(4.11) (A + BF)X-X XUU*

so that

4.12 (A + BF)XU XU.
and

(4.13) XU= Y.

Now,

(4.14) YY* XUU*X* XX * XX

From this lemma, minimizing O’ma (X)/ O’min (X) in (3.10) is equivalent to mini-
mizing O’ma (Y)/O’min (Y). Therefore we can henceforth take J as a real pseudodiagonal
matrix without loss of generality. In fact, the condition numbers ofX and Y are equal,
i.e., k(X) k(XU) k(Y). In order to use a gradient-based algorithm the closed-form
expression of the gradient of the performance index (3.10) with respect to the variables
G, Kand the variable elements ofJ denoted i is evaluated. The details ofthis derivation
are given in the Appendix.
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THEOREM 4.6. Given the performance index J in (3.10), and constraints (4.1) and
(4.2), the gradients ofJ with respect to the independent variables G, K, and are as
follows:

(a)

OJ
(4.15) 0- 2 { az(F- KC)X-7+ BTU7

where U satisfies

(4.16)
0"2min (X) O’min (X)l)aUTa O’ma (X)l)iuT} -2a2X-I(Fr-(KC)r)F

where 1)a and Ua are right and left singular vectors corresponding to O’ma (X) and 1) and
ui arefor ffmin (X), respectively.

(b) Let i denote a variable element ofA"

(4.17 0--/= -trace UX

where U satisfies (4.16 ).
(c)

OJ
(4.18 -2a2(F- KC)Cr.

OK

Equations (4.15 )-(4.18 are used to devise a gradient algorithm that iterates on the
free parameters G, K and the entries of to reduce J. At each iteration of the algorithm
we get Ai, Fi, and Ki. Since X(Ai) cft we have ,(A + BFi) 2 for each i. However,
X(A + BKiC) may or may not be in ft for each i, and the algorithm is designed to make
X(A + BKiC) close to ,(i) X(A + BFi) after some iterations.

The following structure of the closed-loop eigenvalue matrix A ensures stability
without constraints during the iterations:

/_2 a2
a2 - d4

d --4 --t

Note that di in the matrix are the only nonzero parameters and furthermore the stability
requirement ,(A) C- can be automatically satisfied without constraints for all real
values of di.

We can also parameterize A in such a way that the desired closed-loop eigenvalue
locations are automatically confined to some useful region ft as in Figs. 4.1 and 4.2.

In choosing A, a maximal number of 2 2 blocks are included in the initial choice.
As the algorithm evolves some ofthe off-diagonal terms may become very small. At that
point we start to vary the corresponding diagonal terms independently. In the damping
ratio region described in Fig. 4.2, 0 is also a free parameter.
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FIG. 4.1. Marginal stability region.

Marginal Stability Region. For this case we can simply modify the matrix A to

(21+) 2
_

_(2, +)
-(+) ,

-a4 -( + 3’)

with i as the real variable parameters and " is fixed. The eigenvalues of are all to the
left of the line Re (s) 3’.

-r

IMAQ

0 REAL

FIG. 4.2. Damping ratio region.
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Damping Ratio Region

-(fi21 + 3, (12 + 3,) tan 4 sin O1
(72 +-) tan 4 sin O -(21 +3’)

Now we discuss what happens when the proposed algorithm fails to find a stabilizing
controller of order i. In this case, we increase the controller order to + 1. It is then
necessary to have a way to select the initial values of Go, Jo, and K0 for the controller
of order + to ensure that the performance index J keeps decreasing. The following
theorem shows the way to select initial variables so that J always decreases with increasing
controller order.

THEOREM 4.7. Let J* be the optimalperformance index with optimal variables G *,
*, and K* where

(4.19) j, =O’ma (X*) -t-IIF*-K*CIIF
00min (Y*)

andX * and F* satisfy

AX* -X’A* -BG*, F* =G*(X*)-.
Then for the extended system

(4.20) Ae Be Ceo I’ o 1 o1

the value of its performance index Je is equal to J* ifthe set ofinitial variables are

(4.21 Ge
0 X33i Ke

0 X33iX1

where 3i is an arbitrary pseudodiagonal matrix ofan extended matrix

and

001

02

00i

for 001 =- 0"2 00i " 0 with 00i >- 00min (X*) and 001 <= O’max (X*).
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Proof. Let the optimal values of J* be obtained by G* and K*; then the extended
system becomes

(4.22)

A
0

*he Xe Xe e Be ae

(AX*-X** AX,

-X2 -X3i

=_(BG*G2 BGI

if we pick Gl 0 and G2 0, then X1 0 and X2 0 and X3; G3. Here we choose

o"

(4.23) X3 r2.
o"

for al >- r2 ->_ >- O" > 0 with ri >= O’min (X*) and rl -< O’max (X*). Such a X3 is
guaranteed by the choice of G3 X3Ai and

(4.24) ffmin (X*) O’min (Xe)

(4.25)

Therefore,

(4.26)

ffmax (X*)-’- tYmax (Xe).

O’ma (X*) O’max (Xe)
O’min (X * O’mi (Xe)"

Now consider the term ]IF* K*CII2F. Since

Xe--
0 X

we have

(4.27)

where

Now

(4.28)

Fe GeX’ ( G*O X3 0

( G*(X*)-IO o)S3iX
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and let

K* K).(4.29) Ke=
K2 K3’

then

G*(X*)--K*C
(4.30) Fe- KeCe

KzC

Here we choose Kl 0 and K2 0. Also, we can choose
-1(4.31 K3 X3,iX

because X3 and Ai are well defined. With such a K we have

(G*(X*)--K*C O)(4.32) Fe-KeCe
0 0

Thus,

(4.33)

Therefore, we conclude

O’ma (X*)
(4.34)

O’mi (X*)

with choices of

F* K*C 2F F KeCe 2F.

+ F* K*C[I F 0"max (xe)
0"min (Xe)

+ Fe- KeCe 2F

(4.35) Ge=
0 X3i

and ge
0 S3iXf

with X3 as in (4.23). This concludes the proof. V1

This theorem is useful for finding a low-order stabilizing controller because it shows
how, by sequentially increasing the order ofthe controller, J can be guaranteed to decrease.
Since a small enough value of each term of J confines the spectrum of A + BKC to f
(in accordance with (3.9)) the algorithm eventually stabilizes the system by sequentially
increasing the order of controllers.

5. Examples. The algorithm developed in the last section is applied to several ex-
amples here. The gradient calculations of Theorem 4.6 are used along with the Harwell
subroutine package.

Example 1. The first example is a simplified model of the NASA F-8 Digital Fly-
By-Wire (DFBW) airplane [16] and its dynamic equation of lateral directional is as
follows:

p -2.6
d -0.075
dt 0.078

1.0

0.25 -38.0 0 p 17.0 7.0
-0.27 4.4 O0 i

0.82-3
-0.99 -0.23 0.05 + 0 0 4 6r
O.078 0 0

P

o o o
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The given design specifications 16 are that the closed-loop poles must be left ofthe line
s -0.2, i.e., 3’ 0.2, and the damping factor is >-0.7, i.e., 4 r/4 in Fig. 4.2. Total
equilibrium velocity Vo 620 ft/s (Mach 0.6) and equilibrium angle for the opti-
mization problem initial values are chosen to be

-3 2
-2 -3

A0 -5 3
-3 -5

(11.50.5-2)Go=
5 -0.25 0.5

0 0

After 41 gradient iterations minimizing J in (3.10) the following zeroth-order sta-
bilizing compensator is obtained:

K, (4.60357 -1.75629).\5.21515 -1.85922

Note that the order of pole placement compensators (both Brasch and Pearson [3] and
Kimura [4]) is one. The corresponding data is shown in Tables 1.1, 1.2, and Fig. 5.1.
For comparison, the same problem was run without including the condition number
term in J (i.e., a 0 in (3.10)). It is seen from the corresponding data, shown in Table

TABLE 1.1
Eigenvalues for Example 1.

(a 1, a2 1, 4 r/4, " >_- 0.7, 3’ -0.1)

Ao Ao + BoKC Ao + BoFg Ao + BoKgCo

-2.39 + j0.00 -2.39 __+ j0.00 -9.45 + j3.70
+0.00 _+ j0.00 +0.00 _+ j 0.00 -0.34 _+ j0.29
-0.34 + j2.62 -0.34 + j2.62

TABLE 1.2
Performance indices.

J liFo KoColIZF k(Xo

Initial 115.9021 61.3301 94.572
Optimal 47.03439 0.06839 46.966

TABLE 1.3
Eigenvaluesfor Example 1.

(al 0, a2 1, q 7r/4, " >= 0.7, 3" 0.1)

Ao Ao + BoK)Co Ao + BoFo Ao + BoKo Co

-2.39 + j0.00 -2.39 j0.00 -2.39 + j0.01 -1.44 + j2.54
+0.00 j0.00 +0.00 j0.00 -2.42 + j0.32 -3.44 __+ j0.00
-0.34

___
j2.62 -0.34 j2.62 -1.15 j0.00
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TABLE 1.4
Performance indices.

J Fo KoCo k(Xo)

Initial 155.9021 61.3301 94.572
Optimal 233089.02 0.01530 233089

1.3, 1.4, and Fig. 5.2, that the condition number increases significantly, and although
stabilization is achieved, the closed-loop eigenvalues fail to be in fl.

Example 2. Consider the symmetric vibration model of the standard Draper/RPL
satellite shown in Fig. 5.3. The dynamic equations, taken from 17] are:

0
ql ql

dtlO/_.A 2

C) EIGENVALUEIt OF A

tl EIGENllILUEII OF A*BF"
r-] EIGENVALUEIt OF A*BK’C

---IT--’-r---T--T--I

-10 -9 -8 -7 -6 -5 -4

5 IMAG

4

-’1

2

--2

--3

--4

0

--5

REAL

FIG. 5.1. Eigenvalue locations corresponding to Table 1.1.
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EIGEN,LUE8 OF A

) EIGENVALUE8 OF A*BF"

[--1 EIGENVALUE8 OF A*BK*C
(C)

(C)

IMAG

3

2

0 REAL
"1

-2

-3

FIG. 5.2. Eigenvalue locations corresponding to Table 1.3.

where

0 0 0 0 0
0 0 0 0 0

10 0 0 0 0
0 14.8732 32.8086 0 0 0
0 -146.702 -7476.64 0 0
0 -41.8468 -2699.36 0 0

0

-0.04168
\ 10.38611
\ 3.725120

0

0.2362
-25.647
-9.1629

o o o)C=
0 0 0

From the design specifications in [17 ], it follows that the closed-loop system must
have poles to the left of s -0.5. For the minimization of J the initial values are chosen
to be

-02.2 2
-0.2

-1 10
-10 -1

-0.5
-1 -O.5



LOW-ORDER REGULATORS 193

central body

FIG. 5.3. Draper/RPL symmetric vibrational model.

1.125 1.5 -0.5 3.5 1.5 2)Go=
_1 2.5 1.6 4 0.5 -1

Ko(0 0

0 0)"
After 67 iterations, the following zeroth-order stabilizing controller is obtained:

K* =( -90.97491

-197.646

20.62868 )5.326668

TABLE 2.1
Eigenvaluesfor Example 2.

(at 1, a2 1, 3’ 0.5)

ho Ao + BoKoC Ao + BoF Ao + BoKo Co

+0.00 __+ j53.1
+0.00 + j5.43
+0.00 j0.00
+0.00 + j0.00

+0.00 j53.1
+0.00 j5.43
+0.00 + j0.00
+0.00 __+ j0.00

-2.89 j36.7
-2.18 j0.30
-0.88 _+ j5.82

-3.58 + j30.7
-2.41 + j0.67
-1.45 + j6.08

TABLE 2.2
Performance indices.

Fo KoCo k(Xo)

Initial
Optimal

11965915
587.2232

11965506
45.63520

409.2925
541.5880
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C EIGENVALUE8 OF A

1 EIGENALUE8 OF A*BF"

[--] EIGENVALUE8 OF A*BK’C

-6 -5 -4 2

IMAG

53.1

36.7

30.7

6.08
l) Ci 5.82

5.43
0.67

..( 0.30
-0.30

-1 -0.67 REAL

C) -5.43
-s.s2
-6.08

-30.7

-36.7

C -3.

FIe;. 5.4. Eigenvalue locations corresponding to Table 2.1.

( EIGENVALUE8 OF A

) EIGENRLUE8 OF A+BF"
I-’] EIGEN=,LUE8 OF A+BK’C

-5 -4 -3 2

IMAQ

7.86

6.19

3.41

c ’s
I-;-1

"-0.05 1.61
I-I

-3.41

-6.19

-7.86

C -s 3.’

1.07

-1.07

178.0 REAL

FIG. 5.5. Eigenvalue locations corresponding to Table 2.3.

Note that the order of pole-placement compensators (both Brasch and Pearson [3] and
Kimua [4 ]) is three. Tables 2.1, 2.2, and Fig. 5.4 display the performance indices and
the corresponding eigenvalue locations. For the purpose ofcomparison, the problem was
also run with the condition number term left out of the performance index (i.e.,
Cl 0). In this case the algorithm fails to stabilize the system as shown in Tables 2.3
and 2.4 and in Fig. 5.5. This example illustrates that both terms of the performance
index need to be considered in the stabilization procedure.
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TABLE 2.3
Eigenvaluesfor Example 2.

(ao 0, az 1, " 0.5)

Ao Ao + BoKoCo Ao + BoF Ao + BoKgCo

+0.00 _+j53.1 +0.00 +j53.1 -0.63 _+j0.05 +178.0 +j0.00
+0.00 + j5.43 +0.00 + j5.43 -0.66 + j3.41 -2.57 +j6.19
+0.00 _+ j0.00 +0.00 + j0.00 -0.59 + j7.86 + 1.61 + j0.00
+0.00 _+ j0.00 +0.00 + j0.00 +0.83 + jl.07

TABLE 2.4
Performance indices.

J liFo gofoll=F k(Xo)

Initial 11965915 11965506 409.2925
Optimal 383859.66 490.5633 383369.1

6. Concluding remarks. The results given here are algorithmic in nature and can
be improved on by developing constructive necessary and sufficient conditions for sta-
bilizability with a fixed-order controller. This in turn will require effective ways of char-
acterizing the Hurwitz region. These problems are difficult and have received very little
attention in the literature. Finally, we mention that the algorithm neither guarantees a
"global" minimum nor does it always find a stabilizing controller of a prescribed order
whenever one exists. The existence of stabilizing controllers of a fixed order is still our
unsolved problem.

Appendix.

Proofof Theorem 4.6.
(a)

O’max(X)
(A1) J= Cel--

O’mi (X)

Let

(A2)

and

(A3)

Note that

(A4)

(A5)

-’[- a2 trace F- KC) T(F_ KC) }.

O’max(X)
O’mi (X)

trace { amax (X)}O’mi (X)

AJ1 trace
a 2mi (X)
--(O’mi (X)Ao’ma (X))-O’ma AO’min(x)}.

Ao’ma (X) blTaAXl)a,

mo’mi (X)= bl TAX l)
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where vi and Ui are left and fight singular vectors corresponding to ffmin and/)a and 1)a

are for O’ma Thus,

(A6) AJl 0"2min (X)
trace O’mi (X)l)iU- O’ma (X)/)aUaT} AX.

Now

(A7)

trace { (F- KC)r(F_ KC) }

trace { FrF (KC)rF- Fr(KC) + (KC) r(KC) }
trace (FrF) 2 trace { (KC)rF} + trace { (KC)r(KC) }

and

(AS)
AJ2 2 trace (FTAF)- 2 trace { (KC)TAF

2 trace { Fr- (KC) r] ZXF }.

Now we have

(A9)
O’2min (X)

trace 0"mi (X)viuT- O’ma (X)VaUTa} mx

+ 2a2 trace { (Fr- (KC) r) AF}.

From F GX-l, the gradient of F with respect to G is given directly as

(A10)

zXF AGX-1 + GA(X-I

AGX-I GX-IAXX-1

AGX-1 FAXX-I

(AG-FAX)X-1.

Substituting (A 10 into (A9), we have

(All)

AJ= 2a2 trace (FT- (KC) T) AGX-I}

Using 7 ], we have

o/1+ trace
0"2min (X)(ffmin (X)viUT- O’max (X)I)aUTa)

2a2X -I (Fr- (KC) r)F} AX.

(A12) AAX- AXA -BAG

and

(A13) AX= ., ")’iA i- 1BAGJ
i=lj=l
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Substituting (A 13 into the second term of (A 11 ), we have

(A14)
AJ.= 2a2 trace {X-I(Fr-(KC)r)AG}

+ trace , 3’ij
j

i=lj=l

.( O’2min (X)
(O’mi (X)l)iUT- O’max (X)l)aUTa 2a2X-I(Fr-(KC)r)F)

xe
Ai-BAG}

2a2 trace X-I(Fr- (KC) r)AG }

+ trace 3"oAj- 1XfAi- IBAG
i=lj=l

u

trace 2azX- (Fr- (KC) r) + UB } AG.

From (A12) and (A13) it follows that U is the unique solution of

(A15) AU- UA XT.
Therefore

OJ
(A16) 0--: 2 az(F-KC)X-r+ BrUr}

where U satisfies

(A17)

AU- UA
ff2min (X) { O’min (X)l)iUf- O’ma (X)l)aUTa}

2a2X -1 (Fr- (KC) r)F.

(b) Now we evaluate the gradients of (3.10) with respect to the variable elements
of.. Recall the equation (A9)

(A18)

AJ= 19/1

ff2min (X)
trace { O’mi (X)1) U-- O’ma (X)l)aUTa} AX

+ 2a2 trace { (Fr- (KC) r)AF}.

From F GX -1, we compute (G is fixed)

(A19)
AF -GX- AXX-1

FAXX -l.
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Substituting AF into (A 18 ), we have

(A20)

AJ= trace (O’min (X)l)iuT- O’max (X)I)aUTa) 2c2X-I(F-(KC) T) AX
ff2min (X)

trace{ XfAX }.
Since

(A21)

(A22)

Substituting (A22) into (A20), we have

AJ=trace{ 3,ijXfAi-l(-Xz)j-l}
i=lj=l

(A23)
-trace "oAj XfA i- 1Xz

i=lj=l

U

It is clear that U is the unique solution of

AU- UA Xu
as in (A14)"

(A24) AJ= -trace { UX& }.

Therefore,

(A25) 0-- -trace UX

As an example the following calculation is considered. Let

(A26)
U21 U22 X21 X22 0

0

Then

(A27) //21 //22 X21 X22 0

4(1 (b/llXl -1- U12X21),

(A28) 02
2 trace

/121 //22 \X21 X22 0 22

4t22(/’/21X12 "- U22X22),
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or

Oll 4(al(b/llXll - b/12X21 ))(A29)

0_ 2(u21x2+u22x22)"

(c) Finally, the gradient of J with respect to K is easily derived:

zXJ= -2c2 trace CFrZXK C(KC) rzXK}
(A30)

-2a2 trace (CFr- C(KC)r)zXK}.
Thus,

OJ
(A31 OK- 2 F-KC] Cr.
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Abstract. Connected graphs with adjacency matrices satisfying the matrix equation A A lJ occur
very often in the study of concurrent computation in computer science. It is shown that there are solutions
even when A has the same row and column sum.

Key words, regular graph, 0-1 matrix, adjacency matrix, concurrent computation, satisfiable, network
topology

AMS(MOS) subject classification. 05C

1. Introduction. Suppose G (V, E) is a connected regular directed graph with
common indegree and outdegree d. Let qn(X, y) be the number of n-paths from vertex
x to vertex y. Suppose there exists an integer M > 0 such that for any n, x, y, z,

(1) Iq,(x,y)-q,(x,z)l <M.

Then G is said to be M-satisfiable.
In the study of concurrent computation, network topologies are usually denoted by

directed graphs. When such a network is put to work, a computation graph ofan algorithm
will be mapped onto the network such that adjacent tasks in the graph are mapped onto
adjacent processors in the network. Moreover, each processor should not receive too
many tasks while some others have a few assignments. When the computation graph is
a complete d-ary tree, the described conditions can be formulated mathematically into
(1). Various studies [1]-[4] and [6]-[10] have been conducted in search of such a
network.

Let A be the adjacency matrix, or simply the matrix, of G. Since G is regular with
the same indegree and outdegree, A has column and row sums all equal to d. It is well
known that the (i, j) entry ofA" is exactly qn( i, j).

Subtract fromA n a suitable multiple of J, the matrix ofall l’s, to obtain a nonnegative
matrix An with at least one zero entry. If G is M-satisfiable, all entries ofAn are less than
2M. So { An is a finite set and there are two matrices Am An, which means

(2) Am-A"=lJ

for some l.
Suppose A satisfies (2). Then { An is a finite set, and there is an M > 0 such that

the entries of each An are between 0 and M- for any n. That is, G is M-satisfiable.
Define G satisfiable if it is M-satisfiable for some M.
THEOREM 1. G is satisfiable ifand only ifA (G) satisfies (2)for some 1.
Clearly any one-vertex graph or complete k-graph is satisfiable. Besides these trivial

cases, is there another satisfiable graph?
A graph G has order p if there are p vertices.
The answer is affirmative for some orders. In this paper we derive the following

theorems. In the coming paper [5], we will show that there are no satisfiable loop-free
graphs for certain orders.

Received by the editors December 7, 1987" accepted for publication (in revised form) March 17, 1989.
"f Department of Mathematics and Computer Science, California State University, Hayward, California

94542 (lll-winken!csuh!ho).

200



SOME 0-1 SOLUTIONS TO MATRIX EQUATION Am A n lJ. 201

THEOREM A. When d 2, p 2"(2 k for n >= 0, k > 0, there exists a satisfiable
graph oforder p.

THEOREM B. When d 2, p 2 n(2 k + )for n >-_ O, k > O, k odd, there exists a
satisfiable graph oforder p.

THEOREM C. When p d"(dk )for n >= O, k > O, there exists a satisfiable graph
oforder p.

2. Existence of satisfiable graphs. Any graph of only one vertex is always satisfiable;
we are interested in nontrivial solutions. Figure shows some satisfiable graphs
for d 2. A careful examination of these examples leads to the following general con-
struction.

THEOREM 2. Ifd 2, there exists a satisfiable graph oforder 2 k for k > O.

Proof. We will construct the graphs.
Start with a complete binary tree of depth k > 0, and order 2 k + 1. Let r be the

root. There are two branches at r. Use ai to denote the nodes of the left branch and bi
to denote those of the fight branch. Nodes of the left branch of depth n are of depth
n + of the graph. For 2 n =< < 2 n+l ai is a node of the left branch of depth n. A
similar convention applies to bi.

We write x --- (y, z) to mean that the outgoing edges of vertex x are directed to y
and z. The following rules describe the graph. The graphs for k 1, 2, 3 are shown in
Fig. 1.

R1. r--(al,b),

az,+j-(a2i++2j, a2,+,+2j+l),O<-j<2i, o<-i<k 1,

R3. a2k- --- r, b ),

FIG.
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FIG. 2

R4. a2,-,+:zi+j-.-(b2++2j, b2+,+2j+ l),O<=j<2i, O<i<k 1,

R5. Interchange roles of a and b in R2 to R4.

R and R2 describe the binary property of the graph. R3 through R5 describe how
to wrap the outgoing edges of the leaves to the lower level nodes to complete a 4-regular
directed graph with indegree and outdegree 2.

We defer the proof that the above graph is satisfiable to a later section. The matrix
of the graph satisfies

AZ(k+ l)_Ak+ 2k+ j. [--]

THEOtEM 3. If d 2 and k is an odd positive integer, there exists a satisfiable
graph oforder 2 + 1.

Proof. Again we will construct the graphs. The construction is similar to that of
Theorem 2, except R3 is changed to

R3a. a2k-, -- (a, b),

R3b. a -- r, b ),

where a and b are two extra nodes. An example is shown in Fig. 2.
The proof that these graphs are satisfiable is similar to that of Theorem 2 and is

omitted.
The above construction gives satisfiable graphs only when k is odd. It fails when k

is even. In particular, there is no satisfiable loop-free graph of order 5. This fact will be
proved in 5 ].

3. Line graphs of satisfiable graphs. Suppose G is any directed graph. The line
graph G’ ofG is defined as follows: V(G’), the vertices of G’, is the set E(G) ofthe edges
of G. If (x, y) and (y, z) are two edges in G, then there is an edge in G’ from vertex
(x, y) to (y, z).
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THEOREM 4. Let A be the matrix of G. Suppose A satisfies some equation
f(A) J, wheref(x) is a polynomial with rational coefficients. Then the matrixA ofG’
satisfies A’f( A’) J, where J is ofcorresponding order. The converse is also true.

Proof. Recall that qn( i, j) is the (i, j) entry ofA n. Denote by ga(i, j) the number
obtained by replacing each xn in f(x) by qn(i, j). Then, since f(x) is a polynomial in
x, gA( i, j) for all i, j.

Suppose vi and vj are two vertices of G. There are two incoming edges for vi, ei,

and ei2; and two outgoing edges for vj, e, and e2. Each n-path from vi to v is a sequence
of edges from an outgoing edge of vi to an incoming edge of vj. By attaching ei and ej
to the sequence, we obtain an (n + )-path from ei to ejl in G’. Similarly, each
(n + )-path in G’ from ei to ej corresponds to an n-path in G from vi to v. Hence
the (i, j) entry ofA n is identical to the (eil, ejl) entry ofA ’n+ 1. if xn+ in xf(x) is re-
placed by qn+ (eil, el) and gA’(eil, ej1) is the result, then gA’(eil, ejl) gA(i,j) l. That
is, A’f(A’) lJ.

The converse follows similarly.
COROLLARY 5. G is satisfiable ifG’ is satisfiable.
Proof. It follows from Theorem 4 by choosingf(x) xm xn.
If G has the same indegree and outdegree d, so does G’ and the order of G’ is d

times that of G.
Combining Theorems 2, 3, Corollary 5, and the above fact, we prove Theorems A

and B stated in the Introduction.

4. Generalization. With a similar construction as in the proof of Theorem 2, we
obtain satisfiable graphs of orders (dk )/(d- for any d >- 2. We illustrate the idea
for d 3 and leave the general construction as an exercise.

First, construct a complete ternary tree of depth k > 0 with edges directed from
parents to children. Each child of the root is the root of the subsequent ternary branch.
Let X, Y, and Z be the three branches. Leaves ofX are divided into three groups, each
of which descends from a child of the root of X. Choose two such groups. Spread all
outgoing edges of each group to the leaves of Y or Z. They cover exactly all leaves of Y
and Z.

For the remaining group, direct all outgoing edges to the remaining nodes in Y and
Z. However, there is an edge left without a target. It points to the root of the orig-
inal tree.

FIG. 3
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Repeat the same procedure to Y and Z.
An illustration of the construction is shown in Fig. 3. Readers should convince

themselves that the graphs are satisfiable.

5. Proof of Theorem 2. Denote A the th row ofA and represent the row pictori-
ally by assigning to each vertex j the number qn( i, j). Since we can subtract any multiple
of J from A n, we can subtract a constant from all components. Any row of the matrix
is identified with a (2 k )-vector. In this section, vector equality is defined up to a
multiple ofv (1, 1).

At this point, we modify our previous notations as follows: Replace A n by A (n i)ai

A,, by B(n, i), a(i) by ai, and b(i) by bi, and F(n, i) by either A(n, i) or B(n, i).
LEMMA 6. For each i, there exists mi < k + 2 such that the vector F( mi, i) has a

at positions r, a( ), a(2 ki ), or r, b( ), b(2’ and O, elsewhere.
That is, we have thefollowing situation in Fig. 4.

Proof. In view of the symmetry along ai’s and bi’s, we consider only ai’s.
Let L be the left branch of r, so a(2 + j) is a node on the ith level of L. As =< k,

A (k i, 2 + j) has at positions a(2 g + j2 k- + n), 0 =< n < 2 g- and 0, elsewhere.
Ifj 0, A (k + 1, 2 + j) has the desired property.

Ifj>0,1etl, mbesuchthatj=2t+m,0-<m<l,A(k-i+ 1,2l+m) has
at positions b(2(-i)+(-) + m2k-i- + n), 0 _-< n < 2 k-;+l and 0 elsewhere. But
b(k + 1, 2 + m) has the same children as a(k + 1, 2 + j). As < i, by an in-
duction argument on i, there exists an mi <- k + such that B(mi, 2 + m) has the
desired property. Certainly mi > k + k for any positive i. Thus, A (k + 1, 2 -I- j)
has the desired property. V]

Suppose A (m, l) is the row described in Lemma 8. The rows of a(l) of succeeding
powers ofA are as given in Fig. 5.

A(m+k+ 1,l)=A(m,l).

Therefore, A(m + k + 1, l) A (m, l) m’v. Hence, for each there exists an mi and
l such that

F(mi+ k+ 1,i)-F(m,i)= l, F=A,B.

As each mi < n + 1, we have

F(2(k+ ),i)-F(k+ 1,i)- 2k+ 1-milil) F=A,B.

As Ar+ Ar V implying Ar2(+1)- Ar+ 2+1, we deduce A2(+1) Ag+l
2k+lj.

This completes the proof of Theorem 2. V1

/ ’o k /o
FIG. 4



SOME 0-1 SOLUTIONS TO MATRIX EQUATION A m A n lJ. 205

A(m, I)=
level

A(m + 1, I) level

A(m+k-i+ 1,1)=

(only level of l’s)

A(m + k- + 2, I)

A(m+ k-i +3, I)=
level k- + 3

A(m+ k,/)=

level k

FIG. 5
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Abstract. Let K be an n-by-n self-adjoint matrix and let K (R) X be the Kronecker product of the matrix
K and the linear operator X. Thus if X: H H, where H is a Hilbert space, then K (R) X: H Hn. Given a
positive operator A, operators of the form A + K (R) X, where X is a positive operator, are studied. The signs
of the eigenvalues of K and the rank of K play crucial roles in characterizing suprema of the following set:
X >= 0[A + K (R) X >- 0 }. It is shown that X >= 0[A + K (R) X >= 0 has a supremum for all A >= 0 if and only

ifKhas exactly one negative eigenvalue. For the cases rank K and rank K 2, the existence ofthe supremum
is already known under the names "shorted operator" and "cascade limit," respectively. The suprema in the
case that rank K > 2 are new nonlinear operations.

Key words, operator inequality, Schur completement, shorted operator
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1. Introduction and the shorted operator. Let Hbe a Hilbert space. A linear operator
X on H is termed positive if (Xx, x) >= 0 for all x e H, and X X *. We write X -< Y to
mean Y- X is positive. If K is an n-by-n matrix, we define the Kronecker product K (R)
X as

klX kl2X
K(R)X= kX k22X

and thus K (R) X is an operator on Hn, the space of all n-tuples, (Xl, Xn) with
inner product (, 37) n-_ (xi, Yi). In the sequel we will consider only self-adjoint
matrices K. Now, given a positive operator A, partitioned with respect to Hn, as follows:

AA A2
A

Ann
we define the shorted operator ofA as follows:

S(A)= sup {X>-_OIA>=(X(R)O)} where

X 0...0

X(R)0 0..
0

(See [6], [12].)
We note that the supremum in the definition of S(A) is with respect to the partial

order defined above. There is no a priori reason for the supremum to exist. In fact Pos (H),
the cone of positive operators on H, is a lattice if and only if H is one-dimensional.
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However, the supremum does exist and the following theorem summarizes important
properties of the shorted operator; proofs of these results may be found in 6 ].

THEOREM 1. Suppose A is positive. Then
(i) S(A) exists and is positive;
(ii) IfA <= B, then S(A) <= S(B);
(iii) S(A) <- A,
(iv) If An is a monotone decreasing sequence of positive operators, then

limn--, S(An) S(limn._, An); these are strong operator limits.
We remark (see [1 that ifA is invertible then S(A has the following representation:

S(A A -(A2A3" An)

-1 .421

A Anl
Thus the shorted operator is a generalization of the classic Schur complement. The ter-
minology "shorted operator" comes from applications in network theory (see [1], [6]).

2. Preliminaries and examples of suprema problems. Our primary goal in this paper
is to generalize results that pertain to the existence ofsuprema of sets ofpositive operators.
Our results include, as special cases, Propositions 2 to 6, which are given below. We will
see that each of these propositions may be reformulated in terms of the supremum of
an A + K (R) X problem for the appropriate choice ofA and K.

PROPOSITION 2 (Krein [12], Anderson and Trapp [6]). Let

A21 A22

be positive; then there is a unique Xo >= 0 such that

X=sup X>=0
0 0

Proposition 2 is, of course, merely a restatement of Theorem (i) and guarantees
the existence of the shorted operator.

PROPOSITION 3 (Ando [7]; see also Fujii [11] and Anderson, Morley, and Trapp
2 ]). Let B and C be positive operators; then there is a unique Xoo >= 0 such that

X sup X>_-0
C

The operator Xoo of Proposition 3 is called the geometric mean of B and C and is de-
noted B#C.

PROPOSITION 4 (Anderson and Trapp [6]). Let B and C be positive. Then there
is a unique Xoo such that

Xoo= sup X>=O
B B+C

The operator Xoo of Proposition 4 is called the parallel sum ofB and C and denoted by
B:C. We note that Proposition 4 follows as a corollary ofProposition 2; we have included
it as a separate statement because parallel addition is very important in its own fight.
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PROPOSITION 5 (Ando [8]). Let

A=(All AI2)A21 A22

be positive. Then there exists a unique Xo >= 0 such that

Xo= sup X>0
A21 A22+X

The operator Xoo of Proposition 5 is called the cascade limit of the operator A. (See
Ando [8], Anderson, Reynolds, and Trapp [5], and Anderson, Morley, and Trapp [4]
for additional information about the cascade operation and the cascade limit.)

PROPOSITION 6. Let C and D be positive with D invertible and let E be a linear
operator. Then there is a unique Xo such that

Xoo sup X-> 0
E* +X D-1

The operatorX of Proposition 6 solves the Riccati equation

XDX+XDE* +EDX C.

This proposition was first conjectured by Trapp 13 and independently proven by Ando
and Bunce (see [9]). Setting E 0 in Proposition 6 yields Proposition 3 for the case C
invertible.

3. The existence of a supremum of { X >= D IA + K (R) X >- 0 }. In this section we
study the existence of

sup {X>-OIA+K(R)X>-_O}
and prove that the above supremum exists for all A _-> 0 if and only ifK has exactly one
negative eigenvalue. We count eigenvalues with multiplicity and thus

(-1 0 )= diag(-1 -1)K=
0 -1

has two negative eigenvalues. In Theorem 7 we present a basic result; we consider the
case of a diagonal K having exactly one negative eigenvalue that we assume is in the
1, position of K.

THEOREM 7. Let A >= O, and let K diag (-1, 1, 1, ..., 1, 0, 0, ...); then there
is an Xo such that Xo sup {X 0[A + K (R) X >_- 0 }.

Proof. Let L diag (0, 1, 1, , 1, 0, 0, ...). We show the existence ofan operator
Xoo --< A such that S(A + L (R) Xoo) Xoo. Consider a sequence ofX’s defined as follows:
Xo All and X, /1 S(A + L (R) X,). First we note that X1 S(A + L (R) Xo) <= AI
Xo and by induction

OXn+ S(A + L(R)Xn) <-S(A + L(R)Xn- l)--In.

Thus the X, are a monotonically decreasing sequence and converge to a limit Xoo, and
since S( is continuous under monotone decreasing limits (Theorem (iv)), we have
Xoo=S(A +L(R)Xoo).

The supremum definition of the shorted operator implies that

0 0 0 0
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And since L (R) Xo Xo (R) 0 K (R) Xo, we have A + K (R) X >- 0. Therefore the
we have found is in the set.

Next we must show that it is an extremum. Take X >= 0 with A + K (R) X _>- 0. We
have to prove that X

_
X. For this it suffices to prove by induction that Xn >= X for

each n. First X0 A >- X is obvious because A + L (R) X >= K (R) 0. And now assume
that Xn >= X; then we have the following string of inequalities:

A + L(R)Xn>=A + L(R)X>-_X(R)O.

Then by shorting the left and fight inequalities we have the following"

X,+ S(A + L(R)X)>- S(X(R)O) X.

And the result follows; see [3] for a similar proof.
In the proof of the next theorem, we use the fact that we may choose two operators

C and D such that the following set does not have a supremum:

{XIXO,XC,XD}.
For 2 2 matrices the following C and D provide a counterexample.

We have that

C=
0 14

D=
0 7

Y=
0 7

and Z
4 6

are both maximal points in the set {X IX - 0, X =< C, X =< D }, but Y and Z are not
comparable, and therefore there is no maximum. [:3

THEOREM 8. Let K K*. Then M X >= 0[A + K (R) X >= 0 } has a supremum
for all A >= 0 ifand only ifK has exactly one negative eigenvalue.

Proof. Since K is Hermitian, we find an invertible Q such that Q*KQ
diag (el, e), where each e is -[-1, --1, or 0. The number of +l’s is the number of
positive eigenvalues of K, the number of- ’s is the number of negative eigenvalues of
K, and the number of O’s is the nullity of K. Since Q is invertible, so is (Q (R) I) and
therefore A + K (R) X is positive if and only if Q (R) I] * {A + K (R) X } Q (R) 1] is pos-
itive. But this expression may be rewritten to obtain A’+ K’(R) X >-0, where A’=
(Q (R) I)*A(Q (R) I) and K’= Q*KQ. Here we have used the facts that (E (R) F)*=
E* (R) F* and (E (R) F)(G (R) H) EG (R) FH. (See, for example, Bellman [10].)

Thus we have reduced the theorem to the case where K is a diagonal matrix whose
diagonal elements are + 1, 1, or 0. Rather than using K’ and A’ below, we revert to the
nonprime notation. The proof involves three cases.

Case I. If K has no diagonal entries equal to -1, then { X: A + K (R) X >= 0 } is
unbounded, so the supremum does not exist.

Case II. IfKhas exactly one negative diagonal element, then by reordering we may
assume kl 1. If ki; 0 for > 1, then sup {X >= 01A + K (R) X >= 0 } is the shorted
operator, and therefore the supremum exists. If some kii 1, > 1, then Theorem 7
applies and the supremum exists.

Case III. If more than one diagonal entry of K is negative, we may renumber and
assumeK=diag(-1,-1,...,-1,1,1,..., 1,0,...,0) sothat

kii -1 1, ,s

kii= +1 i=s+ 1, ,t

kii=0 i=t+ 1, ,n.
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Let C and D be two positive operators, as discussed above, such that

sup {XIX>=O,X<=C,X<=D}

does not exist. Then set A diag (A1,A2, ,An), where Al C; A2 D; Ai
C + D, 3, s; and A 0, > s. The sup X >= 01A + K (R) X >= 0 } cannot exist,
since it would be sup { X: X >= 0, X -< C, X =< D }. This completes the proof. E]

Theorem 8 shows that the only interesting case occurs when K has exactly one
negative eigenvalue. In this case we may define a function 4 as follows:

b(A ;K) sup X>_- 0A + K(R)X>= 0 }.

THEOREM 9. Let A >= 0, K K* with exactly one negative eigenvalue, and let 4
be defined as above. Then thefollowing hold:

a k is monotone on A and K, i.e., ira <= B and K <- L with L having exactly one
negative eigenvalue, then ck( A K) <- ok(B; L ).

(b) Let An be a monotonically decreasing sequence converging (strongly) to A. Then

lim (An; K) 4(A K).

Proof. Part (a) follows from the fact that ifA _-< B and K _-< L, then

A+K(R)X<-B+L(R)X

and thus

{X>=OI A + K(R)X>=O }
_

{X>-. OI B + L(R)X>-O ).

The prooffollows because when the set of allowable X’s increases, the supremum cannot
decrease. Part (b) follows from the proof of Theorem 7 as the approximations Xn are
monotonically decreasing and continuous under monotone decreasing limits.

We are only interested in the case of exactly one negative eigenvalue of K, in this
case the maximum X falls into one of the following categories:

Case A: A short ofA when the rank ofK 1;
Case B: A cascade limit ofA when the rank ofK 2;
Case C: The Xo of Theorem 8 when the rank ofK >= 3.
Special cases of Cases A and B include Propositions 2-6. In the following we let Kn

denote the matrix K that shows that Proposition n follows from Theorem 8.

K2= K=
0 o the eigenvalues are -1,0 and the rank is 1.

(0 1)K3=K6= o’ the eigenvalues are + 1, and the rank is 2.

-1 O)Ks=
0

the eigenvalues are + 1, and the rank is 2.

As an example of operation included in Case C, we consider the following scalar
problem. Assume a, b, c, d, e, and f are real and that

a b c)b d e is positive.
c e f
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One can show that the

sup ( x>-0 a-x b c ) }b d+x e >=0
c e f+x

is a root of the following cubic equation, which is obtained by setting the determinant
of the constraint matrix equal to zero.

x + (d+ f-a)x2 +(df-e2 + b2 + c- ad-af)x

+ b2f- 2bce + c2f adf+ ae O.

The K matrix associated with this suprema problem has eigenvalues of- l, l, and and
is of rank 3. So if we consider the operator version of this problem, we will obtain a new
operator function. Possibly the analysis in [9 could be applied to this new situation,
and it could be shown that the solution of the suprema problem satisfies an operator
version ofthe cubic equation. We remind the reader that in 9 the solution ofa suprema
problem is shown to satisfy an operator Riccati equation.
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ALGEBRAIC POLAR DECOMPOSITION*

IRVING KAPLANSKYf

Abstract. Choudhury and Horn made a conjecture concerning conditions for a complex matrix to admit
a decomposition as a product of an orthogonal matrix and a symmetric matrix. This conjecture, in a stronger
form, is confirmed.

Key words, complex orthogonal, complex symmetric, polar decomposition
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1. Introduction. Let A be a complex square matrix. It is classical that A can be
written as the product of a unitary matrix and a positive semidefinite Hermitian matrix;
the Hermitian part is always unique and the unitary part is unique ifA is invertible. In
[1] Choudhury and Horn studied an algebraic variant. In this variant one seeks to write
A QS, with Q complex orthogonal (rather than unitary) and S complex symmetric
(rather than Hermitian). There appears to be no reasonable way to restrict Q or S or
both so as to make the decomposition unique, and so we forget about uniqueness. How-
ever, existence of the decomposition merits scrutiny. In fact, the decomposition is not
always possible, as the matrix

shows. So it is natural to impose conditions. If A QS, then A’A SQ’.QS S and
AA’ QS.SQ’ QS2Q-1. Thus two necessary conditions are visible: similarity of A’A
and AA’ and the possession by A’A of a square root. On page 225 of it is conjectured
that these two conditions are sufficient. The conjecture is true, and, moreover, the square
root condition is redundant.

In view of the algebraic nature of the investigation, it is to be expected that any
algebraically closed field of characteristic :/: 2 is acceptable. The case of characteristic 2
is indeed different and will not be examined in this paper.

There is one more note before the formal statement ofthe theorem. The hypothesis
that A’A is similar to AA’ will be weakened to the hypothesis that (A’A)m and (AA’)m
have the same rank for all m. This is not being done for the sake of generalization, but
rather because the rank condition is trivially inherited by the direct summands that we
shall encounter below. In any event the generalization is nominal, for in the nilpotent
case (the only case that matters) one can see a priori that the rank condition implies
similarity.

THEOREM. Let A be a square matrix over an algebraically closedfield ofcharac-
teristic 2. Then A can be written QS, with Q orthogonal and S symmetric, ifand only
if(A ’a m and (AA ’) m have the same rankfor every m.

2. Three lemmaso The lemmas in this section will facilitate the proof ofthe theorem.
As far as possible, we shall operate in a basis-free fashion. This calls for the following

setup. We assume given an algebraically closed field k ofcharacteristic 4:2 and two linear
spaces V and Wof the same dimension over k, each carrying a nonsingular symmetric
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bilinear form. For both V and Wwe use the notation (,) for the form. We are given a
linear transformation A from V to W. It has a transpose A’ that maps W into V. We
have (Av, w) (v, A’w) for all v in V, w in W. Our objective is to write A QS, where
S is symmetric on V and Q maps v orthogonally into W, that is, (Qvl, Qv2) (vl, v2)
for all v, v2 in V. When this is so, we have A’ SQ’, A’A $2; furthermore, the equation
A QS implies that A and S have the same null space. So a necessary condition for
A QS to be achievable is that A’A has a symmetric square root with the same null
space as A. This condition is also sufficient. This essentially appears on p. 220 of[1 ],
but for completeness a proof is included.

LEMMA 1. Let A, V, and Wbe as above. Suppose that A’A has a symmetric square
root S with the same null space as A. Then there exists an orthogonal linear transformation
Qfrom v to W satisfying A QS.

Proof. We define Q first from the range of S to the range of A by setting QSx
Ax. From the equality of the null spaces of S and A we first see that this is a valid
definition and then that the mapping is one-to-one. We have

Sx, Sx) S2x,x) (A’Ax,x) (Ax,Ax).

So Q preserves the bilinear form as far as Q is thus far defined. By Witt’s theorem, Q can
be extended to an orthogonal mapping from all of V onto all of W.

LEMMA 2. Over an algebraically closed field of characteristic 4: 2, let V be a
2m + )-dimensional linear space with a nonsingular symmetric bilinearform. Let T
be a nilpotent symmetric linear transformation on V with elementary divisors ofdegrees
rn and rn + 1. Then T has a symmetric square root with a one-dimensional null space
equal to T V.

Proof. It is evident that T has a square root. By [1, Thm. 4] T has a symmetric
square root S (while in [1 the ground field is the field of complex numbers, the proof
there is valid in this more general context). Necessarily, S has a single elementary divisor
ofdegree 2m + and so it has a one-dimensional null space equal to s2mv Tm V. [’-]

LEMMA 3. Over an algebraically closedfield of characteristic 4:2 let V be a 2m-
dimensional linear space with a nonsingular symmetric bilinearform. Let Tbe a nilpotent
symmetric linear transformation on V with elementary divisors ofdegrees rn and m. Let
u be a vector in V with Tm- U O, (T U, U) O. Then T has a symmetric square
root with a one-dimensional null space spanned by Tm- u.

Proof. Take a basis x, Xm, Yl, Ym of V with each (Xg, Yi) and the
form vanishing on all other pairs of basis elements. Let U be the linear transformation
given by

Uxi=xg+ (i= 1, ,m- 1), Uxm=O,

UY Yi 2, ,m), Uy O.

Note that U is nilpotent and that it has the same elementary divisors as T: thus U and
T are similar. One readily checks that U is symmetric. From this, one knows that U and
T are orthogonally similar. So V admits a basis of the same kind relative to T, and we
shall use the same notation xg, Y for this basis. Tm- V is two-dimensional, spanned by
X and y. So Tm- u has the form aXm + byl. In computing (T lu, tt), the only
portions of u that make a contribution are the terms in Xl and Ym, and this part of u
must have the form axl + bym. Since (ax,, + byl, ax + bym)- 2ab, we must have
a 0 or b 0 in order for Tm- lu, u) to vanish. Thus Tm- lu is a scalar multiple OfXm
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or Yl. By symmetry we can suppose that T u is a scalar multiple OfXm. We now define
S as having the single Jordan block

Ym,Xl,Ym- 1,X2, ,Y2,Xm- 1,Yl,Xm,

that is, S sends each of these vectors to the next and sends xm to 0. It is routine to check
that S is symmetric. We have S2 T, and the null space of S is spanned by Xm, and
hence by T u. [--1

3. Reduction to the case where A’A is nilpotent. We return to A, V, and IV as in
2. In this section we shall reduce the problem of achieving an algebraic polar decom-

position ofA to the case where A’A is nilpotent.
It is standard that Vhas a unique direct sum decomposition V V1 + V2 with each

V invariant under A’A, A’A invertible on Vl, and A’A nilpotent on V2. Write W
W + W2 for the analogous decomposition of W relative to AA’. There are three things
to be checked:

(a) A maps V2 into W2 and A’ maps W2 into V2.
(b) A maps VI one-to-one onto W and A’ maps W one-to-one onto V.
(c) The two decompositions are orthogonal relative to the bilinear forms.
By symmetry only half of each ofthese statements needs proof. The following char-

acterization of the summands VI and V2 will be used: V2 consists of the elements anni-
hilated by some power ofA’A, and V consists ofthe elements lying in the range of large
powers ofA’A (see p. 113 of 2 for details concerning this).

(a) Ifx V2, then (A’A)nx 0 for some n, (AA’)nAx O, Ax W2.

(b) Suppose that xV and Ax=O. Then A’Ax=O and x=0, since A’A
is invertible on V. Thus A induces a one-to-one map of Vl into W. In particular,
dim W >= dim V. By symmetry the opposite inequality also holds. Thus dim V
dim W1 and it follows that the map A of V into W is onto as well as one-to-one.

(c) To establish the orthogonality of v and v2 for vi Vi, we take n large enough
so that (A’A)nv2 0 and v is in the range of (A’A)n, say vl (A’A)"v’. Then (v, v2)
((A’A)nI ’, 12) (1)’, (A’A)%2) O.

We begin the proof of the theorem. For an invertible linear transformation the QS
decomposition is known. Hence our business is finished regarding Vl and W. It remains
to treat the restrictions ofA and A’ to V2 and W2, but first we have to observe that the
hypothesis ofthe theorem is inherited. Since rank is additive on direct sums, we see that,
for every m, (A’A) on V2 and (AA’)m on W2 have the same rank. We change notation,
replacing V2 and W2 by V and W. Henceforth A’A and AA’ are nilpotent.

4. The ease where A ’A is nilpotent. The procedure will be to detach a well-behaved
direct summand. The idea is not new; for instance, it appears in essence in [3 ]. In the
present context appropriate modifications are needed to cope with two vector spaces.

We form the longest product

that is nonzero and call it B. Let r be the number of terms in this product. The parity
of r makes a difference.

r even. B (A’A)...(A’A). It cannot be the case that (Bx, x) vanishes for all xin
V, for then B 0 by polarization (this uses characteristic 4: 2). Choose x in V with
(Bx, x) 4 O. If C (AA’)r/2, then B and C have the same rank by hypothesis and in
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particular C 4: 0. Thus we have y in W with (Cy, y) 4: O. We line up the following r +
elements of V:

Xo x, xl A y, x:z A ’Ax, x3 A’AA ’y,

r_l
Xr-I =A’(AA’) 2 y, Xr=(ArA)Zx=Bx.

For + j r we have (xi, x.i) (Bx, x) for even and (Cy, y) for odd. Thus (xi, xj)
is nonzero for + j r. Because of the maximal property of r, (xi, xj) vanishes for +
j > r. So the matrix of elements (xi, xj) has nonzero elements on the antidiagonal (the
diagonal running from the upper fight corner to the lower left corner) and O’s to the
fight; it is an invertible matrix. As is well known, this implies that the elements x0, "",

xr are linearly independent. Furthermore, the bilinear form is nonsingular on the subspace
X, which they span [4, Thm. on p. 4], and X is an orthogonal direct summand of V
[4, Thm. 2 on p. 6]. The construction is now repeated on the other side of the ledger,
producing elements Y0 Y, yl Ax, Y2 AA’y, Yr Cy, which form a basis of an
orthogonal direct summand Y of W. A sends xi into yi+l for 0, r and
annihilates xr. The null space ofA is one-dimensional, spanned by Xr. A’A is a symmetric
linear transformation on X admitting the two Jordan blocks Xo, x:z, x4, "’", Xr and xl,

x3, xs, , Xr-I. The range of (A’A) r/2 on X is spanned by Xr. Lemma 2 applies with
T A’A and m r/2. The symmetric square root ofA’A thus obtained has (A’A)’X as
its null space, that is, its null space is spanned by xr and thus coincides with the null
space ofA. This gets us ready to apply Lemma to A and A’, restricted to X and Y, so
that the QSdecomposition is achieved there. Let X’ and Y’ be the orthogonal complements
of X and Y in V and W. Then A sends X’ into Y’, A’ sends Y’ into X’, and A and A’
remain transposes when restricted to X’ and Y’. The proof of the theorem is finished by
induction as soon as we observe that the hypothesis of the theorem is inherited; this is
seen by additivity of the rank just as at the end of the preceding section.

r odd. B A (A’A)...(A’A). The procedure is similar but has to be changed a
little, since B now sends Vinto W. We select x in Vand y in Wsimultaneously to satisfy
(Bx, y) 4: O. The elements xi and Yi are picked in essentially the same way as before:

Xo=X, Xl =A’y, x: A’Ax, Xr-1 =(A’A) (r- 1)/2X,

Yo Y, y Ax,

(r-l)

xr=A,(AA, 2 y=By,

Y2= AA’y, y_ =(AA,)r-

(r-l)

yr=A(A,A) 2 x=B,x.

The passages to the subspaces Xand Ygo as before. In achieving the polar decomposition
ofA restricted to X, we use Lemma 3 in place of Lemma 2. The details are as follows.
The null space ofA is spanned by x. T A’A admits the two Jordan blocks x0, x, ,
Xr- and x, x3, Xr. With the choices u x and m (r + )/2 the hypotheses of
Lemma 3 are in place. This makes Lemma applicable and achieves the polar decom-
position ofA restricted to X.

Summary. The desired polar decomposition of the original linear transformation
A has been achieved in a succession of steps. First, the portion where A’A is invertible
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was detached in 3. Then the summand where A’A is nilpotent was decomposed into a
number of pieces, and on each of these, special circumstances made A QS possible,
with the aid ofsuitable lemmas from 2. In this way the proofofthe theorem is complete.

REFERENCES

D. CHOUDHURY AND R. A. HORN, A complex orthogonal-symmetric analog ofthe polar decomposition,
SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 218-225.

[2 P. R. HALMOS, Finite-Dimensional Vector Spaces, Springer-Verlag, Berlin, New York, 1974.
[3] I. KAPLANSKY, Orthogonal similarity in infinite-dimensional spaces, Proc. Amer. Math. Soc., 3 (1952),

pp. 16-25.
[4] ,Linear Algebra and GeometrymA Second Course, Chelsea, New York, 1974.



SIAM J. MATRIX ANAL. APPL.
Vol. 11, No. 2, pp. 218-238, April 1990

(C) 1990 Society for Industrial and Applied Mathematics
O06

THE LAPLACIAN SPECTRUM OF A GRAPH*

ROBERT GRONEf, RUSSELL MERRIS, AND V. S. SUNDER

Abstract. Let G be a graph. The Laplacian matrix L(G) D(G) A(G) is the difference of the diagonal
matrix ofvertex degrees and the 0-1 adjacency matrix. Various aspects ofthe spectrum ofL(G) are investigated.
Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various
modifications of G.
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1. Introduction. Let G (V, E) be a graph with vertex set V { Vl, v2, vn
and edge set E {el, e2, em). For each edge ej vi, vk), choose one of vi, vk to
be the positive end of ej and the other to be the negative end. We refer to this procedure
by saying G has been given an orientation. The vertex-edge incidence matrix afforded
by an orientation of G is the n-by-m matrix Q Q(G) (qo), where

+ 1, if v is the positive end of ej-,

q.9 -1, if it is the negative end,

0, otherwise.

It turns out that L(G) QQt is independent of the orientation. In fact, L(G)
D(G) A(G), where D(G) is the diagonal matrix of vertex degrees and A(G) is the
(symmetric) 0-1 adjacency matrix. Forsman 9 and Gutman have shown how the
connection between L(G) and K(G) QtQ simultaneously explain the statistical and
the dynamic properties of flexible branched polymer molecules. Indeed, since L(G) and
K(G) share the same nonzero eigenvalues, it follows that for bipartite graphs the smallest
eigenvalue ofA (G*) >= -2, where G* is the line graph of G. This observation, first made
by Hoffman, has led to a connection with the theory of root systems [2], [3]. Eichinger
5 has shown how the spectrum ofL(G) may be used to calculate the radius ofgyration
of a Gaussian molecule. Mohar [13] argues that, because of its importance in various
physical and chemical theories, the spectrum of L(G) is more natural and important
than the more widely studied adjacency spectrum. In ], Bien uses the smallest positive
eigenvalue of L(G) to estimate the "magnifying coefficient" of G.

It seems that L(G) first occurred in the celebrated Matrix-Tree Theorem: IfL is
the submatrix of L(G) obtained by deleting its ith row and jth column, then
(-1 )i+J det (Lo) is the number of different spanning trees in G. Since this result is at-
tributed to G. Kirchhoff, L(G) is sometimes called a Kirchhoffmatrix. It is also known
as a matrix ofadmittance (admittance conductivity). Following [7], we will refer to
L(G) as a Laplacian matrix because it is a discrete analogue of the Laplace differential
operator.
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We have suppressed the dependence of L(G) on the ordering of V because our
primary interest is with the characteristic polynomial CG(X) det (xI- L(G)).

Example 1.1. Let G C6, the simple circuit on six vertices. Then

cG(x) x(x- )2(x- 3)2(x- 4)

X6 12x + 36x.

Of course, 12 is the sum of the vertex degrees and 36 is the sum of the six principal
minors of L(G) of order five. We can state each of these facts in another way. The sum
of the vertex degrees is twice the number of edges. The sum of the minors is (n six
times the number of spanning trees. Similar statements are available for the other coef-
ficients [4, p. 38].

Example 1.2. Let G *n, the "star," i.e., G Kl,n-1, the complete bipartite graph
with n pendant (degree vertices and one vertex of degree n 1. Then cG(x)
x(x n)(x )n- 2. If the central vertex is listed last, then (-1, -1, n is an
eigenvector of L(G) corresponding to n, while

{(1,-1,0,... ,0),(0, 1,-1,0,... ,0),... ,(0,0, ,0, 1,-1,0)}

is a set of n 2 linearly independent eigenvectors corresponding to one.
Denote the eigenvalues of L(G) by X >= >- Xn-1 >= 0 hn. From the Matrix-

Tree Theorem (for example) we may deduce that hn- > 0 if and only if G is connected.
(In particular, K(G) is nonsingular if and only if G is a tree.) Fiedler has called hn- the
algebraic connectivity of G [7], denoting it by a(G).

2. Preliminary results. A vertex of degree one is called a pendant vertex. Denote
by p(G) the number of pendant vertices of G. A vertex is quasipendant if it is adjacent
to a pendant vertex. Denote by q(G) the number of quasipendant vertices of G. If T is
a tree, it is known [4, p. 258] that

(I) p(T) q(T) =< rt =< p(T) 1,

where rt is the multiplicity of zero as an eigenvalue ofA(T).
Denote by mG() the multiplicity of X as an eigenvalue of L(G). Incidental to her

work on permanental polynomials, Faria observed that

(2) p( G)- q( G) <- mG( ),

for any graph G 6 ].
THEOREM 2.1. Suppose T is a tree on n vertices. If, > is an integer eigenvalue

ofL(T) with corresponding eigenvector u, then
n (i.e., exactly divides n

(ii) roT(X)= 1,
(iii) no coordinate ofu is zero.
Theorem 2.1 can fail totally for graphs that are not trees. (See Example 1.1.)
Proof. The characteristic polynomial of L(T) is xf(x), where f(x) is an integer

polynomial. Since T is a tree, f(0) n (as in Example 1.1 ). This proves (i). If L(T)
had two linearly independent eigenvectors corresponding to ,, we could produce a third
eigenvector with zero in any prescribed coordinate. Hence, (iii) implies (ii).
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Suppose u is an eigenvector ofL(T) afforded by ,. If some coordinate of u is zero,
we may assume it is the last one, corresponding to vertex vn. With d do, the degree of
vn, L(T) takes the form

(3) L(T)=

B O" "0 *

0,
B2" "0 *

0"" Ba *..., d

where Bl, B2, Bd are the principal submatrices ofL(T) corresponding, respectively,
to the branches TI, T2,’", Td of T at v. If u is partitioned conformally as u
(ul, u2, Ud, 0), then uL(T) hu implies uiBi hui, <= <- d. Since at least one
of these ui’s must be nonzero, h is an eigenvalue of some Bi. We may assume it is
Note that BI is not quite L( TI ). One of its main diagonal entries is too large, the one
corresponding to the vertex of TI that is adjacent (in T) to Vn. If we assume this vertex
is Vl, then BI L( Tl + Ell, where Ell is the matrix whose only nonzero entry is a one
in position 1, ). But then det BI det L(TI) + det L11, where Lll is the submatrix
of L( TI obtained by eliminating its first row and column. Now, det L( T1 0 while,
by the Matrix-Tree Theorem, det Lll 1. Thus, h is an eigenvalue of the unimodular
matrix BI, a contradiction. I--1

It seems surprising that for trees, mr( can be arbitrarily large while mr(2) can be
at most one. It turns out that, integer or not, the largest eigenvalue ofany bipartite graph
is simple. This is a consequence of the following elementary observation.

PROPOSITION 2.2. Let G be a bipartite graph. Then B( G) D( G) + A(G) and
D( G) A G) L( G) are unitarily similar; in particular, the maximum eigenvalue of
L( G) is simple provided G is connected.

If G Kn, the complete graph, then ,1 n and m(,l) n 1, i.e., the result can
fail if G is not bipartite.

Proof. Since G is bipartite, the vertex set can be partitioned into two subsets VI and
V2 so that no two vertices in Vi are adjacent, for 1, 2.

Let U (uij) be the diagonal matrix with

I 1, if l)iE

-1, ifv;EV2.

It is simple to verify that UA (G) U-1 -A(G) and that U commutes with D(G). In
case G is connected, the matrix D(G) + A(G) is a nonnegative irreducible matrix and
the second assertion is a consequence of the Perron-Frobenius theory. []

We now show that the upper-bound in is a uniform upper bound on the mul-
tiplicity of any eigenvalue of L(T).

THEOREM 2.3. Let be an eigenvalue ofL(T) for some tree T on n >= 2 vertices.
Then mr(h) <- p(T) 1.

As we saw in Example 1.2, equality can occur. On the other hand, if G is not a tree,
it may have no pendant vertices.

Proof. Suppose v is a pendant vertex of T. We may assume v_ is the quasipendant
of T adjacent to vn. Let u (ul, u) be an eigenvector of L(T) corresponding to
X. Then ),)u un-1. Consider the possibility that u 0. In this case, u n-1 0
and, moreover, u’ (ul, un_ 1) is an eigenvector of L(T’) corresponding to
where T’ is the tree obtained from T by deleting v from V and { v_ 1, Vn }’ from E. It
follows by induction that u cannot be zero in all coordinates corresponding to pendant
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vertices, or even in all but one of them! On the other hand, if the eigenspace WofL(T)
corresponding to X were to have dimension greater than p(T) 1, it would be possible
to find a nonzero vector w e W that is zero on all but (at most) one of its coordinates
corresponding to pendant vertices.

In order to discuss the next result, the following notation will be convenient. Let
G (V, E) and G2 (V2, E2) be graphs with Vl fq V2 . A connected sum of G
and G2 is any graph G (V, E) where V V to V2, and E differs from E tO E2 by the
addition of a single edge joining some (arbitrary) vertex of V to some vertex of V2. It
will be useful to write G G # G2. Note that "#" is not a binary operation on graphs
because it is not well defined. If n o(V ), the cardinality of V, and n2 o(V2), then
G # G2 may represent any of nn2 different graphs. In general, of course, some of these
graphs will be isomorphic as the following example shows.

Example 2.4. Denote by Pn the path on n vertices (of length n ). If G P2
and G3 P3, then G # G2 is isomorphic either to P5 or the graph in Fig. 1.

THEOREM 2.5. Let G be a nonempty) graph on n vertices. Let H G # *k be a
connected sum ofG with the star on k > vertices. Then m(k) mt( k).

Proof. Assume the vertices have been numbered so that G # ,k is obtained by
joining the last vertex of G to the first vertex of ,. If L L(G), L, L(,), and L#
L(H), then, with respect to the obvious ordering of vertices,

(4) L#=(L4-L,)+A,

where A (ao) is the (n + k)-by-(n + k) matrix with

if(i,j){(n,n),(n+ 1,n+ 1)},

ao= -1 if(i,j){(n,n+ l),(n+ l,n)},
0 otherwise.

From Example 1.2, we may choose an eigenvector w for L,, corresponding to k, whose
first component is w 1. We will use w to produce a linear bijection u-- u# from
ker (L kin) onto ker (L# kin + ). For x n and y , denote their juxtaposition
by x (R) y e n + k. Then for any u n, define u# u (R) un w. Clearly, u u# is linear
and one-to-one. Since the nth and (n + )st coordinates of u# are equal, Au# 0 and,
hence, L#u# Lu (R) unL, w. But, then u# is an eigenvector of L# corresponding to k
whenever u is an eigenvector of L corresponding to k. It remains to prove that every
eigenvector ofL# corresponding to kis ofthe form u# for some u ker (L kin). Suppose
x n, y and x (R) y is an eigenvector for L# corresponding to k. We first assert that
y is a multiple of w. This is seen by considering two cases.

Case i. The first vertex of , (the one being connected to G by the new edge) is a
pendant vertex. In this case, we may assume the vertices of , so ordered that the kth

FIG.
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vertex has degree k 1. Hence, w 1, 1, 1, k). (See Example 1.2.) We proceed
to show that y yw. For < < k (when k > 2), we may conclude from the (n + i)th
row ofL#(x) y) k(x(R) y) that Yk k)yi. Then, from the (n + k)th row, namely,

-y y2 yk_ + (k- )y ky,

it follows that k)yl is also equal to y. In other words (since k > ), y ylw.

Case ii. The first vertex of . has degree k- 1. In this case, w while w2
wk 1/( k). (When k 2, the two cases coincide.) We use a similar argument

to deduce that k)yi y for 2, k. Thus, y y2w.

We have shown that the typical vector in ker (L# kin /) is of the form x (R) cw.
It remains only to show that xn c and that x 6 ker (L- kin). Now, by comparing
(n + )st rows of

k(x@ cw) L#(x cw)

(Lx(R)kcw)+(O, ,O, xn-C)(R)(-Xn+C,O, ,0),

we see that kc kc Xn + C. Finally, compare the first n rows to deduce that Lx
kx.

Theorem 2.5 is useful as a reduction device. Suppose for example that T is a tree
and we want to know whether or not two is an eigenvalue. Then we may prune offPs
without changing the answer to our question.

Example 2.6. Let G be the graph in Fig. 2. Then we may write G G’# in
a variety of ways. For any of these, m(2)= m,(2). But then G’ can be written as
(7"# also in several ways. Indeed, we may eventually prune off six copies of 2.
(See Fig. 3.) The result is that m(2) mc(2). The characteristic polynomial for the
square is x(x 2) 2 (x 4) so mo(2) 2.

;Example 2.7. As nice as the pruning process ofExample 2.6 is we eventually come
to a "core graph from which no Pa’s may be pruned and for which it still may not be
clear, even for trees, whether or not two is an eigenvalue. For the tree T in Fig. 4,
CT(X) X(X- 1)3(X- 2)(x- 5)(x2 4x + 1) z.

FIG. 2



THE LAPLACIAN SPECTRUM OF A GRAPH 223

FIG. 3

COROLLARY 2.8. Let T Pn, the path on n vertices. Then

if 2In,
mr(2)

0 otherwise.

if 3In,
(ii) mr(3)

0 otherwise.

Proof. We know from Theorem 2.1 that roT(k) is at most one when k > is an
integer and T is a tree. Since P2 *2 and P3 *3, the result follows from Theorem 2.5
and the pruning process of Example 2.6.

Example 2.9. The graph in Fig. 4 is just one of a class of examples. If k >= 2 is an
integer, we define a tree Zg on (2k )(k + + vertices as follows. Start with k +

FIG. 4
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copies of *2k- and an additional vertex v. Then join the "center" of each star to v by
an edge. It turns out that mzk(k) 1: that the multiplicity cannot be greater than one
is assured by Theorem 2.1 (ii). To see that the multiplicity is greater than zero, we may
simply describe an eigenvector. The components of this eigenvector will be one in each
of the (2k 2)(k + coordinates corresponding to pendant vertices, k in each of
the k + coordinates corresponding to star centers, and k2 in the coordinate cor-
responding to v. This explains the numbers in Fig. 4.

3. The multiplicity of k 1. We begin this section with an analogue of Theorem
2.5. We will be concerned with a slightly restricted version of the connected sum idea.
By G V P3 we mean (any) one of the graphs obtained from G and P3 by joining some
(arbitrary) vertex of G to a pendant vertex of P3. (Of course, P3 *3. We are using "V"
here rather than "#" to indicate that it is now forbidden to join a vertex of G to
the middle vertex of P3. We will deal separately with this latter case in Proposition
3.14 below.)

THEOREM 3.1. Let G be a nonempty) graph on n vertices and suppose H G V
P3. Then ma(1) mn( ).

Proof. Let the second vertex of P3 be the one of degree two. Then w 1, 0, -1
is an eigenvector of L(P3) corresponding to one. Number the vertices of G so that it is
the last vertex that is joined to vertex one of P3. Let L, L’, and/_7, denote the Laplacian
matrices of G, P3, and H, respectively. Then, as in the proof of Theorem 2.5,
(L 4- L’) + A, where

A =On-1 4-( 1-1 --1) 4-02.

Argue exactly as in Theorem 2.5 to show the map u -- u (R) unw is a linear injec-
tion of ker (L In) into ker
corresponding to one, deduce that y2 0 and that Y3 =-Yl. Proceed as in the
proof of Theorem 2.5 to conclude that y Xn w, so that x
ker L In), as desired.

Example 3.2. Let T be the tree in Fig. 5, with k >= 2. Then we may express T as
T’ V P3 in a variety of ways; for any of these, mr( mar,( ). But, then T’ T" V
P3, etc. Eventually, we see that mar( ms( k- 1, where S *k /1. It is instructive
to compare this value with the Faria lower bound in (2), namely, p(T) q(T) 0. At
the other extreme, the upper bound of Theorem 2.3 is p(T) k 1.

COROLLARY 3.3. Let T Pn. Then

if 3In,
mar( )=

0 otherwise.

Proof. By Theorem 3.1, it suffices to consider n 1, 2, or 3. The characteristic
polynomials for P, P2, and P3 are, respectively, x, x(x 2 ), and x(x (x 3 ). [2]

Example 3.4. Since P3 .3, pruning of a path oflength three affects neither m(3)
(Theorem 2.5 nor m6( (Theorem 3.1 ). If G is the graph in Fig. 6, we may prune off
5 Pa’s and obtain the hexagon of Example 1.1. Thus, m(3) m( 2.

Example 3.5. As in Example 2.7, one may prune off only so many Pa’s, even for
trees. If T is the tree in Fig. 7, then

car(x) x(x- )(x2- 3x + )2(x2- 7x + 11 )(x3- 6x2 + 8x- ).
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FIG. 5

We proceed now with a closer scrutiny of ma( ). Suppose G is a fixed but arbitrary
graph on n vertices. Note that u ul, Un) is an eigenvector ofL(G) corresponding
to k 1, if and only if

(5) , ui=(di 1)ui, <=i<=n.
vi,vj E

(In particular, if uL(G) u, then ut 0 for all quasipendant vertices l)t.
In terms ofeigenvectors, it is easy to explain why ma( >= p(G) q(G), a difference

that Faria refers to as the "Star Degree" of G. Suppose vl, , vt are the pendant vertices
adjacent to the quasipendant vt +1. Then it is easily seen that

u=(1,O, ,0,-1,0, ,0),

FIG. 6



226 R. GRONE, R. MERRIS, AND V. S. SUNDER

-2

FIG. 7

with in the ith coordinate, 2 -< =< t, is a set of linearly independent eigenvectors
for L(G) corresponding to X 1. We will call eigenvectors of this type Faria vectors. If
the Faria vectors arising at each of the q(G) quasipendant vertices are collected, the
resulting p(G) q(G) set is a basis of what we call the Faria space. Thus, the Faria
space accounts for the lower bound in (2). Our attention is naturally drawn to the excess
or "spurious" multiplicity of one given by

(6) s(G) m( )-p(G) + q(G),

i.e., the dimension of the space spanned by eigenvectors of L(G) corresponding to one
that are orthogonal to all the Faria vectors.

Let p p(G), q q(G), and r r(G), where r(G) n p q is the number of
vertices ofG that remain after the pendants and quasipendants have been accounted for.
We will refer to these remaining vertices as inner vertices.

Assume the vertex set of G is ordered as V Vl, vn }, where Vl, Vr are
the inner vertices, Vr / 1, ", Vr / q are the quasipendants, and Vn-p + l, ", Vn are the
pendant vertices. Assume further that { 1) + i, l)n-p+i } C7. E, <= <= q. It follows that
L(G) has the form

A X 0)L( G) X Q C
0 C I;

where A is r-by-r and Q is q-by-q. Moreover, the submatrix of C occupying its first q
columns is -Iq. Using this Iq submatrix (and its transpose in Ct) in elementary row and
column operations, we may transform L(G) In to

(7)
Lg(G) 0 0 )0 0 B

0 B 0

where B (-Iq0), and LR(G) A L is the leading r-by-r principal submatrix of
L(G) In. Hence, from (7),

m( nullity [L(G)-I,,]

(8a) n 2q- rank LR(G)

p- q + nullity LR(G).
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(Note that the "p q" in (8a) is the same "p q" that arises as the dimension of the
Faria space. The nullity of LR(G) corresponds to the eigenvectors for one that are or-
thogonal to the Faria vectors.) If we let mA( denote the multiplicity of one as an
eigenvalue ofA, then we may rewrite (8a) as

(8b) s(G) nullity LR(G) mA( ).

We now proceed to estimate the nullity of LR(G) in two different ways, giving rise
to two upper bounds for s(G). Our first estimate involves the "point independence
number" (PINmalso known as the "interior stability number" 2 of a graph. A subset
of vertices is independent if no two of them are adjacent. The PIN of G, c(G), is the
maximum size of any independent set of vertices. Thus, e.g., (Kn) and c(Ks,t)
max {s,t}. If G has (exactly) k connected components C1, "", Ck, then c(G), c(Ci). If R is the subgraph of G induced on the inner vertices, we will write
e(G) a(R).

THEOREM 3.6. Suppose G V, E) is a graph on n vertices. Then

(9) s(G)<=r(G)-e(G).

(The quantity r(G) e(G) is the covering number of R.)
Example 3.7. Let G be the graph in Fig. 8. Then p q 2, and the inner vertex

graph R is the graph on r 4 vertices having two components each consisting of a single
edge. The matrix "A" is the direct sum of two copies of 312 J2, where J2 is the 2-by-
2 matrix each of whose entries is equal to one. Alternatively, LR(G) is the direct sum of
212 J2 with itself. In any case, ma( s(G) mA( nullity LR(G) 2. On the
other hand, e(G) 2 and the upper bound in (9) is sharp. In fact,

c(x)=x(x 1)2(x-2)(x-3)(x-4)(xZ-5x+2).

Proofof Theorem 3.6. Returning to (7)-(8), it suffices to show that

rankL(G) >_- e e(G).

By definition of e, Le(G) has a principal e-by-e diagonal submatrix. Since the degree (in
G) of every vertex in R is at least two, this diagonal submatrix has full rank.

The upper bound r(G) e(G) >_- s(G) tends to be best when vertex degrees in the
induced subgraph R are small. Our next result is a bound that tends to be best when
vertex degrees are relatively large. We will say that a graph G (V, E) on n vertices is
rich if G Kn or if di + dj >= n whenever { Vi, Vj E. (In particular, the "closure" of a
rich graph is Kn.)

FIG. 8
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THEOREM 3.8. Suppose G (V, E) is a graph. Denote by R the subgraph of G
induced on its inner vertices. If each of the k components ofR is a rich graph, then
s(G) <=k.

In Example 3.7, R has two components, each of which is isomorphic to K2. Since
K2 is rich, s(G) =< 2, and the upper bounds ofTheorems 3.6 and 3.8 coincide. If, however,
G were to be Kn, then r(G) e(G) n 1, while the new upper bound is one. (In fact,
of course, m/,( 0.)

Proof. Observe that L(G) + L(G) L(Kn) nln Jn, where G is the complement
of G and Jn is the n-by-n matrix each of whose entries is one. It follows that ,,_ n
,i, -< < n, where >= >- , 0 are the eigenvalues of L((7) and (as usual) X1 >=

>= , 0 are the eigenvalues of L(G). We next observe that

,_-< max (di+dj).
vi,vj E

This follows immediately from the Ger,gorin Circle Theorem applied to the edge version
K(G). (The circles are all centered at two and their radii are di + 2, vi, vj E.)

Now, the matrix LR(G) is a direct sum, over the components C of R, of matrices
M(C) L(C) I + F(C), where F(C) is a diagonal matrix with nonnegative integer
entries, and I is an appropriately sized identity matrix. Let # >= >= /.t 0 be the
eigenvalues ofL(C), and >- >= t 0 the Laplacian eigenvalues ofits complement.
Denote by i the degree, in C, of the ith vertex of C. Then, because C is rich,- + -j 2 --1) W j

<=t-2,

for each pair (i, j) corresponding to an edge of C. Consequently, by what we have just
seen, _-< 2 so tt- >-- 2. We deduce that one eigenvalue of L(C) I is -1 and the
rest are not less than + 1. Since M(C) >= L(G) I, in the positive semidefinite sense,
the contribution ofM(C) to the rank of LR(G) is at least 1. V1

It should be remarked that Theorems 3.6 and 3.8 are most effective after paths of
length three have been pruned off (see, e.g., Example 3.4). Moreover, it is possible to
mix the techniques among the components of R.

In the subsequent discussion, it will be useful to describe eigenvectors of L(G) by
labeling the vertices ofG with the corresponding components ofthe eigenvectors. If, e.g.,
G is the tree in Example 3.5, then p(G) q(G) 0 and s(G) 1. An eigenvector
affording X is exhibited in Fig. 7. It is clear that this vector is something new. It
differs from the Faria vectors, e.g., in being constant on the orbits of the automorphism
group I’(G). Evidently, 1, 2, is a null vector of Lg(G).

We define the symmetric part of the spectrum of L(G) to be those eigenvalues,
including appropriate multiplicities, that can be accounted for by eigenvectors that are
constant on the orbits of I’(G). If, for example, I’(G) is trivial, then every eigenvalue is
"symmetric." If, on the other hand, I’(G) acts transitively on the vertices, then X 0 is
the only symmetric eigenvalue. In general, the number ofsymmetric eigenvalues ofL(G),
multiplicities included, is equal to the number of orbits of I’(G).

We will say an eigenvalue is "alternating" or that it belongs to the alternating part
ofthe spectrum if it is afforded by an eigenvector that (such as each of the Faria vectors)
is orthogonal to the characteristic functions of the orbits. If T is the tree in Example 2.7,
then X 2 is in the symmetric part and , is in the alternating part. (Every eigenvector
afforded by X is in the Faria space.)
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Example 3.9. Let T be the tree in Fig. 9 with the vertices numbered as shown.
Then, using (5), we may easily confirm that

u (1)= 1, 1, 1, 1,0,0,-2,-2,-2,-2,0,4),

u (2)= 1, 1,-1,-1,0,0,-2,2,-2,2,0,0),

u 3)= 1, 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
and

//(4)= (0,0, 1,-1,0,0,0,0,0,0,0,0),
are orthogonal eigenvectors corresponding to , 1. On the other hand (in the notation
of Theorems 3.6 and 3.8), R consists ofthe subgraph induced on { vi" 7 _-< _-< 10 }, both
components of which are rich. (Alternatively, a(R) 2.) Thus,

mr( P(T) q(T) + s(T)

=4-2+s(T)

_-<2+2=4.

Observe that u1) is symmetric, u(3) and u(4) are Faria vectors, whereas u2) is a yet to be
explained eigenvector that is alternating but not in the Faria space. (Note that both u)

and u2) arise from the null space of the matrix LR(G).)
It is a straightforward procedure to determine the symmetric part of the spectrum

[10 ]. Any symmetric eigenvector must be in the space spanned by the characteristic
functions of the orbits. The graph T in Fig. 9, for example, has six orbits. Hence,
cr(x) f(x)g(x), wheref(x) has degree six accounting for the symmetric part of the
spectrum) and g(x) has degree 12 6 6, accounting for the alternating part. Note
that f(x) xf(x) since the eigenvector corresponding to X 0 is constant on all
vertices. To obtain f(x), we perform a similarity transformation of the following type.
Suppose the m orbits of I’(G) have sizes k, k2, km and characteristic functions
w, Wm. Then the vectors uj kf/2wj, <= j <= m, are orthonormal. Let U be any
orthogonal matrix having u in column j, =< j =< m. Then UtL(G) U is the direct sum
of an m-by-m matrix A (affording the symmetric part of the spectrum) and an (n m)-
by-(n m) matrix B. We note that A can easily be obtained as follows. Order the vertices
ofG by orbits and partition L(G) into m e blocks ofsizes ki-by-k. Then the (i, j)-element
ofA is obtained by summing the elements in the (i, j)-block of L(G) and dividing by
(kikj) 1/2.
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Example 3.10. Let T be the tree in Fig. 9. Then

Hence,

L(T)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

-1 ’i 0 0
0 0 -1 -1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
0

-1
0
0
0
0

0
3
0

-1
0
0
0

-1
0
2
0

-1
0
0

0
-1
0
2
0

-1
0

0
0

-1
0
2
0

-1

0
0
0

-1 0
0 -1
2 -1

-1 3

-V 0 0 0 0
-/- 3 -1 0 0 0

A 0 -1 2 -1 0 o
0 0 -1 2 -V 0
0 0 0 -v5 3
0 0 0 0 -1

0 0
0 0
0 0

0
0
0

-1

andf(x) det (x/- A) x(x- 1)(x 4)(x 7x2 + 12x 3). It turns out that
g(x) CT(X)/f(x)= (X-- 1)3(X3- 7X2+ 12x- 1).

Returning to (6), we observe (since r(G) >= s(G)) that n ma(1) >-_ 2q(G). We
claim, in fact, that ma[0, >_- q(G) and ma( 1, >= q(G), where ma(I) denotes the
number of eigenvalues of L(G), multiplicities included, belonging to the interval I.

THEOREM 3.1 1. Let G be a graph. Then ma[ O, >-_ q(G) and ma( 1, >-_ q(G).
It follows from (2) and Theorem 3.11 that ma[0, 1] >_- p(G) _-< ma[ 1, ). (This

fact may also be proved by observing that Ip, p p(G), is a principal submatrix ofL(G),
and using the Cauchy interlacing inequalities.) A result similar to Theorem 3.11 for
ma(O, 2) and ma(2, c ), when G is a tree, can be found in Corollary 4.3 below.

Before attempting a proofofTheorem 3.11 we require some background concerning
the relationship of the sequence of leading principal subdeterminants of a symmetric
matrix to the number of positive and negative eigenvalues of the matrix. Suppose that
A is n-by-n, symmetric and nonsingular. Let a0 and let ak det (Ak) where Ak is
the leading principal k-by-k submatrix ofA. It is well known (or easily proven by induction
on n) that the number ofnegative eigenvalues ofA is equal to the number ofsign changes
in the sequence (ao, a, an). We note that this sequence may contain intermediate
zeros, in which case we can shorten the sequence by deleting the zeros and the theorem
will still hold. As an immediate consequence we have the following lemma.

LEMMA 3.12. Suppose that A A is 2q-by-2q and that det (A2k) (--1)k, k
l, q. Then A has q positive and q negative eigenvalues.

Another well-known fact we require relates the spectrum of a principal submatrix
of symmetric A to the spectrum ofA.

LEMMA 3.13. Suppose that B is a principal submatrix ofthe symmetric matrix A
and that a is real. Then the number ofeigenvalues orb that are greater than (respectively,
greater than or equal to, less than, less than or equal to) a is a lower bound for the
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number ofeigenvalues ofA that are greater than (respectively, greater than or equal to,
less than, less than or equal to) .

Proofof Theorem 3.11. We may assume without loss of generality that the quasi-
pendant vertices of G are numbered 1, 3, ..., 2q 1, and that vertex 2k is a pendant
vertex adjacent to vertex 2k 1, for each k 1, ..., q. Let B be the leading principal
2q-by-2q submatrix of L(G). In view of Lemma 3.12, it will suffice to show that B has
q eigenvalues greater than one and q eigenvalues less than one. To do this it will suffice
to show that A B I2q satisfies the hypotheses of Lemma 3.12. Note that A has
the form

(d-l) -1 0 0
-1 0 0 0 0 0

0 (d3-1) -1 0
0 0 -1 0 0 0

0 * 0 (dzq-
0 0 0 0 0

and that the even numbered rows (corresponding to pendants) ofA have a single nonzero
entry. We assume an inductive hypothesis on q, and hence it will suffice to prove that
det (A) (-1 )q. If we use elementary row and column operations corresponding to
adding multiples of even numbered rows and columns to other rows and columns, then
A can be transformed into a direct sum of m copies of-P, where P is the 2-by-2 per-
mutation matrix corresponding to a transposition. Hence det (A) [det (-P)]q (-1 )q
and the proof is finished. V1

In Theorem 3.1, we modified the connected sum idea from Theorem 2.5 and showed
that m( m/( when H G V P3, some graph obtained from G and P3 by joining
any vertex of G to a pendant vertex of P3. Denote by G P3 some graph obtained from
G and P3 by joining any vertex of G to the middle (quasipendant) vertex of P3.

PROPOSITION 3.14. Let G be a graph on n vertices and supposeH G P3. Then
m( <= mi( <= mG( + 2, and each ofthe three possibilities for m14( can occur.

Proof. Write m( m. Assume the numbering of vertices to be such that the
last vertex of G and the first vertex of P3 have been joined to form H. Let M be an
(m )-dimensional subspace ofker (L(G) In) such that vn 0 for all v e M. Then
{ v (R) (0, a, -a) v e M, a e R } is an m-dimensional subspace of ker (L(H) In + 3).
Hence, m =< m/( ).

As in the proofs of Theorems 2.5 and 3.1, let L L(G), L’= L(P3), and
L(H). Then L (L 4- L’) + A, where A is the rank one matrix whose only nonzero
entries amount to

in rows and columns n and n + 1. Then

rank (L-In+3)=rank ([(L-In)4(L’-I3)]+A)

>-rank [(L-In)4(L’-I3)]-

rank (L In) + 1,
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SO

m/( nullity (L In +
-< n + 2 rank L In)

The last assertion is demonstrated by the following examples: (1) Let G P3. Form
G P3 by joining a pendant vertex of G to the "middle" vertex of P3. Then P3
G can be pruned off as in Example 3.2 and mn(1)= me(l). (2) Let G P2. Then
me( )= 0 while the characteristic polynomial of G--- P3 (pictured in Fig. is
x(x- )(x 7xz + 13x- 5). (3) Let Gbe the tree in Fig. 10. Form G----’P3 byjoining
the open vertex to the middle of P3. Then G P3 is the tree in Fig. 9 (Example 3.9).
In this case, me( 2 and mn( 4.

We now return to the "spurious multiplicity" s(G) in (6). We know that the mul-
tiplicity of , in the symmetric part of the spectrum of L(G) accounts for part but
not (in general)all ofs(G). (See Example 3.9). In Theorems 3.6 and 3.8 we found upper
bounds for s(G). We conclude this section with a discussion of possible lower bounds
when G is a tree. We begin by defining an equivalence relation on the set Q of quasi-
pendants of a tree T. If Vl, I)2 E Q, we say v 1)2 if the distance d(v, 1)2) from 1)1 to 1)2
is an (integer) multiple of three, and if the degree dt of vertex vt is two whenever vt is on
the unique path from v to v2 and d(Vl, vt) =- 0 (mod 3).

PROPOSITION 3.15. Let Q be the set ofquasipendants ofa tree T. Suppose C, ...,
Ct are the equivalence classes ofQ and that their respective cardinalities are q, qt.
Then s(T) >= , qi) t.

The somewhat laborious proof of this result involves finding a principal submatrix
of L(G) (see (7)) of sufficiently large nullity. This submatrix turns out to be a direct
sum of 2 I2 J2 with itself several times. We omit the computational details.

Example 3.16. Let Tbe the tree in Fig. 9. Then Q consists ofthe vertices numbered
5, 6, and 11. In this case, Q consists of a single equivalence class of size q q(G) 3,
and Proposition 3.15 asserts that s(T)>-2. Since p(T)- q(T)= 5- 3 2, and
mr(l) 4 (Example 3.9), we know that s(T) 2. In other words, Proposition 3.15 is
strong enough to capture the existence (but not the nature) of eigenvectors u) and u2)

in Example 3.9.
Example 3.17. The tree T in Fig. 11 is exhibited with an eigenvector affording

1. Indeed, for this tree, mr(l) s(T), p(T) q(T), the lower bound given by
Proposition 3.15 is zero (no two quasipendants are equivalent), the upper bound given
in (9) is two, and Theorem 3.8 does not apply. It is an abundance of such examples

FIG. 10
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that leads the authors to believe there can be no simple graph theoretic interpretation
for mr(1).

4. Surgery on graphs. Techniques that allow one graph to be transformed into
another with predictable effects on the eigenvalues have already proved useful. (See, e.g.,
Examples 2.6 and 3.2.) The main purpose of this section is to examine the influence of
"moving an edge" in the geometric senses of(i) removing it without affecting its endpoints,
(ii) removing it and identifying its endpoints, (iii) disconnecting one pair of vertices and
joining some other pair. (Note that we have already addressed, to some small extent, the
removal of a pendant edge and both of its endpoints. See Example 2.6.) Our first result
is part of the "Laplacian Folklore."

THEOREM 4.1. Let G be a graph on n vertices. Suppose G is a (spanning) edge
subgraph of obtained by removing just one of its edges. Then the n 1) largest
eigenvalues ofL G) interlace the eigenvalues ofL ).

Proof. It suffices to prove that the nonzero eigenvalues interlace and for this we
may consider the edge version K(G). The result follows from the Cauchy interlacing
inequalities because K(G) is a principal submatrix of K((). []

Note that if a pendant edge of G is removed in Theorem 4.1, then L(G) is a direct
sum of L(G’) and (0), where G’ is obtained from ( by removing both the pendant edge
and vertex. Thus, the nonzero eigenvalues of L(G) and L(G’) are the same. We have
proved the following corollary.

COROLLARY 4.2. Suppose v is a pendant vertex ofthe graph . Let G be the graph
obtainedfrom by removing v (and its edge). Then the eigenvalues ofL( G) interlace
the eigenvalues ofL(G).
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We can use Corollary 4.2 to obtain a result similar to Theorem 3.11. Reviving the
notation there, recall that ma(I) denotes the number ofeigenvalues ofL(G), multiplicities
included, belonging to the interval I.

COROLLARY 4.3. IfT is a tree with diameter d, then

mr(0, 2) >- [d/2] <=mr(2, ),

where square brackets indicate the greatest integerfunction.
Proof. First consider the case that T Pa +1. We can easily show that K(T)

2Ia + A (T*), where T* Pa is the line graph of T. Since the spectrum of A (T*) is
symmetric about the origin, the spectrum of K(T) is symmetric about two, i.e., the
nonzero spectrum of L(T) is symmetric about two. (Together with Theorem 2.1 (ii),
this gives another proof of Corollary 2.8(i).) Since mr(2) =< 1, the result is established
in this case. Now, any tree T with diameter d contains Pa +1 as a subtree. Thus, T can
be reduced to Pa+l by a sequential removal of pendant vertices. The result follows from
the interlacing established in Corollary 4.2. (See Lemma 3.13.)

This seems an appropriate place to recall a striking result of Fiedler [8, p. 612 ]"
Suppose two is an eigenvalue ofL(T) for some tree T (V, E). Let u be an eigenvector
of L(T) corresponding to two. Then the number of eigenvalues of L(T) greater than
two is equal to the number of edges vi, vj E such that uiuj > 0, whereas the number
of eigenvalues of L(T) less than two is equal to the number of edges such that uiu < O.
(Note that Theorem 2.1 (iii) guarantees ui 4 0 for all i.) If, for example, Tis the tree in
Fig. 4 (with u exhibited), the six pendant edges are all of the type uiuj < 0, while the
remaining three edges all yield uiu > 0. Thus, exactly six eigenvalues of L(T) are less
than two, whereas exactly three are greater than two. In this case, d 4 and d/2 2.

In another pioneering paper [7], Fiedler introduced the algebraic connectivity
a(G) kn- of G. He proved that the algebraic connectivity of a path,

a(P,) 2( -cos (r/n)),

is a lower bound for a(G) for any connected graph G on n vertices. As another application
of Corollary 4.2, we recover a related upper bound stated in the context of A (G*) by
Doob [4, p. 187].

COROLLARY 4.4. Let T be a tree on n vertices with diameter d. Then

a( T) <-_2(1-cos (r/(d+ 1))).

Proof. Observe that T can be built up from Pa+l by attaching pendant vertices. It
is seen from Corollary 4.2 that this building process does not increase the algebraic
connectivity.

COROLLARY 4.5. Let T be a tree on n >= 6 vertices. If T 4 *n, then a(T) < 0.49.
Proof. As in the proof of Corollary 4.4, we may build T on the foundation of P4.

After attaching two pendant vertices, we arrive at a (possibly intermediate) stage of a
tree T2 with six vertices. Moreover, T2 4: *6. There are only five possibilities for T2. The
one with maximum algebraic connectivity is the "near star" in Fig. 12 (b) with algebraic
connectivity 0.485.... Repeated applications ofCorollary 4.2, as more pendant vertices
are attached, proves that a(T) _-< a (T2). [--]

Our next result is reminiscent of popular newspaper accounts of the recombinant
techniques of molecular genetics.

THEOREM 4.6. Let G (V, El) be a graph and G2 (V, E2) a graph obtained
from G by removing an edge and adding a new edge that was not there before. Suppose
a >= >= an are the eigenvalues ofL(G) and >= >= n are the eigenvalues of
L( G2 ). Then Ol - i+ and {Ji - ai+ l, =< < n.
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FG. 12(a) FIG. 12(b)

Proof. From the perspective of the edge version, K(GI) and K(G2) share an
(m- 1)-by-(m- l) principal submatrix, where rn o(El)= o(E2) is the common
cardinality of the two edge sets. Once again, the result is immediate from Cauchy inter-
lacing.

We now come to a less trivial situation in which the vertices at the ends of an edge
are identified, in the process of which the edge is "collapsed" (or "contracted") and
disappears (without producing a loop). In fact, Corollary 4.2 can be redrafted as a special
case of this procedure, the case in which a pendant edge is collapsed. Our next result is
a consequence of the Monotonicity Theorem 12 ].

LEMMA 4.7. Let A, B, and C be n-by-n Hermitian matrices satisfying A B + C.
Denote the eigenvalues ofA and B by a >= >- Oln and 31 >= >= 3,,, respectively. If
C has exactly positive eigenvalues, then k >- ak + t, <= k <= n t.

COROLLARY 4.8. Let A, B, and C be n-by-n Hermitian matrices satisfying A
B + C. Denote the eigenvalues ofA and B by a >= >= an and >- >= ,
respectively. IfC has exactly one positive eigenvalue and exactly one negative eigenvalue
(so that rank C 2), then ak >= k+l and >= Ck+, <= k < n.

THEOREM 4.9. Let I?, ff) be a graph with { 1, 2 } .. Suppose does
not lie on a circuit of length three. Let G (V, E) be the graph obtained from by
deleting (i.e., "collapsing") and identifying vertices 1 and 2. If 1 >- >= ,n+
0 are the eigenvalues of L() and 1 >= >- , 0 are the eigenvalues ofL
L( G), then

(i) i >= i+1, <= <- n, and
(ii) i>--Xi+l, l_i<n.
Example 4.10. Let t be the graph in Fig. 12 (a) with spectrum (approximately)

4.63 > 3.23 > 2.14 > 1.00 > 0.68 > 0.32 > 0.00.

If the 1-2 edge is collapsed, the result is the graph G in Figure 12 (b) with spectrum

5.09 > 2.43 > 1.00 1.00 > 0.49 > 0.00.

Proofof Theorem 4.9. Let Lo (0) -i- L. Then L L0 + A, where A (Aj) is a
3-by-3 block partitioned matrix:

All
-1 -k

where k + is the degree (in () of 1; AI2 is the 2-by-k matrix whose first row consists
entirely of- ’s and whose second row is all + l’s," A2 A2, and the other blocks are
appropriately sized zero matrices. (In particular, A22 and A33 are square blocks, whereas
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A23 is k-by-(n k ).) Suppose first that k > 0. Then it suffices to prove that the
inertia ofA is 1, 1, n ), and invoke Corollary 4.8. Let Xbe the (n + )-square matrix

-k- 0
-k

k 0 0 0
0 k 0 0
0 0 k 0

0 0 0 k

Then we may confirm that each column ofX is an eigenvector for A. More particularly,
X l, the first column, corresponds to the eigenvalue , k + 2; X2 corresponds to ,
-k; and X Xn+ all correspond to X 0

The degenerate case k 0 has already been established in Corollary 4.2. In fact, we
can recover that stronger result here too since, in this case, A >= 0 (in the positive semi-
definite sense) and rank A 1. In this case, (i) is proved by appealing to Lemma 4.7,
and i ki, =< -< n, because >= L0.

It is clear from Example 4.10 that the strong inequalities ; >= hi, -< =< n, may
not hold for a general edge collapse, even for trees. Indeed, as the next result shows,
Example 4.10 is not an isolated example.

THEOREM 4.1 1. Let " be a tree. Suppose is an edge of each ofwhose endpoints
has degree at least three. If T is obtainedfrom by collapsing , then > 1.

Proof. It is somewhat more convenient to deal with the matrix B(T) D(T) +
A(T) that, in view of Proposition 2.2 affords the same spectrum as L(T). Let t be the
positive Perron eigenvector of B(7), normalized so that Ilall 1. The theorem will be
proved by producing a unit vector u of size n such that (B(T) u, u) >

Assume Y n, n + } and write a =/n and b bn + 1. Then and its immediate
neighbors are pictured in Fig. 13, where the labels represent corresponding coordinates
of ft. Define unby Ui’- i, <= <nand un a, where a (a 2 + b2)/2. Note that
u is a unit vector. Observe also that

(B( T)u,u) , (ui+ uj) 2,

where the sum extends over those pairs (i, j) such that {/)i, l)j } is an edge of T. Note
that many of the terms in , (B( 7)t, ti) and (B( T)u, u) are the same. Denote the
sum of these common terms by c. Then

l (B()b, b)
j k

c+ ., (pi+a)+(a+b)+ , (bWxi) :z

i=1 i=1

FIG. 13
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while

j k

(B(T)u,u)=c+ , (pi+c02+ ] (O/q"Xi) 2.
i=1 i=1

To show (B(T) u, u) > 1, we take their difference

j k

2 , pi(a-a)+2 , xi(a-b)+(a-b)Z+(k-2)a+(j-2)b2

i=1 i=1

and observe that j + tin, the degree of n, while k + =dn +1 >= 3. Hence, every
term is nonnegative, and the first j + k terms are all positive.

It should be noted that the same reasoning will prove a slightly more general assertion:
Let 7 be a tree. Suppose 1 and 2 are vertices each of degree at least three. Suppose the
unique path from 1 to 2 is homeomorphic to an edge (i.e., apart from the endpoints,
each vertex on the path has degree two). Let T be the tree obtained by collapsing the
entire path. Then kl > ,1. (Ofcourse, ifl were a pendant vertex, we could have deduced

Conjecture 4.12. Let 7 be a tree with (Laplacian) spectrum 1 >--"" >= ’n >,
+1 0. Let T be a tree obtained from 7 by collapsing an edge. Then ,,_ ->- ),-1

a(T), the algebraic connectivity of T.
Example 4.13. Let ( C4 with spectrum (4, 2, 2, 0). If an edge of t is collapsed,

the result is G C3 with spectrum (3, 3, 0). In this case, n 3 and , 2 < ),2 3.
Thus, Conjecture 4.12 fails, even for a bipartite with a circuit.

For general edge collapsing in trees, empirical evidence suggests that departure from
interlacing occurs "near the top." We conclude by showing that

PROPOSITION 4.14. Let T be the tree obtainedfrom by collapsing an edge
{ 1, 2}. Let d be the minimum ofthe degrees dl and d2. Then IX1 <= d + <=
kl. Consequently, 1 <= 2.

Proof. We revive the notation used in the proof of Theorem 4.9, with d k +
1. Then

IX, x, IILI[ t0111
=< IlL-Loll

Now, ,1 is bounded below by the largest main diagonal entry of L(7). This is at
least d + unless d is the largest degree of any vertex of 7. If it is, then dl d2 k +
1, and

-1 k+l

is a principal submatrix of L(7). But, the eigenvalues of B are k and k + 2. Thus, by
Cauchy interlacing, >= k + 2 d + 1. 1--]

Acknowledgments. The authors are grateful for useful conversations with Stephen
Pierce and William Watkins. Many of the examples were worked out using C. Moler’s
MATLAB, and many ideas occurred to us while examining tables of tree eigenvectors
prepared by David Powers [14].
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Abstract. For a given asymptotically stable linear dynamic system it is often of interest to determine
whether stability is preserved as the system varies within a specified class of uncertainties. If, in addition, there
also exist associated performance measures (such as the steady-state variances of selected state variables), it is
desirable to assess the worst-case performance over a class of plant variations. These are problems of robust
stability and performance analysis. In the present paper, quadratic Lyapunov bounds used to obtain a simultaneous
treatment of both robust stability and performance are considered. The approach is based on the construction
of modified Lyapunov equations, which provide sufficient conditions for robust stability along with robust
performance bounds. In this paper, a wide variety of quadratic Lyapunov bounds are systematically developed
and a unified treatment of several bounds developed previously for feedback control design is provided.

Key words, robust analysis, stability, performance, Lyapunov equations, structured uncertainty
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1. Introduction. Unavoidable discrepancies between mathematical models and real-
world systems can result in degradation of control-system performance including insta-
bility [1 ], [2]. Ideally, feedback control systems should be designed to be robust with
respect to uncertainties, or perturbations, in the plant characteristics. Such uncertainties
may arise either due to limitations in performing system identification prior to control-
system implementation or because of unpredictable plant changes that occur during
operation. Thus robustness analysis must play a key role in control-system design. That
is, given an existing or proposed control system, determine the performance degradation
due to variations in the plant.

In performing robustness analysis there are two principal concerns, namely, stability
robustness and performance robustness. Stability robustness addresses the qualitative
question as to whether or not the system remains stable for all plant perturbations within
a specified class of uncertainties. A related problem involves determining the largest class
of plant perturbations under which stability is preserved. Once robust stability has been
ascertained, it is of interest to investigate quantitatively the performance degradation
within a given robust stability range. In practice it is often desirable to determine the
worst-case performance as a measure of degradation.

The concern for both robust stability and performance can be traced back to the
earliest developments in control theory. Design specifications such as gain and phase
margin have traditionally been used to gauge system reliability in the face of uncertainty.
In the modern control literature considerable effort has focused on rigorous robustness
analysis and design techniques in a variety of settings. Analysis and synthesis results have
been developed for both state-space and frequency-domain plant models to address struc-
tured parameter variations as well as normed-neighborhood uncertainty [3 ]-[ 7].

The present paper is concerned solely with the analysis of structured real-valued
parameter uncertainty within the context of state-space models. One motivation for such
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problems is illustrated by the examples given in [1] and [2]. These examples show that
standard linear-quadratic methods used to design either full-state feedback controllers
or dynamic compensators may result in closed-loop systems that are arbitrarily sensitive
to structured real-valued plant parameter variations. A particularly effective technique
for analyzing robust stability is to construct a quadratic Lyapunov function V(x)
xrPx, which guarantees stability of the system as the uncertain parameters vary over a
specified range. This technique has been extensively developed for both analysis and
synthesis (see, e.g., 8 ]- 37 ).

Although both robust stability and performance are of interest in practice, most of
the literature involving quadratic Lyapunov functions is confined to the problem of
robust stability. A notable exception is the early work of Chang and Peng [9 ], which
also provides bounds on worst-case quadratic performance within the context of full-
state-feedback control design. In the present paper, we further extend the approach of
9 to obtain a series of results for analyzing both robust stability and performance. As

will be seen, these results also provide substantial unification of more recent results per-
taining to robust stability alone.

To illustrate the basis for our approach, consider the system

(1.1) 2( t) (A + AA )x( t) + Dw( t), t[0, ), x(0) 0,

(1.2) y(t)=Ex(t),

where x(t) is an n-vector, A is an n n matrix denoting the nominal dynamics matrix,
AA denotes an uncertain perturbation ofA belonging to a specified set //, Dw(t) is (for
now) a white noise signal of intensity V= DD T, and y(t) is a q-vector of outputs. System
1.1 ), (1.2) may, for example, denote a control system in closed-loop configuration.

For the system (1.1) the performance measure involves the steady-state second
moment of the outputs y(t). In practice the diagonal elements of the second moment
are measures of the ability of the external disturbances Dw(t) to excite specified states.
In the presence of uncertainties AA, it is of interest to determine the worst-case steady-
state values of the second moments of selected states. Thus, we define the scalar perfor-
mance criterion

(1.3) Js(ll)= sup lim supE(yT(t)y(t)},
AA I1

where E denotes expectation and lim sup is a technicality o ensure that Jx(//) is a well-
defined quantity vn when A + AA has ignvalus in tla closed fight half plane. To
evaluate (1.3) define the second-moment matrix

Q(t)_-aE [x(t)xr(t)],
which satisfies the Lyapunov differential equation

(1.4) Oaa(t)=(A+AA)QaA(t)+QaA(t)(A+AA)r+ V,

so that (1.3) becomes

(1.5) Js() sup lim sup trQaA(t)R,
AA oI1

where R ErE. To guarantee both robust stability and performance we consider modified
algebraic Lyapunov equations of the form

(1.6) O=AQ+QAr+f(Q)+ V,
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where ft(- is a matrix operator satisfying

1.7 AAQ + QAA r <= ft(Q)
for all AA o//and all nonnegative-definite matrices Q. The ordering in 1.7 is defined
with respect to the cone of nonnegative-definite matrices. Our results are based on the
following robust stability and performance result (for convenience, assume that V is
positive definite). If there exists a positive-definite solution Q to (1.6), where ft(. satisfies
(1.7), then A + AA is asymptotically stable for all AA at? and, furthermore,

(1.8) Js(’) -< tr QR.

The robust stability result is a direct consequence of Lyapunov theory, while the perfor-
mance bound (1.8) follows from the fact that since A + AA is asymptotically stable,
QaA = limt-*oo QaA(t)exists, is independent of QaA(0), and satisfies

(1.9) O=(A+AA)QaA+Qaa(A+AA)r+ V.

Now subtracting (1.9) from (1.6) yields

0 (A + AA )( Q- QAA) 4r Q- Qaa)(A + AA r+ f(Q)_(AAQ+ QAA r) + V,

which, by (1.7) and the fact that A + AA is stable, implies

(1.10) QA<-Q.

Now 1.5 and (1.10) yield the bound (1.8).
Since the ordering induced by the cone of nonnegative-definite matrices is only a

partial ordering, it should not be expected that there exists an operator ft(. satisfying
(1.7), which is a least upper bound. Indeed, there are many alternative definitions for
the bound ft(o ). To illustrate some of these alternatives, assume for convenience that
AA is of the form

(1.1 1) AA #lA, [al[ =<61,

where a is an uncertain real scalar parameter assumed only to satisfy the stated bounds,
and A is a known matrix denoting the structure of the parametric uncertainty. The
bound f(. utilized in [9] and [12] for full-state-feedback design was chosen to be

(1.12) ft(Q)=611A1Q+QAr l,

where denotes the nonnegative-definite matrix obtained by replacing each eigenvalue
by its absolute value. More recently, the quadratic (in Q) bound

(1.13) ft( Q) 61[AzA r + QAAQ]
has been considered, where Az, Ae are a factorization ofA of the form A1 AzAe.
Bound 1.13 was studied in 29 for robustness analysis and in 17 ], 25 ], 28 ], 30 ],
33 ], and 36] for robust controller synthesis. A third bound that has also been considered

is the linear (in Q) bound

(1.14) ft( Q) 6, aQ + a-lAQA ],

where a is an arbitrary positive scalar. As shown in [33], bound (1.14) arises from a
multiplicative white noise model with exponential disturbance weighting. Control-design
applications of bound (1.14) are given in [23], [27], [33]-[35]. The principal contri-
bution of the present paper is thus a unified development of bounds 1.12)-(1.14) for
both robust stability and performance analysis. In addition, we present a systematic
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approach that pays careful attention to the structure ofthe uncertainty set oh. For example,
we show that bound (1.12) guarantees stability over a rectangular uncertainty set while
(1.14) is most naturally associated with an ellipsoidal region. Furthermore, to provide a
methodical development, we identify three classes of bounds (Types I, II, and III) that
operate by exploiting, respectively, the symmetry of AAQ + QAA r, the structure of Q,
and the structure ofAA. This approach clarifies the relationships among different bounds
and suggests several new bounds. The principal goal in this regard is to demonstrate the
richness of quadratic Lyapunov bounds to stimulate future developments.

Finally, the present paper also considers an alternative cost functional for robust
performance analysis. Specifically, in place of white noise disturbances, we reinterpret
w(t) in 1.1 as a deterministic L2 signal as in H theory [6]. By imposing an L norm
on the output y(t) (rather than an L2 norm as in H theory), the corresponding per-
formance measure is given by (see [38 ])

(1.1) sup lim sup kmax (QaA(t)R),
AA# t--*"

in contrast to (1.5). Both performance measures Js(ll) and Jz(//) are considered in
the paper.

The contents of the paper are as follows. After summarizing notation later in this
section, the Robust Stability Problem, Stochastic Robust Performance Problem, and
Deterministic Robust Performance Problem are introduced in 2. In 3 the basic result
guaranteeing robust stability and performance (Theorem 3.1 is stated. This result is
easily stated and forms the basis for all later developments. A dual version of Theorem
3.1 (Theorem 4.1 provides additional sufficient conditions and clarifies connections to
traditional robust stability results. The bound (.) and its dual A(. are given concrete
forms in 5. In 6, the bounds of 5 are merged with Theorem 3.1 to yield the main
results guaranteeing robust stability and performance (Theorems 6.1-6.5 via modified
Lyapunov equations. In 7 we analyze the modified Lyapunov equations with regard
to existence, uniqueness, and monotonicity of solutions. Additional bounds are derived
in 8 by utilizing a recursive substitution technique, while both upper and lower bounds
are obtained in 9. Finally, illustrative examples are considered in 10 and 11.

Notation. Note: All matrices have real entries.

R, RrXs, r, IF

lr
asymptotically

stable matrix
5

Z >- Z2
Z > Z2
trZ, Z r

x(z)
kmax (Z)

I1"
I1" I1

real numbers, r s real matrices, r, expectation,
r r identity matrix,
matrix with eigenvalues in open left half plane,

r r symmetric matrices,
r r symmetric nonnegative-definite matrices,
r r symmetric positive-definite matrices,
Z Z2 e r, Z, Z2 e ,
Z Z2 e P, Z, Z2 e 5r,
trace of Z, transpose of Z,
eigenvalue of matrix Z,
maximum eigenvalue of matrix Z having real spectrum,
Euclidean vector norm,
spectral matrix norm (largest singular value),
Frobenius matrix norm.
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2. Robust stability and performance problems. Let o//c n denote a set of per-
turbations AA of a given nominal dynamics matrix A n . Throughout the paper it
is assumed that A is asymptotically stable and that 0 o//. We begin by considering the
question of whether or not A + AA is asymptotically stable for all AA

ROBUST STABILITY PROBLEM. Determine whether the linear system

(2.1) (t) (A + AA)x(t), t6[0, ),

is asymptotically stable for all AA 6

To consider the problem of robust performance it is necessary to introduce external
disturbances. In this paper we consider both stochastic and deterministic disturbance
models. The stochastic disturbance model involves white noise signals as in standard
LQG theory, whereas the deterministic disturbance model involves L signals as in H
theory [6]. By defining an appropriate performance measure for each disturbance class
it turns out that we can provide a simultaneous treatment of both cases.

We first consider the case of stochastic disturbances. In this case the robust perfor-
mance problem concerns the worst-case magnitude of the expected value of a quadratic
form involving outputs y(t) Ex(t), where E qn, when the system is subjected to
a standard white noise disturbance w(t) with weighting D na.

STOCHASTIC ROBUST PERFORMANCE PROBLEM. For the disturbed linear system

(2.2) (t)=(A + AA)x(t)+Dw(t), t[0, ), x(0)=0,

(2.3) y(t) Ex(t),

where w(. is a zero-mean d-dimensional white noise signal with intensity Ia, determine
a performance bound/3s satisfying

(2.4) Js(ll) A sup lim sup:{lly(t)[l2} =<Bs.

The system (2.2), (2.3) may denote, for example, a control system in closed-loop
configuration subjected to external white noise disturbances for which y(t) may be the
state regulation error. Such specializations are not required for this development, however.

Ofcourse, since D and E may be rank deficient, there may be cases in which a finite
performance bound/3s satisfying (2.4) exists while (2.1) is not asymptotically stable over
h’. In practice, however, robust performance is mainly of interest when (2.1) is robustly
stable. In this case the performance Js(ll) is given in terms of the steady-state second
moment of the state. The following result from linear system theory will be useful. For
convenience define the n n nonnegative-definite matrices

R a=ET"E, VDD7".

LEMMA 2.1. Suppose A + AA is asymptotically stablefor all AA 11. Then

(2.5) Js(//) sup tr QAAR,
AA oll

where the n n matrix Qaa A limt-oo E[x(t)xT(t)] is given by

(2.6) QzxA e (A + AA)tVe(A + ZXA)rt dt,

which is the unique, nonnegative-definite solution to

(2.7) O=(A+AA)QzxA+QzxA(A+AA)7+ V.
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To state the Deterministic Robust Performance Problem some additional notation
is required. For a measurable function z: [0, DO -- R define

(2.8) z(. a,z a= z t) 2 dt

which is an L: function norm with a Euclidean spatial norm, and define

IIz(’)ll,2ess. sup IIz(g)ll2,
t[0,)

which is an L function norm with a Euclidean spatial norm. We now reconsider (2.2)
with w(. intereted as a square-integrable function. In this case the robust performance
problem concerns the worst-case L norm of the output y(t).

DETERMINISTIC ROBUST PERFORMANCE PROBLEM. For the disturbed linear system
(2.2), (2.3), where []w(. ,2 5 1, determine a performance bound satisfying

(2.9) j(og)a sup sup [y(.)[2 <9.
AAU ][w(’)]]2,2

The performance measure J(O) in (2.9) is given by the following result.
LEMMA 2.2. Suppose A + AA is asymptotically stablefor all A . Then

(2.0) J(Ou)= sup Xa (QR),

where QA is the unique, nonnegative-definite solution to (2.7).
Proof. The result is an immediate consequence of Theorem (b) of 38 ].
Remark 2.1. Although Js(O) and Jo() arise from different mathematical settings

they are quite similar in form. Note that in general J() Js(), and Jo()=
Js() if rank R 1.

Remark 2.2. In Lemma 2.2 QA can be viewed as the controllability Gramian for
the pair (A + AA, D) rather than the state covafiance. Note that Q is independent of
x(0) and QA(O).

Remark 2.3. The stochastic performance measure Js() given by (2.5) can also
be written as

(2.11) Js() su

which involvcs the L norm of the impulse response of (2.2), (2.3). This stochastic
pcrformancc measure can thus also bc given a deterministic intcrctation by lctfing
w(t) denote impulses at time 0. For details of this formulation scc [46, p. 331 ].

In the present paper our approach is to obtain robust stability as a consequence of
sucicm conditions for robust performance. Such conditions arc developed in the fol-
lowing sections.

3. Sueiem conditions for robus stability and performance. The key step in ob-
taining robust stability and performance is to bound the unccain terms AA
in the Lyapunov equation (2.7) by means of a function (Q). Thc nonncgativc-dcfinitc
solution Q ofthis modified Lyapunov equation is then guaranteed to bc an upper bound
for Q. Thc following easily provcd result is fundamental and forms the basis for all
later developments. The rcsult is based on Lyapunov function thco as applied to linear
systems. For our puoscs, a suitable statcmcm of this result is given by Lcmma 12.2 of
39 ]. Essentially this result states that if the matrix equation 0 F + F + SS has
a solution F 0 and (, S) is stabilizablc, then is an asymptotically stable matrix. Of
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course, (if, S) is stabilizable (regardless of ) if S has full row rank, and we note (see
[39, Thm. 3.6]) that if (, S) is stabilizable then so is (, [SSr + H] /2) for all non-
negative-definite matrices H.

THEOREM 3.1. Let 2 [n ._ n be such that

(3.1) AAQ+QAAr<=2(Q), AAll, on,
and suppose there exists Q satisfying

(3.2) O AQ + QA r+ f( Q) + v.
Then

3.3 (A + AA, D) is stabilizable, AA ll,

ifand only if
(3.4) A + AA is asymptotically stable, AA ql.

In this case,

(3.5) Qaa -< Q, AA

where QzxA n is given by (2.7), and

(3.6) Js(qg) _-< tr QR,

(3.7) JD(/’) --< )kmax (QR).

In addition, if there exists AA ql such that (A + AA, D) is controllable, then Q is
positive definite.

Proof. We stress that in (3.1), Q denotes an arbitrary element of n, whereas in
(3.2) Q denotes a specific solution ofthe modified Lyapunov equation. This minor abuse
of notation considerably simplifies the presentation. Now note that for all AA Rnn,
(3.2) is equivalent to

(3.8) O=(A+AA)Q+Q(A+AA)r+2(Q)-(AAQ+QAAr)+ V.

Hence, by assumption, (3.8) has a solution Q n for all AA 6 R,n. If AA is restricted
to the set q/then, by (3.1), 2(Q) (AAQ + QAA) is nonnegative definite. Thus if
the stabilizability condition (3.3) holds for all AA o//, then it follows from Theorem
3.6 of [39] that (A + AA,[V+ f(Q)-(AAQ+ QAAr)] /z) is stabilizable for all
AA 6 //. It now follows from (3.8) and Lemma 12.2 of [39] that A + AA is asymp-
totically stable for all AA q/. Conversely, if A + AA is asymptotically stable for all
AA q/, then (3.3) is immediate. Next, subtracting (2.7) from (3.8) yields

O=(A+AA)(Q-Q/)+(Q-QzxA)(A+AA)7+f(Q)-(AAQ+QAAT"), AAql,

or, equivalently, since A + AA is asymptotically stable for all AA

(3.9) Q-QzxA e(A+zxA)t[f(Q)-(AAQWQAAT)]e(A+zxA)rt dt>=O,

which implies (3.5). The performance bound (3.6) is now an immediate consequence
of (2.5) and (3.5). To prove (3.7) we note that if 0 -< M =< M2 then ’mx (M) _-<
kmax (M2) (see, e.g., Corollary 7.7.4 of [40]). Thus

Jo(q/)= sup )kma (QzxAR) sup )kma (EQaAEr)
AA Oll AA Oll

(3.10)
< )kma (EQET)._ )kma (QR).
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Finally, it follows from (3.8) that if (A + AA, D) is controllable for some AA q/, then
the controllability Gramian Q for the pair

(A + AA, [V+ ft(Q)-(AAQ + QAA r)]

is positive definite. [2]

For convenience we shall say that f(.) bounds ql if (3.1) is satisfied. To apply
Theorem 3.1, we first specify a function f(.) and an uncertainty set q/such that fl(.)
bounds h’. Ifthe existence ofa nonnegative-definite solution Q to (3.2) can be determined
analytically or numerically and (3.3) is satisfied, then robust stability is guaranteed and
the performance bounds (3.6), (3.7) can be computed. We can then enlarge q/, modify
ft(. ), and again attempt to solve (3.2). If, however, a nonnegative-definite solution to
3.2 cannot be determined, then o, must be decreased in size until (3.2) is solvable. For
example, f(. can be replaced by eft(. to bound co//, where e > enlarges o//and e <
shrinks o//. Of course, the actual range of uncertainty that can be bounded depends on
the nominal matrix A, the function f(. ), and the structure of //. In 5 the uncertainty
set q/and bound 2(. satisfying 3.1 are given concrete forms. We complete this section
with several observations.

Remark 3.1. If only robust stability is of interest, then the noise intensity V need
not have physical significance. In this case we may set D I, to satisfy (3.3).

Remark 3.2. Since A is asymptotically stable, Q satisfying (3.2) is given by

(3.11)

or, equivalently,

(3.12)

where Q0 6 n is defined by

Q eat[ f(Q) + V]eArt dt,

Q eAt ft( Q)e" rt dt + Qo,

(3.13) Qo = eAtVeAT"t dt

and satisfies

(3.14) O=AQo+QoAr+ V.

Note that Qo --< Q and that the nominal performances Js( 0 } and Jz( 0 } are given
by tr QoR and Xmx (QoR), respectively.

Remark 3.3. Using (3.11 it is also useful to note that the bound for Js(ll) given
by (3.6) can be written as

(3.15) tr QR=tr eAt[f(Q)+ VleA’ dtR=tr Po[f(Q) + V],

where P0 n is defined by

(3.16) Po = e’4 rtReAt dt

and satisfies

(3.17) O=A rPo + PoA + R.
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The bound tr P0[ f(Q) + v] can be viewed as a dual formulation of the bound tr QR
since the roles of A and A r are reversed. Dual bounds are developed in the following
section. Note that tr QoR tr PoV.

Remark 3.4. If f(.) bounds //then clearly 2(.) bounds the convex hull of //.
Hence, only convex uncertainty sets //need be considered. Next, we shall later use the
obvious fact that if 2 ’(. bounds o//, and fY(. bounds //", then f ’(. + fY(. bounds
0g, + o//,. Hence if og can be decomposed additively then it suffices to bound each com-
ponent separately. Finally, if ft(.) bounds ot and there exists fY N" -- N" such that
ft(Q) _-< ft’(Q) for all Q ", then 2’(. also bounds //. That is, any overbound ft’(.
for ft(. also bounds o?/. Of course, as we shall see, it is quite possible that an overbound
if(. for ft(. may actually bound a set o#, that is larger than the "original" uncertainty
set //.

4. Dual sufIieient conditions for robust stability and performance. As noted in Re-
mark 3.3, the performance bound tr QR given by (3.6) can be expressed equivalently in
terms of a dual variable P0 for which the roles ofA and A r are reversed. Using a similar
technique, additional conditions for robust stability and performance can be obtained
by developing a dual version of Theorem 3.1. A prime motivation for developing such
dual bounds is to draw connections with previous results in the literature relating to
robust stability. Specifically, we shall show that traditional robust stability techniques
based on the quadratic Lyapunov function V(x) xrPx correspond to dual conditions.
Robust performance bounds within the dual formulation, however, are difficult to mo-
tivate without first developing the primal performance bounds as was done in the previous
section. In addition, the dual bounds may, for certain problems, yield larger stability
regions and sharper performance bounds than the primal bounds.

LEMMA 4.1. Suppose A + AA is asymptotically stablefor all AA oil. Then

(4.1) Js(Oh) sup tr PzxAV,
AA oll

where PzxA ,n x n is the unique, nonnegative-definite solution to

4.2 0 (A + AA 7"pAa + PzXA (A + AA + R.

Proof. It need only be noted that

tr QzxaR tr e (A + AA)tVe(A + AA)rt dtR tr PzxA V,

where

Plea = e (A + AA)rtRe(a + aA)t dl

satisfies (4.2).
The proof of Lemma 4.1 relies on the fact that tr QzxaR tr PaAV. However,

it is not necessarily true that kmax (Q/,aR)= Xmax (P,AV) even when AA 0. For ex-
ample, if

[-IO]R=I2V=21A=
0 -2 11

then

QR=
1/2

and
1/2



248 D. S. BERNSTEIN AND W. M. HADDAD

and thus kma (QoR) 15 + t145)/24 and kma (eoV) (5 + l)/8.Thus to obtain
a suitable dual version of Jz(//) we need to define a dual deterministic cost
which is distinct from JD(//). This can be done if the disturbance signals are taken to
be integrable rather than square integrable. Thus, for measurable z 0, ov -- r define

4.3 z(.) 11,_ z(t) 112 dt,

which is an L function norm with a Euclidean spatial norm. The dual deterministic cost
Jz(h’ is thus defined by

(4.4) JD(0//) & sup sup Y(’)II ,2,
AAeh IIw(.)[ll,2_

The following dual result follows from Theorem (a) of 38 ].
LEMMA 4.2. Suppose A + AA is asymptotically stablefor all AA ll. Then

(4.5)

where P,A n is the unique, nonnegative-definite solution to (4.2).
The dual version of Theorem 3.1 can now be stated.
THEOREM 4.1. Let A n n be such that

(4.6) AA rp+ PAA _-< A(P), AA co//, PI",

and suppose there exists P satisfying

(4.7) 0 =A 7-p+ PA + A( e)+ R.

Then

(4.8) (E,A + AA is detectable, AA ll,

ifand only if
(4.9) A + AA is asymptotically stable, AA oil.

In this case,

(4.10) PaA <=P, AA 6II,

where PAA is given by (4.2), and

(4.11) Js(l) <= tr PV,

(4.12) JD(II) <= Xmax (PV).

In addition, ifthere exists AA oil such that E A + &A is observable, then P is positive
definite.

Proof. The proof is completely analogous to the proof of Theorem 3.1. []

Remark 4.1. Note that Jz(ll <= Js(lg) and that Jz() Js(l) if rank V 1.
Combining this fact with Remark 2.1, it follows that Jz(//) Jz(//) if both rank R
and rank V 1. In general, however, we should not expect that Jz(//) Jz(//).

It is quite possible that the bounds tr QR and tr PV for Js(ll) given by (3.6) and
(4.11 may be different in spite of the fact, as shown in the proof of Lemma 4.1,
that tr Q,AR tr P,AV. That is, depending on ft(.) and A(.) either bound (3.6) or
bound (4.11 may be better for a particular problem. In general, we have the following
result.
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(4.13)

(4.14)

(4.15)

PROPOSITION 4.1. Let f( ), A(. ), Q, and P be as in Theorems 3.1 and 4.1, and let
Qo and Po be given by (3.13) and (3.16), respectively. Then

tr QoA(P) < tr Po2(Q) tr QR > tr PV,

tr QoA(P) tr Pof(Q) <: tr QR tr PV,

tr QoA(P) > tr Port(Q) <: tr QR < tr PV.

Proof. Note that

tr QR e[ f( Q) + V]e r dt R tr Pof(Q) + tr e Ve, r dt R

and

so that

tr PV tr eArt A(P) + R]eAt dt V= tr QoA(P) + tr eA rtReAt dt V

tr QR tr PV tr Pof(Q) tr QoA(P),

which yields (4.13 )-(4.15 ). 3
Remark 4.2. To draw connections with traditional Lyapunov theory, let R and V

be positive definite and assume that there exists a positive-definite solution to (4.7).
Then V(x) a__ xrpx satisfies l(x(t)) < 0 for x(.) satisfying (2.1) and for all AA e //.
Thus V(. is a Lyapunov function for (2.1) that guarantees robust asymptotic stability
over //.

5. Construction of the bounds fl(. ) and A(. ). As discussed in 1, we consider three
distinct classes ofbounds ft(. denoted by Type I, Type II, and Type III. Roughly speaking,
these bounds exploit, respectively, the symmetry of the Lyapunov terms AAQ + QAA r,
the structure of Q, and the structure of AA. The dual bounds A(.) can be constructed
similarly by replacing Q and AA by Pand AA r. Hence these bounds will not be discussed
separately. For convenience in discussing the set h’, we shall use the terms rectangle and
ellipse to refer to closed regions bounded by such figures in multiple dimensions. As
usual, a polytope is the convex hull of a finite number of points.

5.1. Type I bounds. We begin by constructing bounds f(.) that exploit only the
symmetry of the Lyapunov terms AAQ + QAA . First we require the following well-
known definition of a function of a symmetric matrix as an extension of a real-valued
function (see, e.g., [40, p. 300]). Specifically, iff: -- , then (with a minor abuse of
notation) f: 5" - 5 can be defined by setting

f( S)& Uf( D)U,
where S UDUr, U is orthogonal, D is real diagonal, andf(D) is the diagonal matrix
obtained by applying f to each diagonal element of D. Note that if f is the polynomial
f(x) =o aix then f(S) =0 aiSi. Note also that iff(x) xl then f(S)
(S2) l/E, where (.)1/2 denotes the (unique) nonnegative-definite square root. As in [41,
p. 262], we use the notation ]S] to denote ($2) 1/2. Finally, note that iff: R -- R and
g: - are such thatf(x) _-< g(x), x , thenf(S) <- g(S), S 5n.

As a concretization of the uncertainty set o//, consider the set

(5.1) I AArnxn’AA= o’iAi, [ai[ <-ri, 1, ,p
i=l
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where, for 1, p" Ai E Nnxn is a given matrix denoting the structure of the para-
metric uncertainty, O" is a real uncertain parameter, and 6i denotes the range ofparameter
uncertainty. Clearly, the multidimensional set of uncertain parameters (al, "’", ap) is
the rectangle [-61, 61] X X [-rp, 6p] and h’l is a symmetric polytope of matrices
in Nnxn. Note that the symmetry of the uncertainty interval [-6i, 6i] entails no loss of
generality since the nominal value ofA can be redefined if necessary. Furthermore, it is
also possible, without loss of generality, to define 6i by replacing Ai by 6iAi. For
clarity, however, we choose not to employ this scaling. We begin by considering the
bound utilized by Chang and Peng in [9].

PROPOSITION 5.1. Thefunction
p

(5.2) fl(Q) 6ilAiQ+QA]
i=1

bounds dih"

Proof. For 1, p and ail --< 6i,

ri(AiQ + QA ]’) <= ri(AiQ + QA)
Summing over yields

p p

AAQ + QzXA r= ai(AiQ + QA) <=
i=1 i=1

which implies (3.1) with f(. fl (") and
Remark 5.1. It is tempting to prove Proposition 5.1 by writing

p p p

ri(AiQ + QA 7) <= , ri(AiQ + QA ’) <= , ]r(AiQ + QA )].
i=1 i=1 i=1

However, counterexamples show that the inequality [M1 + M2[ <- [Ml[ + [M:[ is not
generally true for arbitrary symmetric matrices M1, M2.

Remark 5.2. Because of its simplicity it is tempting to conjecture that fl (") is the
best bound for AAQ + QzXA 7- over the set h’l. To show that this is not the case, let
Q= 1/212,p 1,A1 [-l],and61 1. Then rl(A1Q + QA() <= 61[A1Q + QA([ =I2,
]all --< 1. However, it is also true that

rl(A1Q+QA)<[ 2 ] Il<l2’

Neither bound, however, is an overbound for the other. This is a consequence of the fact
that the nonnegative-definite matrix ordering is only a partial order.

As mentioned earlier, an overbound for fl (.) will also bound h’l. The following
result is immediate.

LEMMA 5.1. For 1, ..., p, let f N -- N satisfy

(5.3) f(x) >- xl, xea.
Then thefunction

p

(5.4) fz(Q) 6if(AiQ+QA)
i=1

is an overboundfor fl(" and hence also bounds 1,
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One particular choice of ft satisfying (5.3) will be considered here, namely,
the polynomial

(5.5) (X)"- -/i q- 71X2,

where i is an arbitrary positive constant. Thus 2(" has the following specialization.
COROLLARY 5.1. Let 1, "’", 5p be arbitrary positive constants. Then thefunction

(5.6) ft3(Q)&.= iiln+ --fii (AiQ+QA

is an overboundfor 21 (’) and hence also bounds 111.
Although overbounding ftl(’) by 3(" results in a looser bound for 0//1, it turns

out that ft3(’) actually bounds a set that is larger than //1. Specifically, in place of
//1 consider

(5.7) /2<1 }2. AA ERnxn" AA , ffiAi,
o2i

where al, ap are given positive constants. Note that (5.7) replaces the rectangle of
uncertain parameters al, , %) by an ellipse. Thus the set q/2 ofmatrix perturbations
is an ellipse of matrices in n, in contrast to the polytope q/1. Of course, q/1 q/2 if
p and al 61. Again it is possible to take ai without loss ofgenerality by replacing
Ai by aiAi. We again choose not to do this, however. The following result provides
a convenient characterization of the relationship between the rectangle q/1 and the
ellipse q/2.

PROPOSITION 5.2. Suppose qll is defined by the positive constants 61, "’, , and
let q12 be characterized by

(5.8) O/i=
3i }

i= 1, ,p,

where a is defined by

p

(5.9) a Z ii
i=1

and 1, 13 are arbitrary positive constants. Then the ellipse

,, "’", )" E .i

circumscribes the rectangle { (al, %): Iril i, 1, p and thus2 contains

o111. Furthermore, ft3 (’) actually bounds 2.
Proof. If Irl =< i, 1, p, then it follows from (5.8) and (5.9) that
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Thus the ellipse contains the rectangle. If, in addition, (al, rp) is a vertex of the
rectangle, i.e., ]at.] i, 1, p, then Pi= a/ai2 1, which corresponds to a
point on the boundary of the ellipse. To show that 23(" actually bounds 2 note that

0-t1’= i
In- (AiQ + QA f- I+ Z (AQ+QA. -(AQ+QAr).

i=1 i=1

Since=/< in, it follows that

-1

i=1

Utilizing (5.8) and (5.9) to substitute for a and a; yields (3.1) with 2(. 3(" and

Proposition 5.2 shows that each choice of constants /, ..., /3p > 0 leads to a
particular ellipse 0"//2 that contains the polytope //1. Furthermore, f3(" ), which by Cor-
ollary 5.1 bounds //, actually bounds the larger set //2. For convenience, we now dispense
with the constants/3, /3p that relate the rectangle // to the ellipse d2 and we
characterize 23(’) entirely in terms of a, a, ap.

COrOlLArY 5.2. Let a be an arbitrary positive constant. Then thefunction
p

OI. -1(5.10) ft4(Q)=In+ot , a2i(AiQ+QAf)2

i=1

bounds.
Remark 5.3. Within the context of Corollary 5.2, the positive constant a plays no

role in defining the set 2, although f4(" is guaranteed to bound //2 for all choices of
a. It can be expected, however, that certain choices ofa provide better bounds than other
choices. This will be seen by example in 10.

The following variation of ft4(" was suggested by D. C. Hyland.
PROPOSITION 5.3. Let a be an arbitrary positive constant. Then, for Q > 0,

(5.10)’
-1 p

"4 Q)’ -Q+ i= a[AQ+AiQAf+ QAQ-IAiQ+ QAr]

bounds ’ll2.
Proof. Note that

O. [(oll[20"i)ol/2- ( I]2)(AiQ-JI-QAT)Q-I/2
o l/:ai QI/:_ i (AiQ+QA)Q-1/2X

Q+ ( AQ+Q Ar),
i=1 i=l

which yields the desired result. D
Remark 5.4. The bound 4’(Q) is of interest since it involves terms that arise from

a multiplicative white noise model with a Stratonovich correction. Specifically, the term
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AiQAf arises from an Ito model [33 ], whereas the terms A,2. Q and QAZiT can be viewed
as the shift A -- A + 1/2 Z= A,2. due to the Stratonovich interpretation of stochastic in-
tegration [43 ]. These terms have interesting ramifications in designing controllers for
flexible structures 23 ].

5.2. Type II bounds. We now consider additional bounds for //that exploit the
structure of Q. For these bounds the natural uncertainty set is given by

PROPOSITION 5.4. Let a be an arbitrary positive number and, for each Q E Nn, let
Q nm and Q2 -mXn satisfy

(5.11 Q= QQ2.

Then thefunction
p

(5.12) fts(Q)aQQz+a- , oAiQ,QA
i=1

bounds 1.
Proof. Note that

0 <= Q- AQ Q- AQ

ff -1 Aia E QfQ2 + a a QQA- ai(AiO + QA)
i=1 i=1 i=1

which, since Z pi= a/a < 1, yields (3.1) with (.) 5(.) and 2.
We consider three specializations of 5 (.). Specifically, we set m n and define

(5.3) Q, =Q, Q:=n,

(5.14) Q =Qz=Q 1/2,

(5.15) Q =In, Qz=Q.

COROLLARY 5.3. Let a be an arbitrary positive number. Then thefunctions
p

(5.16) 6(Q)aln + a- Z aAiQZA,
i=1

P

(5.17) 7(Q)aQ+ a-’ Z aAQA,
i=1

P

(5.18) 8(Q)aQ2 + a- Z AiA
i=1

bound 2.
Remark 5.5. Note that the term AiQ2A appearing in 6(’) also appears in 4(" ).

Fuhermore, both 4(’) and 6(’) involve a term propoional to In. Despite these
similarities, neither bound 4(" nor 6(" is an overbound for the other. Fuahermore,
the term AiQA appears in both 7(" and 4’(" ). However, neither v(" nor 4,(’) is
an overbound for the other.

Remark 5.6. The bound 7(" given by (5.17) has the distinction that it is linear
in Q. This bound was originally studied in [27] for systems with multiplicative white
noise and was shown to yield robust stability and performance in [33] and [35]. A
similar bound was studied in [34].
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Remark 5.7. By using (5.11) additional bounds can be developed. For example,
by setting

Ol Q1/4 Q2 03/4(5.19)

25 (.) becomes

(5.20)
p

9(Q) oQ3/2 + o-1 _, oAiQ I/2A ’.
i=1

Remark 5.8. When p and c is replaced by cc, fiT(’) becomes

(Q) Q+a-AQA ].
A sum of such terms with i i can be used to bound the smaller rectangular set .
Similar remarks apply to 6("), 8("), and 9(").

5.3. Type III bounds. We now consider bounds that exploit the structure of A
itself. It turns out that these bounds permit consideration of an unceainty set that
is larger than #2. Specifically, define

(5.21) 3{Anxn’A=AA,AAM,AAN},
where Ac nxr andA rxn are unceain matrices, r is an arbitraff positive integer,
and M, N 6 " are given unceainty bounds. The bound 0(’ for 3 is given by the
following result.

PROPOSITION 5.5. Let a be an arbitrary positive constant. Then thefunction
(5.22) o(Q) a-M+ aQNQ

bounds 3.
Proof. Note that

O [-/Az-/ZQA][-/ZAz-/ZQA]r

-AzA+QAAQ- [AzAQ+ Q(AzA) r]-M+QNQ-(AQ+Q),
which yields (3.1) with (.) 0(’) and 3.

Remark 5.9. The bound 0(’) was developed in [29] for robust analysis and in-
dependently in [25] and [28] for robust full-state feedback. Applications to fixed-order
dynamic compensation are given in [36].

Remark 5.10. Without loss of generality we can set in (5.22) by replacing M
and N by -M and N, respectively. Again for clarity we choose not to employ this
scaling.

Note that 8(’) is of the form 0(’) with M Pi=aAiA and N I,. Thus
8(’) also bounds 3 for this choice of M and N. It turns out in this case that 3 is
actually larger than 2. To see this consider the more general case in which M and
N satisfy

p

(5.23) AiAM, I,U.
i=1

In this case 0(" is an overbound for s(. and thus bounds 2. As in the case of 3("
overbounding (.), we should not be sufised to find that o(" with (5.23) actually
bounds a set that is larger than 2. Indeed, we now show thatz is actually a veff special
subset of3 when M and N defining satisfy (5.23).
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PROPOSITION 5.6. IfMandNsatisfy (5.23) then l2 is a subset ofl13. Hence fo("
also bounds 112.

Proof. If AA 6 //2 then AA p 2
i= aiAi, where ZP

i= ri / a _-< 1. Alternatively, we
can write AA AIAR, where r pn and

(5.24) AL=[OtlAl. .apAp], AR
trp/ "ap In

Note that with M and N satisfying (5.23) and AL and AR defined by (5.24), it follows
that ALA7 <__ M and ArAa =< N. Thus AA e /3 []

The following result provides further conditions under which f0(" bounds
PROPOSITION 5.7. Suppose Ai DEi, 1, p, where Di nni and Ei

Rnxn, and suppose that
p p

2 T<=(5.25) Z oliDiDi M, Z ETEiN.
i=1 i=1

Then 112 is a subset ofll3 and thus fifo(" also bounds ll2.
Proof. The result follows as in the proof Proposition 5.6.
Remark 5.11. When p 1, A DEI, M a2D1D, and N EThEl, it is con-

venient to replace a by aal so that ftl0(’) becomes

(5.26) fo,(Q) a[a-DO+aQEEQ].

In certain situations it is desirable to consider subsets of //3 of special structure. For
example, define

o114/= { AAeNnxn:AA=DoALAEo, IIA, IIs_-< 1, lIAR IIs_--< 1},

where Do Nnxn, and Eo e ’-x, are known matrices denoting the structure of the
uncertainty, andA e N,l xr and ARe Nr,: are uncertain matrices 28 ]. Finer structure
can be included within 0/4 by replacing DoMNEo by a sum of terms DiMiNiEi, where
D, E are known and M, N are uncertain 36]. Note, however, that even though 04 is
a proper subset of’3, theform ofthe bound ftl0(" does not change. Thus such refinements
render the bound f10(" conservative with respect to 0/4 since the larger uncertainty set

Y3 is actually being bounded.

6. Robust stability and performance via modified Lyapunov equations. We now
combine the principal results of 3, 4, and 5 to obtain a series ofconditions guaranteeing
robust stability and performance. In particular, we focus on bounds l, f4, 26, f7, and
f10. For simplicity we shall frequently assume that V is positive definite so that (3.3) is
satisfied. In this case it follows that the solution Q of (3.2) is positive definite. Our first
result is a corollary of Theorem 3.1 with ft(. 2 (.) and

THEOREM 6.1. Let V [n, 1, p > O, and suppose there exists Q z, satisfying

p

(MLEI) O=AQ+QAT+ 6i[AiQ+QAf + V.
i=1

Then A + AA is asymptotically stablefor all AA oll, and

(6.1) Js(Og) <- tr QR,

(6.2) Jz(// -< ,max (QR).
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For the next result define

(6.3) A, =A + -In

and

(6.4) i _-5 c’2 p

Setting f(. 4(" ), 6(" ), 7(’) and //= //2 yields the following corollary of Theo-
rem 3.1.

THEOREM 6.2. Let V P, c, o, c, > O, and suppose there exists Q P"
satisfying either

(MLE2) O= AQ+QAr+ ., q,.i(AiQTQA’)2+-In + V,
i=l

p

(MLE3) O= AQ+QAT+ "yiAiQZAfToIn + V,
i=1

oF

(MLE4) 0 A.Q + QA T. + Z .),A,QA ’+ V.
i=l

Then A + AA is asymptotically stablefor all AA o2, and

(6.5) Js(Oh2) =< tr QR,

(6.6) JD(ll2) <- max (QR).

Next we set 2(. fifo(’) and oy 3.
THEOREM 6.3. Let V ’, c > O, M ’, and N ’, and suppose there exists

Q z, satisfying

(MLE5) O=AQ+QAT+cQNQ+c-M+ V.

Then A + AA is asymptotically stablefor all 5A o113, and

(6.7) Js(/g3) _-< tr QR,

(6.8) JD(U3 <= kmax QR ).

Remark 6.1. Note that (MLE5) is a Riccati equation. This is precisely the equation
studied in 29 ].

Additional sufficient conditions can be obtained by considering "mixed" bounds.
That is, we can construct modified Lyapunov equations by combining two or more
different bounds. Although mixed bounds will not be considered further in this paper,
we present one such result for illustrative purposes.

THEOREM 6.4. Let V ’, c, 6, ..., 6 > O, M ’, and N n, and suppose
there exists Q " satisfying

p

(MLE1, 5) O=AQ+QAV+ , 6iIAiQ+QAI +cQNQ+c-IM+ V.
i=1
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Then A + AA is asymptotically stablefor all AA all + o//3, and

(6.9)

(6.10)

Js(Olll + //3) =< tr QR,

JD(ll-[-/3) < kma (OR).

As noted previously, the bound A(. can readily be constructed by replacing AA by
AA r in the definitions of ftl (’) through f10(" ). Denote these bounds by A (.) through
Ao(" ), respectively. For illustration we state the dual of Theorem 6.1 involving A (.).
The dual versions of (MLE1)-(MLE5) will be denoted by (MLED1)-(MLED5).

THEOREM 6.5. Let R 2n, 61 p . O, andsuppose there exists P 2n satisfying

p

(MLED1) 0 =ArP+PA + Z 6[A[P+PA,[ +R.
i=1

Then A + AA is asymptotically stablefor all AA ll, and

(6.11 Js(lll)<= tr PV,

(6.12) jD(ll kmax (PV).

It is reasonable to expect that the sufficient conditions given by Theorems 3.1 and
4.1 are generally different. For example, the modified Lyapunov equations and their
duals need not both possess a solution, while the bounds tr QR and tr PV need not be
equal. An exception is the case in which 2(. f7(" and A(. A7(" ). Note that the
dual of (MLE4) is given by

p

P+PA + "yiA ]’PAi + V.(MLED4) 0 A r

i=1

PROPOSITION 6.1. Let a, a , ap > 0 and assume there exist Q, P n satisfying
(MLE4) and MLED4 Then

(6.13) tr QR=tr PV.

Proof. Note that

( ),P+PA+ 3/iAPAitrQR -trQ AT
i=1

-tr P A,Q+QA r+ Z "{iaiQA ]"
i=1

=tr PV.

Remark 6.2. By setting fl(.) Q7(" and A(. A7(" it follows from (4.14) that

(6.14) tr Qo ceP+ ",t,iAfPAi =tr Po cQ+ , "yiAiQA
i=1 i=1

7. Existence, uniqueness, and monotonicity of solutions to the modified Lyapunov
equations. It is important to stress that the sufficient conditions for robustness given by
Theorems 6.1-6. assume only that there exist nonnegative-definite solutions Q, P sat-
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isfying the modified Lyapunov equations. Indeed, no explicit assumptions on the problem
data A, V, R, and /Z were utilized for assuring robust stability and performance. In
applying Theorems 6.1-6.5 to specific problems it thus suffices to show that a nonnegative-
definite solution Q exists in order to obtain robust stability, while, for robust performance,
the bounds (6.1), (6.2), (6.5)-(6.8) require explicit knowledge of Q. Thus, any com-
putational method that yields a nonnegative-definite solution will suffice to guarantee
both robust stability and performance.

Before considering the numerical solution of the modified Lyapunov equations,
several relevant issues require discussion. For example, before seeking to compute solutions
to MLE )-(MLE5 it would be desirable to determine a priori whether these equations
actually possess nonnegative-definite solutions. For example, it may be useful to obtain
sufficient and/ or necessary conditions for the existence ofnonnegative-definite solutions.
Thus, if the sufficient conditions are satisfied then existence (and hence robustness) is
assured, whereas if the necessary conditions are not satisfied then existence is ruled out.
If, on the other hand, either the sufficient conditions are not satisfied or the necessary
conditions are satisfied, then nothing can be surmised. Finally, such conditions need to
be easily verifiable and reasonably nonconservative since otherwise it would be more
prudent to attempt to numerically solve the modified Lyapunov equations themselves.

It is quite possible that at least some of the modified Lyapunov equations possess
multiple nonnegative-definite solutions. In this case we may seek the minimal solution
(i.e., the smallest with respect to the nonnegative-definite matrix ordering) to minimize
the performance bounds. If multiple solutions exist, none of which is minimal, then the
best bound would depend on the matrix R.

Since the matrix Q determines the performance bound, it is reasonable to expect Q
to be monotonic in //. That is, if // decreases in size, then the solution Q is more likely
to exist while decreasing in the nonnegative-definite matrix ordering. For example,
consider o//, characterized by , where ) _-< ;, 1, ..., p. Then we might expect
Q’ _-< Q, where Q’ is the solution to (MLE1) with 6i replaced by 6. Finally, monotonicity
with respect to V should also be expected. Because of linearity, the analysis of bound
ft7(" is simplest and it is possible to obtain necessary and sufficient conditions for the
existence of solutions to (MLE4). The basic tool required is the Kronecker matrix algebra
[42]. For convenience, define

p

(7.1) I =A(3)A+ 3’iAiAi,
i=1

where (R) denotes the Kronecker product and A (R) A, =A (R) In + In (R) A is the Kro-
necker sum.

PROPOSITION 7.1. If V n and 1 is asymptotically stable, then there exists a
unique Q n satisfying MLE4 and Q >= O. Conversely, iffor all V n there exists
Q >- 0 satisfying (MLE4), then s is asymptotically stable.

Proof. Since (MLE4) is equivalent to

(7.2) Q _vec-I -1 vec V],

existence and uniqueness hold. Here, vec and vec-1 denote the column-stacking operation
42 and its inverse. To prove that Q is nonnegative definite, we rewrite (7.2) as

(7.3) Q= vec -1 [e"t vec v] dt
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and show that the integrand is nonnegative-definite for all [0, ). (Note that the
following argument for fixed > 0 does not require that 1 be stable.) Using the exponential
product formula, the exponential in (7.3) can be written as

(7.4) e"t= lim exp (AAs)t exp "yi(Ai@Ai)t
k--- i=1

For convenience, let S and N be r r matrices with N >= 0. Since (see 42

vec- [(S(R)S) vec N] SNST">=O(7.5)

and

(7.6)

it follows that

(7.7)

(S(R)S)=S(R)S,

Furthermore,

(7.8)

vec- [eS(R) s vec N] (k!)-I SkNSkT >= O.
k=O

vec- [es(R)s vec N] vec- [(eS(R)es) vec N] eSNeST>o.
Applying (7.7) and (7.8) alternately with (7.4) and using induction on k, it follows that
the integrand of (7.3) is nonnegative definite. To prove the converse, note that it follows
from (MLE4) that Q satisfies

(7.9) Q=vec-1 [e’Ut vec Q]+ vec- [e’U’ vec v] ds, te[0, oo).

Since the integral term on the fight-hand side of (7.9) is nonnegative definite, is bounded
from above by Q, and Vn is arbitrary, it follows that /is asymptotically stable. E]

We now show that if 1 is asymptotically stable then actually As (and thus A) is
asymptotically stable. This shows that the assumption that d is asymptotically stable is
consistent with the original hypothesis that A is asymptotically stable.

PROPOSITION 7.2. Assume ll is asymptotically stable, let c) [0, ci], 1,
p, and define

P ( O/t.2 \

Then ,d’ is also asymptotically stable. In particular, As andA are asymptotically stable.
Proof. Let Ve n be arbitrary and let Q be the unique, nonnegative-definite solution

of (MLE4). Equivalently, Q satisfies

O=AQ+QAr+ c!!-i AQ+ V’,
i=1

where
p

’2)AiQA+ V.V’/ E -l(/2-zi
i=1

The exponential product formula is essential to the proof here since A. if) A. cannot be expressed as
Kronecker product S (R) S, and (2) A. (R) As and Z = tfiAi (R) A do not generally commute.
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Since V’ e ", the stability of’ now follows as in the proofofthe converse ofProposition
7.1. Finally, if V is chosen to be positive definite then YP (a’2i /a)AQA f + V’ is also
positive definite and it follows from Lemma 12.2 of 39 that A,, and hence A, is asymp-
totically stable.

Hence it follows from Proposition 7.2 that a necessary condition for to be asymp-
totically stable is that

(7.10) a<2 max ReXi(A).
i= 1, ,n

We now have the following monotonicity result.
PROPOSITION 7.3. Let ll’2 c 112, where ll’2 is defined as in (5.7) with ai replaced

by ai [0, ai], 1, p. Furthermore, let V pn, assume is asymptotically
stable, and let Q pn satisfy (MLE4). Then there exists Q’ n satisfying

(7.11) 0 A,Q’ + Q’A 7+ AQ’A+ V,

and, furthermore,

(7.12) Q’<-Q.

Consequently,

(7.13) tr Q’R <= tr QR,

(7.14) max(QrR)<=,max(QR).

Proof. Subtracting (7.11 from (MLE4) yields

o=(-’l+(a-’l+ 2; ,(a- a’l]+
i--I

where V’ is defined in the proof of Proposition 7.2. Since, by the converse portion of
Proposition 7.1, ’ is asymptotically stable, Q Q’ >= 0, which yields (7.12) and thus
(7.13) and (7.14). D

Returning now to the existence question, Proposition 7.1 shows that a solution to
(MLE4) exists so long as a l, , ap are sufficiently small such that remains asymp-
totically stable for some a > 0. To this end we can treat this as a stability perturbation
problem and apply results from 3 ]. Within our modified Lyapunov equation approach
we have the following related result. For this and the following result let I1" denote an
arbitrary vector norm on n2 and the corresponding induced matrix norm.

PROPOSITION 7.4. If

(7.15) (A(A)-l otln2Wa -l

_
aAi()Ai

i=1

<1,

thenfor all V Nn there exists Q Nn satisfying MLE4 and hence 1 is asymptotically
stable.

Proof. Define Qk if= o where Qo satisfies (3.14) and Qk + satisfies

O=AQk+l +ak+lAT+f7(Qk)+ V.
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Note that Qk >= 0, k 1, 2, .... Hence it follows that

vec Ok + vec Qk (a (A -1 vec ft7 (Qk) vec ft7 Ok
and thus

Ilvec O+1 gee --< (A (R)A - I+ - 22 Ai(R)A IINee O Nee O_l
i=l

Using (7.15) it follows that Q lim_ Q exists. Thus Q >_- 0 and satisfies (MLE4).
Finally, by the converse of Proposition 7.1, 1 is asymptotically stable. [5]

Since (MLE5) is nonlinear, a slightly different approach is required for existence.
For the following result let K,/3 > 0 satisfy

7.16 eAt <= te- et, -> O,

where I1" denotes an arbitrary submultiplicative matrix norm that is monotonic on n,
and define p = 2/3/r2.

PROPOSITION 7.5. Suppose V n and

7.17 4a Nil -’M+ V < 2,

Then there exists Q n satisfying (MLE5).
Proof. Consider the sequence Qk } if= 0 where Q0 satisfies (3.14) and Qk / is

given by

0 AQk + + Qk + A r+ ceQkNQk + a-M+ V.

Clearly, Qk >---- 0, k 0, 1, .... Next we have

eAt(7.18 Qk + aQkNQk+ a- M+ V]e t dr,

which yields

(7.19) Qk +, op-’ll Nil Qk 2 + p-’ll o-’M+ V II.
Similarly, from (3.14) we obtain

Qo --< p-’ll v --< p-’ll o-’M+ V II,

Now suppose that

IIQII 2p-’lla-’M+ vii.

Then (7.17 and (7.19) imply

IIQ+, II--< ap-’[] Nil [2p-’lla-g/ viii 2 + p-]lo-g+ vii
<2p-’lla-lM+ VII.

Thus IlQk[I <-- 2p-’lla-’M + VII, k 0, 1, .... Next, (7.18) yields

Qk + Ok Ol eat[ QkNQk- Qk- NQk_ 1]er dt

o e[QkN(Qk- Qk- 1) + (Qk- Qk- )NQk- 1]er dt
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and thus

Qk+ Qk -11 NIl (IIQ + Q- II)11 Qg- Q-

<= 4ap-2 Nil -M+ V Qk Q-

--< Q-Q+ II,
where e 4ap -- Nil -M+ V II, Since by (7.17 e < 1, lim_ Qk exists, is nonnegative
definite, and satisfies (MLE5).

8. Additional upper bounds via recursive substitution. In this section we obtain
additional upper bounds for Js(11) and Jz(//) by utilizing a recursive substitution tech-
nique. The main idea involves rewriting (2.7) as

(8.1) Q/A =--vec- {(AA)-(AAAA)vecQxA}+Qo

and substituting this expression into the terms AAQAA + QAAAA T appearing in (2.7).
This technique yields an equation that is, as expected, equivalent to (2.7) but that permits
the development ofadditional bounds. As will be seen, the ability to develop new bounds
exploits the fact that the substitution technique leads to terms that are quadratic in AA.
We begin the development with the following technical result that does not require that
A be asymptotically stable.

PROPOSITION 8.1. Suppose A A is invertible and let AA g" ". IfQzxa satisfies
(2.7), then QAA also satisfies

0 AQzxA + QzxAA T__ vec- (AA ( AA)(A (R) A)- (AA AA) vec QAa
(8.2)

+ AA (R) AA)(A (R) A)- vec V] + V.

Conversely, ifQaA satisfies 8.2 and (A AA (A AA is invertible, then QzXA also
satisfies (2.7).

Proof. To obtain (8.2) substitute (8.1) into (2.7) as noted above. Conversely, adding
the zero term AA (R) AA)(A A)- (A (R) A vec QAA AA AA) vec Qaa to (8.2),
it follows that (8.2) can be written as

0 [(A- AA)(A- AA)](AA)-[(A + AA)(A + AA) vec QAA + vec V],

which, under the invertibility assumption, implies that QzXA satisfies (2.7).
The following result is analogous to Theorem 3.1. We shall say that h’ is symmetric

if AA o//implies-AA e
THEOREM 8.1. Suppose ll is symmetric, let fro satisfy

8.3 AAQo + QoAA <= fo, AA oil,

where Qo satisfies (3.14), let (2 n _. n satisfy

(8.4)

-vec- [(/XA(R)/XA)(A(R)A)-(AA(R)/XA)vecQ]<__((Q), /XAell,

and suppose there exists Q satisfying

(8.5) O AQ+ QA T+ (2( Q) + 2o + v.
Then

8.6 (A + AA,D is stabilizable, AA oil,
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ifand only if
(8.7)

In this case,

(8.8)

A + AA is asymptotically stable, AA ll.

QzxA <= Q, AA ll,

where QzXA satisfies (2.7), and

8.9 Js() <= tr QR,

(8.10) JD() <--- kmax (QR).

Proof. The equivalence of (8.6) and (8.7) follows from (8.5) as in the proof of
Theorem 3.1. Next (8.8) follows by comparing 8.5 and (8.2) while using (8.3) and
(8.4). Since o//is assumed to be symmetric, it follows from 8.7 that A AA is asymp-
totically stable, AA ’, and hence (A AA) (R) (A AA) is invertible, AA . Thus,
the converse portion of Proposition 8.1 implies that QaA satisfying (8.2) also satisfies
(2.7). Thus, the bound (8.8) can be used to obtain 8.9 and (8.10).

The principal difference between (8.4) and (3.1) is that AA appears linearly in
(3.1), whereas it appears quadratically in (8.4). By exploiting this structure we can
obtain new bounds for Qaa. To simplify matters, we now consider the bound in (8.4)
in two special cases. In the first case we set //= // and p so that AA aA,
Il -< . In this case (8.4) becomes

(8.11)

--a2 vec-I [(AI()A)(A()A)-(AI@A)vecQ]<-(](Q), lall _-<6,

One choice of((.) that immediately suggests itselfcan be obtained by defining the matrix
function [. [+ on the set of symmetric matrices by

(8.12) Sl+ 1/2(S+ ISI),

which effectively replaces the negative eigenvalues of S by zeros. We shall thus utilize
the fact that

(8.13) 2,s=<211Sl+, Ill--<,

for all symmetric S.
COROLLARY 8.1. Let V , ll ll, p 1, let fro n satisfy (8.3), and suppose

there exists Q satisfying

(8.14) O=AO+QAr+2 l-vec -l [(A6)A)(A6)A)-(A6)AI) vec Q]I+ +2o+ V.

Then 8.7 )-(8.10) are satisfied.
For the next specialization we shall assume that

(8.15) AA )A A AA ), AA 6 OlI,

which holds, for example, for modal systems with frequency uncertainty (see 10). It
thus follows that (A (R) A)-(AA (R) AA) (AA AA)(A (R) A)-l and thus (8.4) can
be rewritten as

(8.16) AA2(+2AAO_.AAT+AAZT<-((Q), AAI1, Q’,

where ( n satisfies

(8.17) O=AO+OAT+Q.
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Assuming in addition to (8.15) that AA rA, [rl[ 1, (8.14) becomes

(8.18) O=AQ+QAT+6IAO_+2AOA+O.A27I++fo+ V.

Remark 8.1. It is interesting to note that the left-hand side of (8.16) is of the same
form as ft4,(’). Specifically, the term AA20_ + OAA zr is analogous to AQ + QAi r

whereas 2AAO_AA r is similar to AiQA.
9. An alternative approach yielding Uller and lower bounds. In this section we

develop a variation on the results of 3 that has the additional benefit of yielding both
upper and lower performance bounds. The basic approach was suggested by results ob-
tained in [44]. To simplify the presentation we assume as in the preceding section that
o//is symmetric. This symmetry assumption of course holds for all of the uncertainty
sets considered in previous sections. The underlying idea involves bounding the deviation
of QaA from Q0 rather than bounding QaA directly.

THEOREM 9.1. Let 2o n satisfy

(9.1) AAQo + OoAA <= 2o, AA ll,

let : n .. n be such that (3.1) is satisfied, and suppose there exists A n satisfying

(9.2) 0 AA2 + A2A r+ 2(A2) + f0.

Then

(9.3) (A + AA,f/Z)isstabilizable, AAll,

ifand only if
(9.4) A + AA is asymptotically stable, AA

In this case,

(9.5) Qo A <= QaA <= Qo + A, AA ll

where Qaa is given by (2.7), and

(9.6) tr Qo + / .9. R <= Js( ll <- tr Qo + ZX R

(9.7) max [(Qo- A)R]--< Jz(oh’) < ’max [(Qo + A)R].

Proof. Define

(9.8) AQ QzxA Qo

and subtract (3.14) from (2.7) to obtain

(9.9) 0 (A + AA AQ+ AQ(A + AA + AAQo + QoAA
Now rewrite (9.2) as

(9.10) O=(A+AA)A+A(A+AA)r+f(A)-(AAA+AI&Ar)+2o.
Using (9.10), the equivalence of(9.3 and (9.4) is immediate as in the proofofTheorem
3.1. Next, subtracting (9.9) from (9.10) yields

0 =(A + AA)(A-- AQ)+(A2-- AQ)(A + AA)+ f(A)
(9.11) AAA + AAA T) + 20 AAQo + QoAA T).
Using 3.1 and 9.1 it follows from 9.11 that

A2 AQ >= 0,
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or, equivalently,

(9.12) Q,A <-Qo + A.
To obtain the lower bound rewrite (9.9) as

(9.13) O=(A+AA)(-AQ)+(-AQ)(A+AA)7"-(AAQo+QoAAr).

Also, note that because of the assumed symmetry of //, (9.1) holds with AA appearing
in the inequality replaced by -AA. Hence it can be shown similarly that

zX+ AQ>_-0,

or, equivalently,

(9.14) Qo-A <= Qaa.
Finally, 9.6 and (9.7) follow from 9.5 ).

Remark 9.1. To compare the upper bound in (9.5) with (3.5), rewrite (9.2) as

(9.15) O=A(Qo+ A)+(Qo+ A)Ar+ft(A)+fto+ V.

If ft(A.) + ft0 f( Q0 + A.) then (9.15) has the same form as (3.2) and thus the two
upper bounds are identical. This will be the case, for example, if ft(. ft7 (’) and f0 is
chosen to be fiT(Qo) since f7(" is linear. If, however, ft(/2) + ft0 < ft( Q0 + A2) then
the upper bound in (9.5) will be sharper. In any case it is clear that the individual
treatment of A2 and Q0 yields potentially new upper bounds.

Remark 9.2. Theorem 9.1 does not guarantee that the lower bound Q0 A for
QzxA is nonnegative definite. However, Qa is always nonnegative definite and thus the
lower bound in (9.5) may be of limited usefulness. Nevertheless, if Q0 A2 is indefinite
then, depending on R, the lower bounds in (9.6) and (9.7) may still be positive and thus
be meaningful lower bounds.

10. Analytical examlles. In this section we consider simple analytical examples
that illustrate the principal results of the paper. These examples also provide insight into
the individual characteristics of different bounds as a prelude to numerical examples
considered in the following section.

To begin we consider the simplest possible example. Set n 1, A < 0, R > 0,
V > 0, A 1, and o// { AA: IAAI _--< 6,}. For 6, < -A, QzxA V/2(IAI AA)
and Js(ll Jo(ll) RV2(I A 6 ), where this worst-case performance is achieved
for AA 6. Solving (MLE1) yields Q V/2(IAI 6), which is a nonconservative
result for both robust stability and performance. The same result is obtained from
(MLE4) by setting a c di. To apply (MLE5), set 6 VMN. Choosing c

26 (IA 6 )NVagain yields the nonconservative result. Finally, the same result follows
from Theorem 8.1.

For the second example we consider nondestabilizing uncertainty in the imaginary
component of an uncertain eigenvalue, i.e., frequency uncertainty, in contrast to uncer-
tainty in the real part considered in the previous example. Let n 2,

A= v>0, w>0,=

V= R I2, and o//= {AA AA alA, [r[ =< 61}, where

[OlAI
-1 0
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Obviously, A + AA remains asymptotically stable for all values of a since AA affects
only the imaginary part of the poles of AA. The question then is whether the robustness
tests are able to guarantee this robustness. Note also that because of the choice of V,
Qaa Q0 (2)-I2 for all AA e //. For this example we note that (MLE is satisfied
by Q (2)- I2, which is independent of 6. Thus (MLE1) possesses a nonnegative-
definite solution for all/5 > 0, which shows that (MLE is nonconservative with respect
to robust stability and performance. Since A(AA) (AA)A, it can also be seen that the
same result holds for (8.18). The situation is considerably different for (MLE4) and
(MLE5). To analyze (MLE4) note that has an eigenvalue -2 + a + di. (This can
be shown by diagonalizing A and A and thus 1.) Since, by Proposition 7.1, must be
asymptotically stable, we require 6 < 2. This is, of course, an extremely conservative
result, especially when the damping is small. For (MLES) we can factor A D1 El.
Thus, let D I2 and El A1 and define M i2 12 and N 12. Assuming that Q is a
multiple of 12, it follows that Q is nonnegative definite only if 6 =< , which is again an
extremely conservative result. The reason for this conservatism becomes clear by noting
that Mand N as given above will also serve as bounds for perturbations of the form aI2
for which the range of nondestabilizing O" is trl < 61. This will also be the case for all
factorizations DE ofA since DDr and ErE must be positive definite and thus will
also serve as bounds for destabilizing perturbations such as a I.

Finally, we consider a nondestabilizing uncertainty affecting the interaction ofa pair
of real poles. Let n 2, A 12, V R 12, and //= { AA AA trlA 1, al -< 1 },
where

A= 0"

Obviously, A + AA remains asymptotically stable for all values of a since AA does not
affect the nominal poles. Note that

o’7/4+1/2 o,/4
QAA

a/4

and Js(Oll) /5 + 1, where this worst-case performance is achieved for a il. In this
case (MLE1) has the solution Q (2 )-I2, which is valid only for 6 < 2, an
extremely conservative robust stability result. Furthermore, the corresponding perfor-
mance bound tr QR 2(2 di )- is conservative with respect to the actual worst-case
performance 6 21 + 1. In contrast, (MLE4) has the solution

[ (2- O/1) -1 -" a-6(2 O/al) -2 0
Q=

0 (2-- a61) -1

which is nonnegative definite for all 6 so long as a < 2/6. Hence (MLE4) is noncon-
servative with respect to robust stability. For robust performance,

tr QR 2(2- a6)- + a-6(2 a61) -2,

which can be shown to be an upper bound for 1/4612 + 1. Choosing, for example, a

6 yields tr QR 62 + 2. The parameter a can also be chosen to minimize tr QR,
although this is somewhat tedious to carry out analytically. Finally, (MLE5) has
the solution

Q=[1/2(l+a-16) 0

0 [1 --( --atl)l/2]/atl
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which exists so long as a =< 1/6. Hence (MLE5) is also nonconservative with respect
to robust stability. Choosing a 1//il yields tr QR 2i + , which lies above the
nonconservative bound 1/4i 21 + 1. Again, a can be chosen to minimize tr QR.

11. Numerical examples. In this section we consider additional examples illustrating
the results developed in earlier sections. In contrast to the analytical examples considered
in 10, however, we consider more complex examples by numerically solving the modified
Lyapunov equations. Here we focus on (MLE4) and (MLE5), which are the easiest to
solve numerically. Specifically, we solved (MLE4) by using the representation (7.2)
(although this may not be practical when n is large), and we solved (MLE5) by means
of a standard Riccati package. To simplify matters we consider only uncertainties AA of
the form trA. Evaluation and presentation of robust stability and performance results
for multiparameter uncertainty can be fairly complex and thus are deferred to a future
numerical study.

Since both robustness tests (MLE4) and (MLE5) depend on an arbitrary positive
constant a, it is desirable to determine the value of a that yields the tightest (i.e., lowest)
performance bound for each robust stability range. To this end we performed a simple
one-dimensional search to determine the best such a. Although analytical techniques
may assist in determining optimal values of a more efficiently, the search technique
proved to be adequate for the examples considered here.

As a first example we consider the control system given in to demonstrate the
lack of a guaranteed gain margin for LQG controllers. Hence consider

(.)

(.2)

with controller

(11.3)

(11.4)

and performance

o( t) Aoxo( t) + Bou( t) + Wl(t),

y( t) Coxo( t) + w2( t),

c( t) AcXc( t) + By( t),

u(t)=Cx(t),

J= lim E[x(t)Rxo(t)+ ur(t)R2u(t)].

The data are

[0]Bo= Co=J1 0],

[, l]V =R=p 1/2=R2 1,

where V and V2 are the intensities of w(t) and w2(t), respectively. Uncertainty ABo
in Bo is thus represented by al B, where B [0 1] r. Thus the closed-loop system corre-
sponds to

AoA=
BCo

R=
0

Ac
0

0

0 BCc ]AI=
0 0
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where the zero in the (2, 2 block ofR denotes the fact that we are considering the robust
performance bound for the state regulation cost only. Choosing p 60, it follows that
the LQG gains are given by

Ac=
-20 -9

Be=
10

Cc=[-IO -10].

For this controller the actual stability region corresponds to ale (-.07, .01 so that the
largest symmetric region about am 0 is ]gml < .01. The worst-case performance over
each stability region I,1 < 6, is denoted by the solid line in Fig. 1, whereas the perfor-
mance bounds obtained from (MLE4) and (MLE5) are shown for several values of 61.
For (MLE5) we set Dm= [0 0 0] ar and El [0 0 Co]. Note that (MLE5) yields
considerably tighter estimates of worst-case performance, particularly as 61 approaches
.01. For (MLE4) optimal values of a were in the range .0012 to .0058, whereas for
(MLE5) (with 2m0,(’), see (5.26)) a was in the range .0143 to .0020.

As a second example we consider a pair of nominally uncoupled oscillators with
uncertain coupling. This example was considered in [45] using the majorant Lyapunov
technique. Let

-u col 0 0 0 0 0
--W --P 0 0 Am 0 0 0
0 0 --v co 0 0 0
0 0 -co -v 0 0 0

v .2, o:m .2, 092 1.8, R V 14,

and, for (MLE5), define Dl Al and El I4. We consider bounds on Js(ll) only.

10.0

9.5

9.0

8.5

z 8.0
0

m 7.5

z
: 7.0

Ou.. 6.,5

6.0

5.5

5.0

(R) MLE4

(R) MLE5 []

EXACT WORST CASE

STABILITY REGION 61 (xl0)

FIG.
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15.0
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10-2 10-1
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Figure 2 illustrates the exact worst-case performance along with performance bounds
obtained from (MLE4) and MLE5 ). For MLE4 optimal values ofa ranged from .036
to. 141, whereas for (MLE5) optimal a was between .361 and .096. Although (MLE4)
was slightly less conservative than (MLE5), both bounds were able to guarantee robust
stability only for 61 .15, whereas the largest stability region is actually 61 .54. It is
interesting to contrast this result with [45] where the majorant Lyapunov technique
yielded a robust stability range of 61 .4 for a richer class of off-diagonal blocks having
maximum singular value less than

12. Conclusion. A variety of quadratic Lyapunov bounds have been developed for
both robust stability and performance. It seems clear, however, that no single quadratic
Lyapunov bound is superior to the others. Although the conservatism of each bound is
problem dependent, it is desirable to better understand the nature of the conservatism
in order to utilize the bounds in an effective manner. In addition, the issue of necessity
remains to be addressed. That is, if a system is robustly quadratically stable (i.e., robustly
stable with a corresponding Lyapunov function), then is such a Lyapunov function
necessarily given by one of the modified Lyapunov equations given in this paper? Fur-
thermore, a better understanding is needed ofthe gap between robust stability and robust
quadratic stability.

Acknowledgment. We thank A. W. Daubendiek for producing the numerical results
in 11.

Note added in proof. The assumption x(0) 0 in (2.2) is stronger than necessary
for the treatment of (2.4). If x(0) 4 0, then Lemma 2.1 remains unchanged since the



270 D. S. BERNSTEIN AND W. M. HADDAD

effect of x(0) vanishes as -- o. If, however, x(0) 0, then Qaa(t) is increasing on
[0, o and (2.4) is equivalent to

Js(//) sup sup IE Y(t)II 2 } -< s.
A’ t [0,o0)

For JD(q/), x(0) 0 is essential since Y(" )II o0,2 involves the supremum over 0, oz ).
Ifx(0) 4: 0, then the analysis can possibly be redone by considering the supremum over
t, o and letting -- o to eliminate the effect of the initial condition.

(2) A relationship between the linear bound ftT(. and the quadratic bound fo(
can be seen as follows. IfAA aA, I1 --< t, then factor AA ALAR as in q/3 according
toAt. trial Q/- andAR Q-/2 with bounds M= 62A QA rand N Q-. The unusual
feature here is that the "splitting" of AA is Q-dependent. Then, by (5.22),

ft,o( Q) o-6A QA + oQ,

which has the form of f5 (Q).
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ON THE SINGULAR VALUES OF A PRODUCT OF OPERATORS*

RAJENDRA BHATIAf AND FUAD KITTANEH:I:

Abstract. For compact Hilbert space operators A and B, the singular values of A*B are shown to be
dominated by those of (AA + BB* ).

Key words, compact operator, singular values, unitarily invariant norm
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1. Introduction. Let A be a compact operator on a separable Hilbert space. The
singular values of A, i.e., the eigenvalues of the operator (A *A)1/2, enumerated in de-
creasing order, will be denoted by sj(A ), j 1, 2, ....

There is a considerable body of literature dealing with inequalities for the singular
values of products and sums of operators. See, e.g., 3 ], 4 ], 7 ], 8 ], 11 ], and references
therein.

The main result of this note is of this genre:
THEOREM 1. Let A, B be compact operators. Then forj 1, 2, we have

2sj(A *B) <= s(AA * + BB* ).

Let [1[. I[I denote a unitarily invariant norm. (Such a norm is defined on all operators
when the space is finite dimensional, and on a norm ideal.associated with Ill. Ill when
the space is infinite dimensional [3 ], [9 ]. We will not make repeated mention of this
ideal for the sake of brevity.) A consequence of this theorem is given in the following
corollary.

COROLLARY 2. Let A, B be compact operators..Then for every unitarily invariant
norm we have

(2) 2IlIA*BIll =< [I[AA* +BB* [[I.

In the special case when A and B are Hermitian, reduces to

(3) 2s(AB <= s(A 2 + B
When the space is one-dimensional, this reduces to the familiar arithmetic mean-geometric
mean inequality for real numbers:

(4) 2lab[ =<a 2 + b -.
Thus (3) may be regarded as a "noncommutative arithmetic mean-geometric mean
inequality."

In 2 we give a proof of Theorem 1, followed by several remarks and corollaries
in3.

2. Proofs. Let Y be a compact Hermitian operator with spectral decomposition

Y= E ),(., ej)e.
J
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Let

xj_0

Y-=- Z x(.,e.)e.
xj<0

Then Y+ and Y_ are positive semidefinite compact operators and Y Y+ Y_. This is
called the Jordan decomposition of Y. The following lemrna is an easy consequence of
the minmax principle. (See [3, p. 26 ]).

LEMMA 3. Let Y be a compact Hermitian operator with Jordan decomposition
Y Y+ Y_. Suppose Y can also be represented as Y YI Y2, where Y1 and Y2 are
compact positive semidefinite operators. Then

sj(Y+)<-sj(Y) and sj(Y_)<=s(Y2)

for allj 1, 2, ....
Proofof Theorem 1. Let A, B be given compact operators on a separable Hilbert

space H. Let X be the operator on H (R) H with the block decomposition

Then

A B
X=

O O

XX * X’X=
0 0 B*A B*BJ

Let I be the identity operator on H and let U [)_i]. Then U is a unitary opera-
tor and

(5) X’X-U(X*X)U*=
0 2Ao*B2B*A Y’ say.

Note that the left-hand side of (5) gives a decomposition of Y as a difference of two
positive semidefinite operators. Hence, using the above lemma we get

sj( Y+ <- sj(X *Y sj(XX * sj(AA * + BB *

and

sj(Y_) <- sj( UX *XU* sj(X *X) sj(AA * + BB* ).

(Here, we have ignored zero singular values in the sense that XX* is not really
AA * + BB* but (AA * + BB*) O. This has no effect on our argument.) The above
two inequalities together imply

(6) sj(r)<-sj(Z), j= 1,2, ...,
where

z= [AA * + BB* 0 ]0 AA* +BB*

But the singular values of Y are the singular values of 2A *B, each counted with twice
the multiplicity. A similar consideration applies to Z. So (6) is equivalent to ).

Every unitarily invariant norm is a monotone function of the singular values of an
operator. So Corollary 2 is an immediate consequence of Theorem 1.
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3. Remarks. (1.) It is natural to wonder whether there is an operator inequality
implying ). More specifically, do we have

(7) 2 IA*BI _AA* +BB*?

This turns out to be false even for Hermitian A, B, as seen from the example

A=
10’ l"

Notice, however, that from one can conclude that there exists a unitary operator U
such that

(8) 21A*BI _-< U(AA* +BB*)U*.

To see this, just choose an orthonormal basis in which A *BI is diagonal and a unitary
operator U such that U(AA * + BB* U* is also diagonal in this basis. For other results
of this type, see 10 ], 11 ].

(2.) Every unitarily invariant norm has the property that III Till Ill T* Ill for all T.
Hence, from (2) it follows that

(9) [[[A *B + B*A Ill--< [[[AA * + BB* Ill.
It follows from inequalities 11 and (16) in Ill that every unitarily invariant norm

satisfies the following Cauchy-Schwarz type inequality:

(10) Illx*ylll <-_(lllx*xll[ IIIY*Ylll) 1/2

for all X, Y.
Now, given A and B let

X=B O’ Y=A O"
Then O) gives

III(A*B+B*A)(R) OII1- III(A*A +B’B)(R) OIII
for every unitarily invariant norm. Now note that if T and are any two operators
such that lilt (R) OIII =< II15 (R) OIII for all unitarily invariant norms, then we also have
III Till --< II1111 for all such norms. (This is a simple consequence of the fact that the
family ofinequalities III Till =< II15111 is equivalent to the weak majorization ofthe sequence
sj(T) by sj(8), and this is unaffected by the addition or removal of zeros to both sides.)
Thus we have

( l) IllA*B+B*A III -IllA*A +B’BIll
for every unitarily invariant norm.

When A or B is nonnormal, (9) and 11 are not equivalent. This can be seen from
the example

A=
0 0’

B=
0 0"

In 5 Horn and Mathias have shown that (10) is satisfied by several matrix norms
other than the unitarily invariant ones. Call a norm v on matrices a Cauchy-Schwarz
norm if it satisfies (10)and if v(T) -< v( S) whenever v(T(R) O) <= v(S (R) 0). Then the
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above argument shows that 11 holds for all such norms. Examples of such norms may
be found in [5].

(3.) For unitarily invariant norms, (11) follows from another argument. Notice
that (A +__ B) * (A B) >= 0 and hence, A *A + B*B >= +(A *B + B*A ).

Next, suppose that Xand Yare compact Hermitian operators with +__ Y =< X. Choose
an orthonormal basis {ej} with Yej )j.e, j 1, 2, and IXl >-- I)2l >= Then
by a well-known property of singular values (see, e.g., [3]) we have for k 1, 2,

k k k k k, s(X >= , Xe, ej >= E Ye, e IXl- Z s(Y
j=l j=l j=l j=l j=l

Hence Ill YIII --< IIIxlll. This gives 11 ).
Note that + Y =< X does not imply YI --< x. The example given in [6], namely,

X= Y=
4 0

shows that _+ Y -_< X does not imply even the weaker assertion s(Y) <- sj(X) for all j.
(4.) By a well-known result of Horn [4], we have the weak majorization

s.(A *B) -< s(A * s(B). If we apply the arithmetic mean-geometric mean inequality
for positive real numbers here, we get 2s(A *B) -< sj(AA * + s(BB* ). The inequality
(2) derived above is stronger than this majorization.

(5.) Using the above lemma it can be shown that for any positive semidefinite
compact operators X, Y

(12) IIIx- YIII--< IIIx(R) YIII.
To see this, just decompose X- Y into its Jordan parts.

As a corollary we obtain, for any compact operator A and for Schatten p-norms,
=<p=<oo,

(13) IIA*A-AA*IIp<2’/PlIA*AII, 2’/PlIAI[ 2
2,0,

The case p of this inequality

A *A AA * <- A 2

has been obtained by Fong [2], using a different method.
(6.) We remark that (12) is also true for general (i.e., not necessarily compact)

positive semidefinite operators X, Y with the usual operator norm. To see this, let
Z=X- Y. Then

and

zxllxllI

-zYllYIII.
These two inequalities together imply

14 x- Y z =< max (11 x II, Y II) x(R) Y II.
Now using (14), it follows from (5) that for any two operators A, B

(15) 2 A *nil =< AA * + nn* II.
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(7.) In a recent paper [12] Yang has given a proof of the following fact: if A, B are
positive semidefinite matrices, then

(16) (tr AB) 1/2<- 1/2(tr A +tr B).

We should point out that much stronger results exist in the literature. From the
majorization result of Horn [4] already mentioned above, we get, in particular,

and hence,

Z sj(AB) <- sj(A)s(B),

, sj(AB)] 112 <-- Z sj(A)sj(B)] llz

<= ,[sj(A)sj(B)] ’12

<- , 1/2 [sj(A)+ sj(B)].

In other words, for any two matrices A and B we have

(17) (tr IAB[)l/Z<=1/2(tr IAI +tr IB[).

Since [tr X[ -< tr X] for any matrix X, the inequality (16) is a special case of (17).
Even stronger than 17 is the inequality

(18) tr [ABll/-<=1/2(tr [A[ +tr [B[).

This is true and is, in fact, a special case of a much more general result. In [1] it was
shown that

Ill IABII/ZlII<=(IIIAIII Illnlll) I/z

for every unitarily invariant norm. (This is another formulation ofthe Cauchy-Schwarz
inequality mentioned earlier.) Apply the arithmetic-geometric mean inequality to get

(19) Ill IABII/21II< 1/2(IIIAIII + IlIBlll),

for all unitarily invariant norms. The inequality 18 is the special case of (19) for the
trace norm.

Acknowledgment. We are thankful to Dr. R. B. Bapat, who read an earlier version
of this note and pointed out that our arguments therein led to ), whereas we had only
observed the weaker result (2).
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POINTS OF CONTINUITY OF THE KRONECKER CANONICAL FORM*
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Abstract. In this paper a map that associates with each matrix pencil another matrix pencil in canonical
form for the strict equivalence of pencils (Kronecker canonical form) is defined. Then the pencils where this
map is continuous are characterized.

The continuity of the canonical form obtained for the equivalence of matrix quadruples and triples from
the Kronecker canonical form of the corresponding pencils is studied.

Key words, continuity, majorization, column and row minimal indices, r-numbers, s-numbers, Segre and
Weyr characteristics of a finite or infinite eigenvalue
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Introduction. In the last few years there has been an interest in the study of the
change ofsome canonical forms when small additive perturbations on the corresponding
matrices are made. In [3, pp. 475-479] Gohberg, Lancaster, and Rodman, in [1] Den
Boer and Thijsse, and in [6] Markus and Parilis give the results on the perturbation of
the Jordan canonical form. In 5 the perturbation ofthe canonical form associated with
the F-equivalence of matrix pairs is studied. The more general case is treated by Pokrzywa
in 9], where some results about the perturbation of the Kronecker canonical form of
matrix pencils are obtained.

All these results allow us to study the points ofcontinuity ofthe maps that associate
with each matrix A, each matrix pair (A, B), or each matrix pencil H(), the corre-
sponding canonical form. This was done for a matrix and a matrix pair in [4], and now
our aim is to study what the pencils are like at which the Kronecker canonical form is
continuous.

We will also study the points of continuity of the canonical forms (that we will call
of Kronecker) associated with the equivalence of matrix quadruples (.4, B, C, D) and
with the equivalence of matrix triples (.4, B, C). Both quadruples and triples appear in
the study of linear multivariable systems (see 7 ], 8 ], and 10 ]), but we will introduce
them as more general cases than that of matrix pairs and they will have a relation with
particular cases of matrix pencils. Although we do not have results on perturbation of
canonical forms ofquadruples and triples, it is possible to study the continuity by means
of the results in 9 ], 5 ], and 4 ].

In the first section we summarize some results of[4] and [9] that we will need in
later sections, making the adequate changes in the notation.

In 2, after analyzing some cases of matrix pencils where the Kronecker canonical
form is not continuous, we characterize the points ofcontinuity according to the relations
between the number of rows and columns of the considered pencils.

In 3 and 4, respectively, we study the relation between the equivalence of quad-
ruples (of triples, respectively) and the strict equivalence of some pencils. Then we can
characterize the points of continuity of the corresponding canonical forms, always de-
pending on the relation among the numbers of rows and columns of the matrices .4, B,
C, and D for quadruples (.4, B, and C for triples).

In all the cases the lower semicontinuity of the matrix rank, as a function of the
matrix, is an essential fact.
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1. Preliminaries. If n is a nonnegative integer, then a partition of n is a decreasing
infinite sequence of nonnegative integers nearly all being zero such that the sum of all
the nonnull components is equal to n.

If a (al, a2, is a given partition, the conjugate partition is the partition
whose ith component is

a-,.’= Card {j’a >- i}, 1,2, ....
If a (al, a2, and b (b, b2, are two given partitions, we will write

a -<-< bif

J J, ai<= , bi, j= 1,2, ....
i=1 i=1

If, further, the sums of all the nonnull components of each partition are equal, we
will write a -< b.

These two order relations are known, respectively, as weak majorization and ma-
jorization, because the second one implies the first one.

IfA is a matrix, A denotes the tranpose matrix ofA.

1.1. Continuity points of matrix canonical forms. In 4 it is shown that there does
not exist any canonical form for the similarity of matrices (of order n, with entries in Q,, or C) being continuous everywhere. A canonicalform is a map that associates a matrix
with another similar one, and such that two matrices are similar if and only if they have
the same associated matrix by this map.

Nevertheless, it is possible to characterize the points of continuity of some concrete
canonical forms. For example, ifwe consider the rational canonical form defined following
the divisibility order of the invariant factors of each matrix it turns out that the only
continuity points are the nonderogatory matrices. Ifwe define the Jordan canonical form,
for n n complex matrices, by ordering the eigenvalues according to the lexicographic
order in C, it is proved that it is continuous uniquely at the matrices with n eigenvalues
ofdifferent real part. In an analogous way it is shown that the real Jordan canonical form
is continuous at A ,n ifand only ifthe eigenvalues ofA are simple and have different
real parts, whenever they are not conjugate complex numbers (see [4]).

Finally matrix pairs (A, B) are considered, where A is an n n matrix and B is an
n m matrix both of which have entries in or C, and a canonical form for the r-
equivalence ofmatrix pairs is defined. This equivalence relation is also called block sim-
ilarity and the canonical form is called the Brunovsky canonicalform (see [3, pp. 193
and 196]). This canonical form is continuous at a pair (A, B) if and only if (A, B) is a
completely controllable pair and its controllability indices constitute a partition of n that
is minimal for the order relation of majorization, defined in the set of all the partitions
of possible controllability indices for a completely controllable pair (A, B) (see [4]).

These results are based on 5 concerning the perturbation oflinear control systems,
that is to say on the change of the invariants for the F-equivalence under small pertur-
bations of a matrix pair (A, B).

1.2. Strict equivalence of matrix pencils. The definitions and results that we give
in this section are those that appear in [2, pp. 21-37] and [3, pp. 662-678 ], adapted to
more adequate notation for our aim.

From now on GL, (C) denotes the linear group of order n over C, and I the identity
matrix of adequate order.

A matrix pencil is a matrix polynomial of degree one, denoted by H(X) H +
XH2, or simply by H.
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Let H(,) Hi -+- n2 and F() F1 + F2 be two matrix pencils where H, H2,
FI, and F2 are complex matrices of size m X n. The pencils H() and F(),) are said to
be strictly equivalent if there exist P GLm(C-.) and Q GLn(C-.) such that PH(),)Q
F(X), that is to say, PH1Q F and PH2Q F2.

We will call normal rank of the matrix pencil H( ,) HI + hH2 the order of its
greatest minor different from polynomial zero. We will denote it by rkn (H(X)), or
simply by rkn (H). The normal rank defined in this way coincides with the rank ofH(,)
considered as a matrix with entries in C(h), field of quotients of C[]. It is immediate
that two strictly equivalent pencils have the same normal rank.

It is known that two pencils are strictly equivalent if and only if they have the same
(column and row) minimal indices and the same (finite and infinite) elementary divisors.
That is to say, a complete set of invariants for the relation of strict equivalence of pencils
is formed by the following types of invariants, associated with each pencil H:

Column minimal indices are denoted by

I >- >- r > r + r0 0

and we define, for 0, 1, 2, ...,
ri:= Card {j:e>- i}.

Thus e := (e, er,, 0, and r (r, ..., r,,, 0, are conjugate partitions.
Moreover, ro n rkn (H).

The partition r will be called the partition ofthe r-numbers ofthe pencil H. And if
H has no column minimal indices, or equivalently, H has no r-numbers, we will consider
e (0) (0, 0, and r (0) (0, 0, ).

(ii) Row minimal indices denoted by

r/l >= r/s, > r/s, + r/s0 0

and we define, for 0, 1, 2,

si:= Card {j: r/j>- i}.
Thus r/:= (r/l, r/s, 0, and s (s, s,,, 0, are conjugate par-

titions. Moreover, So m rkn (H).
The partition s will be called the partition ofthe s-numbers ofthe pencil H. And if

H has no row minimal indices, or equivalently, H has no s-numbers, we will consider
r/= (0) and s (0).

(iii) Infinite elementary divisors of the form

/X nl, ,/.tnr with nl >-’">=n >- 1.

We will say that r/ := (r/l, "’", r/, 0, is the partition ofthe Segre char-
acteristic of the pencil H for the eigenvalue infinite and that its conjugate partition
mo := (m1, m2, is the partition ofthe Weyr characteristic ofthe pencilHfor the
eigenvalue infinite.

It follows that mol u and u rkn (H) rk (H2). If is not an eigenvalue of
H we will take r/ (0) and m (0).

(iv) Finite elementary divisors of the form

(X--h1)n’’, ,(k--kl) n’r’, ,(k--ku) nu’, ,(k--ku) nuru

with

nil >= >-- ni>= for 1, u.
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We will say that nx := (nil, ni, 0, is the partition ofthe Segre character-
istic ofthe pencil Hfor the eigenvalue hi, of H(i 1, u). The conjugate partition
of nx, mx (mii, m;2, will be called the partition ofthe Weyr characteristic ofthe
pencil Hfor the eigenvalue ,i, of H(i 1, u).

It follows that mi li 1, u).
We generalize the notation of (iii) and (iv) as follows. If a C := C t.J (o },

n := (n, n,2, will be the partition of the Segre characteristic of H for a, if a is
an eigenvalue ofH (finite or infinite), and it will be the null partition (0) if a is not an
eigenvalue of H. This is analogous for the conjugate partition m := (m,l, m, ).

It is known (see [2], [3 ], and [9]) that each matrix pencil corresponds with a
canonical form called the Kronecker canonicalform, which is determined, except for the
order of the blocks, by the invariants described above. The blocks associated with each
type of invariant are as follows:

(i) If ej >- 0 is a column minimal index ofthe pencil, then the corresponding block
R,j has j rows and + columns and

Rej:=

If 0 then R0 is a column of zeros.
(ii) If >- 0 is a row minimal index of the pencil, then the corresponding block

TL,j R,, that is to say, L, is a block of dimension (r/j + r/. Analogously, if r/j
0 then Lo is a row of zeros.

(iii) If# is an infinite elementary divisor ofthe pencil, then the associated block

J (o) is square of order noo and

(iv) If (, a)j is a finite elementary divisor of the pencil, then the associated
block Jn,, (a) is square of order nj and is a Jordan block:

Remarks. (1) Instead of associating with the finite elementary divisors blocks

J. (a) we may consider the invariant factors of H(,) and associate with them blocks
of the form hi- My, where Myis the companion matrix of one of the invariant factors.
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In general, it is possible to take any pencil M M with M a matrix similar to that
constituted by the Jordan blocks or to that formed by the companion matrices of the
invariant factors.

(2) If a pencil only has column minimal indices and finite elementary divisors,
as invariant factors, it turns out to be strictly equivalent to a pencil of the form
[-A, -B] + ,[I, 0], with A a square matrix. In this case the column minimal indices
of the pencil coincide with the controllability indices of the pair (A, B) for the I’-equiv-
alence and the conjugate partition r is the partition of the r-numbers of(A, B) (see 5]).
Moreover, the finite elementary divisors of the pencil are the elementary divisors of the
pair (A, B) and thus, the Segre and Weyr characteristics ofthe pencil coincide with those
of the pair (A, B). All this happens because the relation of strict equivalence of pencils
is, in a certain sense, an extension of the I’-equivalence of matrix pairs.

1.3. Perturbation of matrix pencils. A sequence of matrix pencils H)()
H<) + H<)2, k 1, 2,... is said to converge to a pencil H())= H + H2 as
k --* if the sequences of matrices H<) and H)2 converge to H and H2, respectively,
as k --* . It is understood that the convergence is defined with respect to any matrix
norm, for example, with respect to the matrix norm defined for A (ai) Cm" as
A Ei, [ai[, that will be employed from now on.

Let , be the set of all the matrix pencils of size rn n. We define in ’m, a
metric d in the following way.

Let H(X) H + XH m, and F(X) F + XF m.
d(H()),F()) := IIH(,)-F(,)l[ "-[IH-Fl[ + IIH2-F2I[,

where this matrix norm is the one defined above. The convergence ofsequences ofpencils
obtained with this metric coincides with the convergence we have just defined.

If the sequence of pencils H<k)()) m, converges to the pencil H(,)
as k --* 00, we write Hk) --* H.

If e is a positive real number and a C, then

B(c,e):={zCllz-cl<e} ifaC,

{z Cllzl t0 {oo } ifa oo.

We will denote by rj(H) the subset of (2 formed by all the eigenvalues of the pencil
H and we will define the e-neighborhood of rj(H) to be r(H) tOj(/) B(a, e) and
if there is no possibility of confusion we will write

The partition ofthe r-numbers and the s-numbers ofthe pencil H() will be denoted
by ro: := (r{), r()2, and s()"= (s(k), s(k)2, ), respectively. Given a C, the
partition of the Weyr characteristic of the pencil H(k) for a (that can be null, as we have
seen) will be denoted by m() (m(k), m(/)2, ).

Taking this notation into account, we can enunciate the following lemma.
LEMMA 1.1. Let H(k) be a sequence ofpencils of mn converging to the pencil

H iOm n and let r be the e-neighborhood of o’j(H). Then for all sufficiently large k
there exists a nonnegative integer h such that thefollowing conditions hold:

(i) r -<-< r(k) + (hk, h, );
(ii) s -<-< s() + (hk, h, ); and
(iii) m(k) -< -< m + (h, h, for all a (C r) tO rj(H).
Remark. We take hk as many times as min { n, rn } and the other components equal

to zero so that (h, hk, is a partition and the three conditions may hold.
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Proof. This lemma is Theorem of[9, p. 104] where the notation employed has
been substituted by that defined in this paper by means of the following equalities:

ri(H)’= ri ri + for 0, 1,2,

li(H)’= si- si / for 0, 1,2,

r(H)’= ro,

di(a,H)’=m,j for j=l,2,....
i_j

Equalities of the same type hold for ri(H(c)), r(c)i, r(k)i+ l, etc. Moreover, taking
into account that r0 n rkn (H), r(k)0 n rkn (H(k)), So m rkn (H), and
S(k)O m rkn (H()), we have that for all k sufficiently large

(r,r2, ),’< (r(k)l,r(k)2, )+(rkn (H(k))-rkn (H), rkn (H(k))-rkn (H), ),

(sl,s2, )’<’< (S(k),S(k), )+(rkn (H(k))-rkn(H),rkn(H())-rkn (H), ),

m(k),l m(k)2, , ", (ml, m2,

+(rkn (H(k))-- rkn (H), rkn (H(k))-- rkn (H),

for all a e (C r) U as(H).
By the lower semicontinuity of the normal rank of a pencil and for all k suffi-

ciently large rkn (H) =< rkn (H(k)). Taking hk := rkn (H(k)) rkn (H), the lemma is
proved. [-1

Remark. Condition (iii) means that there can exist a e C r, such that m(g) is
not the null partition for some k sufficiently large. That is to say, H(k) may have as
eigenvalues elements of C, finite or infinite, that are not eigenvalues of H and whose
distance from all the eigenvalues of H is greater than a predetermined e in the metric
of C.

If we suppose that rkn (H() rkn (H), for all k sufficiently large, we can say
something more about the invariants ofpencils H(k and especially about the eigenvalues.
This hypothesis is equivalent to r(o ro (and to s(0 So) for all k sufficiently large,
which means that from one k all the pencils of the sequence have the same number of
column minimal indices as H (and the same number of row minimal indices as H).

LEMMn 1.2. Let H() -- Hand suppose that rkn (H()) rkn (H)for all k sufficiently
large. Let e > 0 be a real number such that the sets B a, e with rs(H) are pairwise
disjoint and let r be the e-neighborhood of rs(H). Then there exists a ko such that k >=
ko implies

(i) r -< ,
(ii) s -<-<
(iii) a(H()) a,; and
(iv) En(.,) Yj m()x --< Ej. m.jfor all a o’j(H).
Remark. Condition (iv) means that the sum ofthe multiplicities ofthe eigenvalues

ofH(), which are in B(a, e), is less than or equal to the multiplicity ofa as an eigenvalue
of H.

Proof. Items (i) and (ii) are consequences of (i) and (ii) of Lemma 1. l, and (iii)
and (iv) can be obtained from Theorem 2 of[9, p. 105].

Remarks. (1) The hypothesis of Lemma 1.2 is fulfilled, for example, when the
pencil H is regular because in this case rkn (H) n m (or equivalently, r0 So 0)
and by the lower semicontinuity of the normal rank of a pencil, rkn (H(g)) n m for
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all k sufficiently large. Therefore, if a pencil H is regular and H(k) H from a k0 all the
pencils Htk) are regular and, besides, condition (iv) ofLemma 1.2 changes into an equality
as is shown in the remark of [9, p. 107]. That is to say, for all k >= ko, Htk) has its
eigenvalues in the neighborhoods of the eigenvalues of H, which are pairwise disjoint
and predetermined, and the sum of the multiplicities of the eigenvalues of Htk) in the
neighborhood ofan eigenvalue a ofH, coincide with the multiplicity ofa as an eigenvalue
ofH.

(2) The condition rkn (Htk)) rkn (H), or equivalently rtk)O ro, is true for all
pencil H1 + ,H2 associated with a pair of matrices (A, B); thus the results of Lemma
1.2 hold. Moreover, ifwe only perturbate H, the matrix that does not take a , we prove
the existence of a neighborhood of the matrix [A, B], with elements in or C, where
some additional general necessary conditions are verified (see [5, Thm. 4.7 ]).

In order to study the continuity of the Kronecker canonical form we are interested
in knowing not only what restrictions are verified by the invariants of the pencils of
converging sequences, which are sufficiently close to the given pencil, but also if there
exists, in any neighborhood ofthe given pencil, a pencil whose invariants are the previously
determined by some so-called sufficient conditions. In fact, these sufficient conditions
exist but they do not coincide with the necessary ones and they are more restrictive.

The partitions of invariants of a given pencil H are denoted by r, s, and
m(a C). IfF is another pencil we will denote by r’ and s’ the partitions of the r-num-
bers and the s-numbers of F, respectively, and by m’(a C) the partition of the Weyr
characteristic ofF for c, or the null partition according to what corresponds to a. Finally,
we define h := rkn (F) rkn (H).

LEMMA 1.3. Let H and F be two pencils; there exist a sequence ofpencils Hk) --H such that the pencils Hg) are strictly equivalent to the pencil F ifand only ifthe three
conditions hold"

(i) r-<< r’ + (h, h, );
(ii) s -<-< s’ +(h, h,... ); and
(iii) m’ -< -< m + h, h, for all C.
Proof. For the proof see Theorem 3 of [9, p. 108], and take h as many times as

min n, m }.
Since pencils H) are strictly equivalent to F for all k we have

r) r’,s) s’,m), m’ for all c6C.

In the particular case ofa pencil associated with a matrix pair (A, B) these conditions
reduce to (i) and (iii), with h 0. Some less strong conditions are sufficient to prove
the existence of a matrix [A’, B’], in any neighborhood of[A, B], such that (A’, B’) has
the r-numbers and the Weyr characteristic predetermined (see [5, Thm. 5.6]).

2. Points of continuity of the canonical form for the strict equivalence of matrix
pencils. We consider the metric space defined in 1.3 on mn, the set of all the
complex matrix pencils of size m n. We will study the continuity ofthe following map:

C" m n "- m n, H"C(H)

where C(H) is the Kronecker canonicalform associated with the pencil H, defined in a
unique way by taking its blocks in the following order:

First. Blocks R, associated with the column minimal indices of H, ordered
decreasingly;

Second. Blocks L, associated with the row minimal indices of H, ordered de-
creasingly;
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Third. Blocks Jnj associated with the infinite elementary divisors ofH, following
the decreasing order of their exponents;

Fourth. Blocks Jn. associated with the finite elementary divisors of H, ordered in
the following way. Let X < X2 < < Xu be the different finite eigenvalues
ofH ordered according to the lexicographic order in C; for each eigenvalue
i we order the corresponding blocks following the decreasing order of
the integers of the partition of the Segre characteristic ofH for the eigen-
value Xi.

The following properties are equivalent.
(a) C is continuous at H;
(b) For each e > 0 there exists di > 0 such that if F mn and ]In FII < 6,

then C(H) C(F)II < e;
(c) For each sequence of pencils H<,) mn converging to H the sequence of

pencils C(H<k)) converges to C(H).
Employing the definition of continuity (b) and the inequality between the norm of

a product of matrices and the product of the norms of the same matrices, it is easy to
prove the following lemma.

LEMMA 2.1. Let P GLm(C and Q GLn(C ); then C is continuous at H ifand
only ifC is continuous at PHQ.

Therefore, the continuity of C at a pencil H is equivalent to the continuity of C at
the pencil C(H) or at any pencil strictly equivalent to H.

Now, we will study some particular cases of pencils where C is not continuous.
LEMMA 2.2. IfH has one, or more, infinite elementary divisors, then C is not

continuous at H.
Proof. It suffices to prove the lemma for a pencil F in canonical form that has a

single block Jn, with n >- 1, i.e.,

F= 0

Let

F(k)

l+X/k 3, 0 0
0 X 0
0 0 0

6 66...
thus F(k) -- F and, notwithstanding

k+X 0 0 0
0 X 0

C(Fk))= 0 0 0 for allk.

6 66...
Therefore C(F(k)) does not converge to C(F)= F, i.e., C is not continuous

at F. i--I

LEMMA 2.3. IfH hasfinite elementary divisors and column minimal indices, then
C is not continuous at H.
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Proof. It is enough to show the lemma for a pencil H in canonical form that has
only blocks of the types R,j and Jnooj" IfH is m n, in this case m < n.

Let r’be a partition ofm such that r -< -< r’ and Yi r m and let m’ (0, 0,
for all c e (. By Lemma 1.3 there exists a sequence of pencils Htk) converging to H such
that for all k, the pencil Htk) has, as only invariants, the column minimal indices cor-
responding to the conjugate partition r’. Thus the sequence of pencils C(Htk)) does not
converge to C(H) H. [3

LEMMA 2.4. IfH has finite elementary divisors and row minimal indices, then C
is not continuous at H.

Proof. To prove the lemma, take the transpose pencil of H, Hr, and apply
Lemma 2.3. [3

LEMMA 2.5. IfH has column and row minimal indices, then C is not continuous
at H.

Proof. As in the previous cases we consider a pencil H in canonical form with a
single block R and a single block L,, with el >= 0 and 1 >-- 0. Then

g 1 0 0 0
0 , 1 0 0

0 0 0 1

has el + nl + rows and columns.
Let Hk) be the pencil obtained by adding the number 1/k to the entry of H in

position (el + 1, ). It is clear that H) -- H but for all k, the pencils H) have an only
invariant that is the infinite elementary divisor ’’ +"’ + 1, i.e., the sequence of pencils
C(H)) does not converge to C(H) H.

A consequence of Lemmas 2.2-2.5 is the following necessary condition for the
continuity of C at a pencil H.

COROLLARY 2.6. IfC is continuous at H then one ofthefollowing properties hold:
(i) H has only column minimal indices;
(ii) H has only row minimal indices;
(iii) H has onlyfinite elementary divisors.
We will analyze separately each of the three possible cases described in Corollary

2.6, because the relation between the number of rows m and the number of columns n
of pencils ofm is different in each case: (i) occurs when n > m, (ii) when m > n,
and (iii) when n m.

Notation. If a and b are two positive integers, the equality a bc + d means that
c and d are integers verifying

c >land0=<d<b,ifa>=b or c=0andd=a, ifa<b.
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THEOREM 2.7. Let C: mXn -- mXn with n > m. Let c and d be nonnegative
integers such that m (n m)c + d. Then C is continuous at H e tm ifand only if
H has as only invariants thefollowing column minimal indices:

el =ed=C+ 1,ed+l en-m=C.

Remark. This condition for the column minimal indices is equivalent to the fol-
lowing condition for the r-numbers:

rl rc n-- m and rc+ d,

that is to say, the partition of the r-numbers is maximal for the majorization.
Proof. First, we will show that ifH is as given in Theorem 2.7, then C is continuous

at H. In this case rkn (H) m, i.e., it is maximum and we can apply Lemma 1.2. Thus
for all sequences H(k) -- H and for all k sufficiently large, r(k) r where r is the partition
ofthe r-numbers ofH, which appear in the remark above. Therefore for all k sufficiently
large, C(Htk)) C(H), i.e., C is continuous at H.

Now, if C is continuous at H e #mxn with n > m, by Corollary 2.6 H has only
column minimal indices. Suppose that they are not those enunciated, i.e., the partition
of the r-numbers of H, r, is not maximal for the majorization. Let r’ be the conjugate
partition of

(c+ 1,
(d) (n-m-d)
’’,C+I,c, ,C,0,’’’), i.e.,

d. Then r -< r’, which implies r -<-< r’r’ re n m and re+
By Lemma 1.3 there exists a sequence H(k) - H such that the pencils H(k) have

only column minimal indices and the partition of the r-numbers of H(k) is r’. Thus
C(H(k)) does not converge to C(H), which contradicts the fact that C is continuous at
H. V1

THEOREM 2.8. Let C: mn - mn with m > n. Let c and b be nonnegative
integers such that n (m n)c + d. Then C is continuous at H mn ifand only if
H has as only invariants thefollowing row minimal indices:

71 d C+ 1, /d+ l’lm-n C.

Remark. As in Theorem 2.7, this condition is equivalent to the following one:

s Sc=m-n and Sc/=d.

Proof. Studying the continuity of C is equivalent to studying the continuity of
the map

CT.. tnm--- OnXm, F’--’> CT(F):= C(FT) T

because C is continuous at H if and only if CT is continuous at H, the transpose pencil
of H. Since m > n, CT is defined for pencils that have more columns than rows, so that
the continuity of Cr is studied in Theorem 2.7.

If a C, we denote by Re (a) the real part of
THEOREM 2.9. Let C .,x, -" ,,x,,; C is continuous at H e ,x, ifand only

ifH has as only invariants n finite elementary divisors oftheform:

X- X ) ) with Re ()i)4= Re (2j) for all 4=j.
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Proof. If H has the indicated form, let Xl < < kn. Let H(k) -- H and let e be
any positive real number. We take

e"’=min {Re(i+)-Re(Xi)[i 1, ,n-1}, and

Let at, := UT= B(Xi, e’); then by Lemma 1.2 and by Remark (1), made after its
proof, there exists a k0 such that for all k >_- k0

aj(H(k))f)B(Xi,e’) c()i

where O/(k)l < < Ol(k)n and Ol(k)i has multiplicity equal to one for 1, ..., n.
Thus for all k >_- k0 c(g<k)) c(g) < , i.e., C(H()) -- C(H) and, therefore,

C is continuous at H.
If C is continuous at H e nx n, by Corollary 2.6, H has only finite elementary

divisors. If they are not as indicated we consider the matrix pencil -J + XI, where J is
the n n complex matrix in Jordan canonical form corresponding to the finite elementary
divisors of H. Then J does not verify the necessary (and sufficient) conditions for the
continuity of the Jordan canonical form at J[4, Thm. 2]. Thus there exists a positive
real number e such that we can find a matrix J’, as close to J as we want, which verifies
that the distance between Jand the Jordan canonical form of J’ is greater than e. Therefore,
there exists a matrix pencil -J’ + M, as close to -J + XI as we want, such that the
distance between the Kronecker canonical form of-J+ ),I and the Kronecker canonical
form of-J’ + M is greater than e. That is to say, C is not continuous at -J + XI and
therefore C is not continuous at H, because H and -J+ XI are strictly equivalent. D

Remark. If for H having only finite elementary divisors we define C(H)
),I- M, where M is the matrix with blocks that are companion matrices of the
invariant factors of H, then the necessary and sufficient condition for the continuity of
C n, -- n n at H is that H has only an invariant factor different from one, that
is to say, the corresponding matrix M (which is in rational canonical form) has a single
block (i.e., M is nonderogatory).

3. Points of continuity of the canonical form for the equivalence of matrix quadru-
ples. In this section we will consider matrix quadruples of the form (A, B, C, D) with
A Cnn, B Cnm, C c:: Cpn, and D Cpm.

DEFINITION. Two matrix quadruples (A1, B1, C1, D) and (A2, B2, C2, D2) are
said to be equivalent if there exist matrices P GL.(C), Q GLp(C), T GLm(C.),
R e C" x p, and S C n such that

0 Q C D1 S C2 D2

Note that the matrices

P R
and

are square and nonsingular.
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PROPOSITION 3.1. (A1, BI, Cl, Dl) and (A2, B2, C2, D2) are equivalent ifand only
if(A2, 92, C2, D2) can be obtainedfrom (Al, B1, C1, Dl) by means ofone, or more, of
thefollowing elementary transformations:

(Al, Bl, Cl, Dl) - (A2, B2, C2, D2) (PAl p-l, PB1, C1 p-l, D1),
(2) (AI, BI, C1, DI) -- (A2, 92, C2, D2) (AI + RCI, Bl + RDI, C1, DI),
(3) (AI, BI, CI, DI) -- (A2, B2, C2, D2) (A1, BI, QC1, QD1),
(4) (AI, BI, CI, Ol) -- (A2, B2, C2, D2) (A1 + Big, B1, CI + D1S, Ol),
(5) (AI, Bl, CI, Ol) " (A2, 92, C2, D2) (AI, BIT, CI, D1T),

where P, Q, T, R, and S are matrices as those considered in the previous definition.
Proof. It suffices to take into account that

P R[0 Q][ AI Bl
’l .DIll/-S ;1

with I being the identity matrices of adequate sizes.
This equivalence relation defined for matrix quadruples is a generalization of the

Y-equivalence defined for matrix pairs and, at the same time, it corresponds to a particular
case bf strict equivalence of matrix pencils as we will now see.

Notation. Let (Ai, Bi, Ci, Di) Cnxn Cnm X Cpn X Cpm. We define

lnE:=
0

0

0
Gi’= [ Aif DiBi

where E and Gi are complex matrices of size (n + p) (n + m), 1, 2.
PROPOSITION 3.2. Two quadruples (A1, BI, C1, Dl) and(A2, B2, C2, D2) are equiv-

alent ifand only ifthe pencils G1 + XE and G2 + XE are strictly equivalent.
Proof. Ifthe quadruples are equivalent by means ofthe nonsingular square matrices

0 Q S

then these matrices make G1 q- XE and G2 -+- XE be strictly equivalent.
Conversely, if G1 + XE and G2 + XE are strictly equivalent, there exist matrices

Ue GLn+,(C) and Ve GLn+m(C) such that (i) UG1 V= G2 and (ii) UEV= E.
If we take

U U1 U2
and V=

U3 U4 V3 V4
with Ul and V1 e C n x n, then from (i) and (ii) we deduce that V1 Ui-l V2 0, and
V3 0. Then by (i) the quadruples are equivalent.

Let H(X) H1 + XH2 be a matrix pencil of size (n + p) (n + m) such that
rk (H) n; then there exist two nonsingular matrices P and Q, of adequate sizes, such
that PHzQ E. If we take G := PHIQ it turns out that H(X) is strictly equivalent to
G+ XE. If

G=
C D

with A Cn we will say that the quadruple (A, B, C, D) is associated with the pen-
cil H(X).
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A pencil may have different associated quadruples but all ofthem will be equivalent
by Proposition 3.2. Moreover, if we consider two pencils and two quadruples, each one
of them associated with each pencil, then the quadruples are equivalent if and only if
the pencils are strictly equivalent. This is also deduced from Proposition 3.2. and from
the definition of a quadruple associated with a pencil.

As a consequence, we have that the invariants and the canonical form for the equiv-
alence of quadruples will be obtained by means of the invariants and the Kronecker
canonical form of the pencils that have them as associated quadruples. So it is enough
to study the pencils of the form G + XE.

We consider matrices

G=
C O[A B]c(n+l)X(n+m) i.e.,ACnxn BCnxm CCZ’xnandDC’xm,

We will employ the matrix norm Ilall Y, gol for G (go) c(n+P)x(n+m).
Our aim is to study the continuity of the map

Cq. C(n + p) (n + m)._..c (n + p) (n + m),

which associates with each matrix

its canonical form

A

Aq Bq]Cq

for the equivalence of quadruples. This canonical form is defined, from the Kronecker
canonicalform for pencils, in the following unique way:

Let H(X) G + XE be the corresponding pencil of size (n + p) (n + m) and let
(i) 1 > >-- 8r > 8r + 8r0 0 be the column minimal indices ofH(X)’,
(ii) rtl >= >= s, > r/s,+ rs0 0 be the row minimal indices of H();
(iii) noo >= >= noo, >= be the exponents of the infinite elementary divisors of

H() and d nooj such that dl >= >= dt, > dtl +l dto O, to := uoo; and
(iv) (X + Xl) n’’, ..., (X + kl)nl", (X -- ku) nul, "’’, (k -- ku) nu’’, with nil

-> nii for 1, ..., u, be the finite elementary divisors of H(X).
We define Aq diag (&, An, Ao, Af) Cn’, where the square blocks A, A

and Af are, respectively, of order Z rl tl U
j= ej, 1--1 ?j, j= 14 and 2; FC niji=1

Moreover, if

M/ cixi
0 0 Ii-1 0

then

A, diag (Mel ,Merl)

A,’= diag (Nr/l, NISl ), and

Aoo diag (Na,, "", Nat,).

AI’= diag X Inl -{- Mn,, Xl Inl -" M,, "’", XuI, + Mn., Xuln.u-{- Mn.)
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where 2‘1 < < 2‘u is the lexicographic order in C. That is to say, the finite elementary
divisors ofAfare (2‘- 2,1) nIl, (2,- 2‘l)nl"’, (2‘- 2‘u) ’ul, (2‘- 2‘u)nU"u, with
rlil >= >- ni,, for 1, u.

We define

B, 0

Bq.=
0 0

00 BO
c

where B, and Boo are blocks of sizes [22’_- ej] r0 and [Zj’--1 d] to, respectively;
between B, and B there are 22’_- r/j zero rows and below B there are Z u- Z ui

-j j= rtij
zero rows.

Moreover, if e. is the row vector with an adequate number of components that are
all zero except for the jth component that is equal to one, and we define

Ej’=
ej
Cejr0 and F’= 0

cdJ

then

B: and B

We define

C, 0 0] Cp,Cq
OOCoo0

where C, and Coo are blocks of sizes

So r/ and to d
"=1 j=l

respectively; the first ;l_- ,j columns are zero and the last Z - Z,ij= nij columns are
also zero.

Moreover C, [E, E] with Ef C (j 1,... ,sl), E being the
transpose matrix of E defined above, but with the size now required. Analogously,
Coo [E, ..., Eta] with Ee Ct4(j 1, tl).

We define

Dq
Ito-tl

Remarks. Since the only transformations that may change the matrix D of a
quadruple are those oftypes (3) and 5 ), where D is multiplied by nonsingular matrices,
it turns out that rk (D) is an invariant of the equivalence of quadruples and it holds that

rk (D) to- ll mool moo2,

that is to say, rk (D) coincide with the number of infinite elementary divisors of expo-
nent one.

(2) Also, it is easy to see that
(i) rkn(G+2‘E)=n+t0;
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(ii) rn r0 + to;
(iii) p So + to.

(3) The block Af, which is in Jordan canonical form, might be taken in any other
canonical form of AI for the relation of similarity of matrices, as we noted for pencils.
In each case the results of this study of the continuity would change in the correspond-
ing way.

DEFINITION. From now on quadruple will mean (A, B, C, D) or the corresponding
matrix G. We will call column minimal indices, r-numbers, row minimal indices, s-
numbers, Segre and Weyr characteristics of G for the eigenvalue infinite, the column
minimal indices, r-numbers, and so on, of the pencil G + hE. Finally the Segre and
Weyr characteristics ofG for an eigenvalue a e C will be the Segre and Weyr characteristics
of G + hE for the eigenvalue -a.

Other ways of obtaining the invariants and a canonical form for the equivalence of
matrix quadruples can be found in [7] and [10].

The results on perturbation of pencils that give necessary conditions that must be
verified by the pencils converging to a given pencil, as, for example, Lemmas 1.1 and
1.2, are still true for quadruples; because making small perturbations on G is equivalent
to making them on the matrix of pencil G + hE that does not go with h. Nevertheless,
Lemma 1.3 does not hold for quadruples because now we need to obtain a converging
sequence of pencils by perturbing only the matrix that does not go with h. But thert is
absolutely no problem, for we have theorems on perturbation of the Jordan canonical
form and of the canonical form for the F-equivalence of matrix pairs. These forms are
particular cases of the canonical form Cq defined for matrix quadruples.

As it happened for C it is true that C is continuous at a quadruple if and only if
Cq is continuous at any equivalent quadruple.

Before characterizing the quadruples where C is continuous it is convenient to
know some types of quadruples where C is not continuous.

LEMMA 3.3. Let

AC DB ] " (n + p) x (n + m)

Suppose that G satisfies at least one ofthefollowing properties:
G has infinite elementary divisors with exponent greater than one;

(ii) G hasfinite elementary divisors and column minimal indices;
(iii) G hasfinite elementary divisors and row minimal indices;
(iv) G has column and row minimal indices.
Then C is not continuous at G.
Proof. (i) First suppose that G has only one elementary divisor t

2 and that G is
in canonical form, i.e.,

__
c1 + i) x (1 + 1)

Let

e (1 + 1) x (1 + 1).
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then

which is at a distance greater than three from Cq(G) G, i.e., IIC(ak) C(G) > 3.
Thus Ca is not continuous at G.

If G has one or more infinite elementary divisors with exponent greater than two
we act in the same way.

(ii) Let G Ca(G) with finite elementary divisors and column minimal indices.
We take the submatrix of G,

This matrix is associated with the pair of matrices

which is not completely controllable.
By Theorem 5.6 of[5] we can find, as close to

0

as we want, a matrix of the same size such that the corresponding pair is completely
controllable, i.e., it does not have finite elementary divisors. So we obtain quadruples,
as close to G as we want, such that its image by Ca is at a distance greater than or equal
to one from Ca(G G. See also Theorems 9 and 10 of[4].

(iii) In this case it is enough to consider the quadruple G r e c(n + m) (n + p) and
apply case (ii) for Ca defined and with values in Ctn / m) (n + p), because G r is a quadruple
having finite elementary divisors and column minimal indices.

(iv) If Cq(G) G and G has only column and row minimal indices it suffices to
act as in Lemma 2.5, because there we perturbed only the matrix of the pencil that does
not go with . U]

COROLLARY 3.4. IfCa is continuous at G then one ofthefollowing properties hold:
(i) G has only column minimal indices and infinite elementary divisors with ex-

ponent one;
(ii) G has only row minimal indices and infinite elementary divisors with exponent

one;
(iii) G has onlyfinite elementary divisors and infinite elementary divisors with ex-

ponent one.
These three cases hold, respectively, when one of the following relations is true: (i)

m > p, (ii) p > m, or (iii) m p.
We will study them in the following three theorems.
THEOREM 3.5. Let Cq C(n+p)(n+m) C(n+p)x(n+m)wilh m > p. Let c and d be

nonnegative integers such that n m -p)c + d. Then Cq is continuous at G Ctn+tn+m)
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ifand only ifG has as only invariants p infinite elementary divisors with exponent one
and thefollowing column minimal indices:

el e,d= C-] 1, ed+ em-p= .
Remark. As in Theorem 2.7, the column minimal indices are those indicated if

and only if the partition of r-numbers is maximal for the majorization, i.e.,

rl rc =m-p and rc+l=d.

Proof. If G has the indicated form it turns out that to p, i.e., to is maximum. Thus
rkn (G + XE) is maximum and we can apply Lemma 1.2. Since rk (D) p, i.e., is
maximum and the r-numbers constitute a partition that is maximal for the majorization,
we have that given any sequence Gk -- G there exists a k0 such that for all k >_- k0 (by
the lower semicontinuity of the matrix rank) rk (Dk) p and (by Lemma 1.2) r() r.
That is to say, Cq(G) C(G) and thus Cq is continuous at G.

If Cq is continuous at G, since m > p, by Corollary 3.4, G has only column minimal
indices and infinite elementary divisors with exponent one. If G has less than p infinite
elementary divisors with exponent one, i.e., if rk (D) < p it is easy to find a sequence
Gk G such that rk (Dk) 19. Thus, [[Cq(Gk) Cq(G)11 >= and Cq is not continuous
at G.

Suppose now that G has p infinite elementary divisors with exponent one but is
column minimal indices are not those enunciated. If G is in canonical form we have

0 Dq
(-+)(,+m),

where Dq Ip and [Ae, Be] C" (" + m-p) is a completely controllable pair with a partition
of r-numbers that is not maximal for the majorization. Let r’ be the conjugate parti-
tion of

(CAr 1,
(d) (m-p-d)
..,c+l,c, ,c,0,...), i.e.,

r’l r’c m p and r’c+ d. Then r -< r’ and by Theorem 5.3 of[5] there
exists, in any neighborhood of [Ae, Be], a matrix [A’, B’] such that r’ is the partition of
r-numbers of [A’, B’]. Thus, there exists, in any neighborhood of G, a matrix

such that r’ is the partition of r-numbers of G’, so CQ(G’) Cq(G)II and Cq is not
continuous at G.

THEOREM 3.6. Let Cq :C(n+p)n+m) -- _.(n+p)(n+m) with p > m. Let c and d be
nonnegative integers such that n (p- m)c + d. Then Cq is continuous at G eCn+p)n+m)

ifand only ifG has as only invariants m infinite elementary divisors with exponent one
and thefollowing row minimal indices:

rt wa c+ 1, r/a+ ’rip_m-- C.

Remark. This last condition is equivalent to

s Sc=p-m and Sc+=d.
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Proof. It suffices to deduce from Theorem 3.5 the points of continuity of the map
Ca defined and with values in C(n+m)(n+p) with p > m. The transpose quadruples of
those obtained in this way are the quadruples we are looking for. [3

THEOREM 3.7. Let Cq C(n+m)(n+m) C(n+m)(n+m); Cq is continuous at G
ctn+m)tn+m)ifand only ifG has as only invariants m infinite elementary divisors with
exponent one and n finite elementary divisors oftheform

,- 1, n with Re (ki):: Re (,j) for all 4j.

Proof. If G has the indicated invariants we have that rkn (G + hE) n + m and
rk (D) m and both of them are maximum. Thus we can apply Lemma 1.2.

Given Gk -- G, by the lower semicontinuity of the matrix rank, we have that for
all k sufficiently large rk (Dk) m, i.e., Gk has m infinite elementary divisors with exponent
one. Now we make a reasoning analogous to that of the first part of Theorem 2.9, for
the finite elementary divisors. So we have that if e is any positive real number, for all
k sufficiently large, Gg has exactly n finite eigenvalues that are simple and sufficiently
close to the corresponding eigenvalue of G so as to have IICq(G) Cq(G)II < e, i.e.,
Cq(G) -- Cq(G). Therefore Cq is continuous at G.

If Ca is continuous at G by Corollary 3.4, G has only finite elementary divisors and
infinite elementary divisors with exponent one. And G must have m infinite elementary
divisors with exponent one because if G has less than m then D is not a full rank matrix
and we can find a sequence Gg -- G such that the matrices Dk are full rank and Ca will
not be continuous at G.

Finally, suppose that G has m infinite elementary divisors with exponent one but
G does not have the indicated finite elementary divisors. Let us consider that G is in
canonical form, i.e.,

G t(n+m) (n+m)

I

From what we have supposed and by Theorem 2 of 4 we deduce that the Jordan
canonical form is not continuous at Af. Thus there exists an e > 0 such that we can
obtain A), as close to Af as we want, with a Jordan canonical form that is at a distance
greater than the positive real number e, from Ay. Therefore, Cq is not continuous
at G. q

4. Points of continuity of the canonical form for the equivalence of matrix triples. In
this last section we will study a particular case, which is that of matrix triples of the form
(A, B, C) with A 6 C , B f cn X m, and C 6 Cp x . In fact, they consist of matrix
quadruples such that D 0 Cp and we cannot change D in the definition of the
equivalence relation of matrix triples when looking for matrix triples close to a given
one. So we can apply to matrix triples the definitions and results obtained for quadruples,
having in mind the restriction we have just mentioned.

DEFINITION. Two matrix triples (A, B, C) and (A2, B2, C2) are said to be equiv-
alent if there exist matrices P GLn(C), Q GLp(C), T 6 GLm(C), R C"xp, and S 6

Cm such that

0 Q Cl 0 S C2 0

As a consequence of this definition and making proofs analogous to those of Prop-
ositions 3.1 and 3.2, we have the following results.
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PROPOSITION 4.1. (A, B, C) and (A2, B2, C2) are equivalent if and only if
(A2, B2, C2) can be obtainedfrom (A B C by means ofone, or more, ofthefollowing
elementary transformations:

(A, B, C) --* (A2, B2, C2) (PAP-, PB, CP-),
(2) (AI, B1, CI) (A2, B2, C2) (A1 -k- RCI, B1, CI),
(3) (AI, BI, CI) (A2, B2, C:z) (AI, Bl, QC1),
(4) (A, B, C (A2, B2, C2) (A1 + B S, B, C),
(5) (AI, BI, C1) (A2, B2, C:z) (A1, BT, C)

where P, Q, T, R, and S are matrices as those considered in the previous definition.
Notation. Let (Ai, Bi, Ci) Cnn (_.nm (.pn. We define

In 0
Gi:E:=

0 0’ C 0

Thus E and G; are complex matrices of size (n + p) (n + m), 1, 2.
PROPOSITION 4.2. Two triples (A, B, C) and (A2, B2, C) are equivalent ifand

only ifthe pencils G + )E and G2 + )E are strictly equivalent.
This equivalence relation for matrix triples is a generalization of the I’-equivalence

for matrix pairs, and a particular case of the equivalence of quadruples and therefore a
particular case of the strict equivalence of matrix pencils.

Let H()) H1 + )H be a matrix pencil of size (n + p) (n + m) such that
rk (H2) n and H()) has no infinite elementary divisors with exponent one; then there
exist nonsingular matrices P and Q such that PH())Q G + )E where

and A e C . In this case we will say that the triple (A, B, C) is associated with the
pencil H(X).

It is also true that two triples associated with the same pencil are equivalent and
that two triples, associated with different pencils, are equivalent ifand only if the pencils,
with which they are associated, are strictly equivalent.

As we did for quadruples, we will say that (A, B, C) or

G=
C 0

is a triple. We will call column minimal indices, r-numbers, row minimal indices, s-
numbers, Segre and Weyr characteristics of G for the eigenvalue infinite, the column
minimal indices, r-numbers, etc., of the pencil G + )E. The Segre and Weyr character-
istics of G for an eigenvalue a C will be the Segre and Weyr characteristics of G + )E

for the eigenvalue c.
Since D 0, a triple will not have infinite elementary divisors with exponent one,

as we have noted for pencils that have associated triples.
For the invariants of triples we will employ the same notation as for quadruples.
Let us consider

u_c(n+p) x(n+m)Dn,m,p
C 0

as a metric subspace of Cn+p)+m), i.e., the matrix norm is that considered in
3. Let

Ct Dn,m,p" Dn,m,p
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be the map that associates with each matrix

B

its canonical form for the equivalence of triples

[Aftt Btol
where

At:= diag (Ae,A,,AOO,Af)rC ’,

Be 0

Bt.= 0 0 cnn [00 Boo
e and Ct:=

0
0 0

Cpn

is in canonical form corresponding to the infinite elementary divisors of G (which are
of exponent greater than or equal to two); finally, Af is a matrix in Jordan canonical
form associated with the finite eigenvalues of G ordered according to the lexicographic
order in C, and taking the blocks, corresponding to each eigenvalue, in decreasing order
of size.

Remarks. Since in the elementary transformations ), (3), and 5 the changes
are due to nonsingular matrices we have that rk (B) and rk (C) are two invariants ofthe
triple (A, B, C) for the equivalence.

(2) As there is no infinite elementary divisor of exponent one, we have that
mool moo2, i.e., to t. Thus we can write

(i) rkn(G+hE)=n+tl;
(ii) m-r0+tlandp=so+t.
The invariants and a canonical form for the equivalence oftriples can also be obtained

by the procedure followed in [8].
As it happened for quadruples, we can apply the results about perturbation ofpencils,

which give necessary conditions (Lemmas 1.1 and 1.2).
It remains true that Ct is continuous at a triple if and only if Ct is continuous at

any equivalent triple.
LEMMA 4.3. Let

IA B]Dnmp"G=
C 0

Suppose that G satisfies at least one ofthefollowing properties:
G has infinite elementary divisors with exponent greater than two;

(ii) G hasfinite elementary divisors and column minimal indices;
(iii) G hasfinite elementary divisors and row minimal indices;

according to the notation and definitions of 3. That is to say, (Ae, Be) is a completely
controllable pair in Brunovsky canonical form and its controllability indices are the
column minimal indices of G’, (A,,T C,r) is a completely controllable pair in Brunovsky
canonical form and its controllability indices are the row minimal indices of G;
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(iv) G has column and row minimal indices differentfrom zero;
v G has column minimal indices equal to zero and rk (B) < min { n, m }

(vi) G has row minimal indices equal to zero and rk (C) < min p, n }.
Then Ct is not continuous at G.
Proof. Suppose that G verifies (i) and that G is in canonical form. We will study

the case where G has only one elementary divisor u 3, and if G has infinite elementary
divisors with exponent greater than three, then the procedure is the same:

0 0
G= 1 0

0 1

Let

G := 0

1

Then

0 0
C,(G,)= 0 -k

1 0

which is at a distance greater than three from Ct(G) G. Thus Ct is not continuous
at G.

If G verifies (ii), (iii), or (iv) we make a proof analogous to that of Lemma 3.3 in
cases ii ), iii ), and (iv), respectively.

If (v) holds for G, in canonical form, it is enough to perturb some of the null
columns of B, associated with the column minimal indices of G equal to zero, so as to
obtain a matrix B’ such that rk (B) < rk (B’). Thus we can find in any neighborhood of
G a matrix G’ such that IIC/(G’) Ct(G)II >= 1, i.e., ct is not continuous at G.

In the case where (vi) holds, we proceed as we have just said by perturbing the
matrix C of G instead of B. 7

COROLLARY 4.4. IfCt is continuous at G, then one ofthefollowingproperties holds:
G has only column minimal indices and infinite elementary divisors with ex-

ponent two;
(ii) G has only row minimal indices and infinite elementary divisors with expo-

nent two;
(iii) G has onlyfinite elementary divisors and infinite elementary divisors with ex-

ponent two;
(iv) G has only infinite elementary divisors with exponent two;
(v) G has only column and row minimal indices equal to zero and infinite ele-

mentary divisors ofexponent two.
Each one of these properties corresponds to a different relation between n, m, and

p, as follows:
(i) m>pandn>=p,
(ii) p>mandn->m,
(iii) m=pandn>m,
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(iv) n=m=p, and
(v) n < min {p, m}.

Notation. a bc + d will have a meaning when a 0 and b > 0 by taking c
d.=0.

THEOREM 4.5. Let Ct On,m,p -’ On,m,p with m > p and n

_
p. Let c and d be

nonnegative integers such that n p m p)c + d. Then Ct is continuous at G On,m,p
ifand only ifG has as only invariants p infinite elementary divisors with exponent two
and thefollowing column minimal indices:

e ed c+ 1, ed+l-" =em-p--C.

Remarks. This means that if n p the column minimal indices are el

em-p 0, i.e., rl 0. in other cases r rc m p and rc+ d.
Proof. If G has the mentioned invariants, then rkn (G + ,E) is maximum and we

can apply Lemma 1.2. Moreover, C is a full rank matrix. So if Gk --* G, by the lower
semicontinuity of the matrix rank, for all k sufficiently large we have that Ck is also full
rank, i.e., Gk has the same infinite elementary divisors as G. By Lemma 1.2, they also
have the same column minimal indices as G, for all sufficiently large k. Thus Ct is
continuous at G.

If Ct is continuous at G, as m > p and n >- p, by Corollary 4.4, G has only column
minimal indices and infinite elementary divisors with exponent two. And G must have
p infinite elementary divisors with exponent two because if G has less than p then C is
not a full rank matrix and we can find a sequence Gk --* G such that the matrices Ck are
full rank and Cq will not be continuous at G.

If G has p infinite elementary divisors with exponent two but its column minimal
indices are not those indicated, we take the submatrix [A,, B,] of Ct(G) and we apply
Theorem 5.3 of[5] as we did in the last part of the proof of Theorem 3.5. ff]

THEOREM 4.6. Let Ct Dn,m,p -’ Dn,m,p with p > m and n >= m. Let c and d be
nonnegative integers such that n m (p m)c + d. Then C is continuous at G
On,m,p ifand only ifG has as only invariants m infinite elementary divisors with exponent
two and thefollowing row minimal indices:

r/ a=C+ 1, r/d+l l’]p-m’-C.

Remark. As in Theorem 4.5 if n m the row minimal indices are
Op-m 0 (i.e., rl 0). In other case s sc p m and Sc+ d.

Proof. As in other sections this case is solved by means ofTheorem 4.5 ifwe consider
the map Ct Dn,p,m "- Dn,p,m with p > m and n > m. V]

THEOREM 4.7. Let Ct Dn,m,m -- Dn,m,m with n >= m. Then Ct is continuous at G
On,m,m ifand only ifG has as only invariants m infinite elementary divisors with exponent
two and n m finite elementary divisors oftheform

)k )k l, )k )k with Re )ki) =)/= Re (,j) for all 4:j.

Remark. If n m there are only m infinite elementary divisors of exponent two
as we have anticipated in Corollary 4.4 and in the paragraph which follows it.

Proof. If G is as indicated, then rk (C) rk (B) m, i.e., C and B are full rank
matrices. If Gk -- G, by the lower semicontinuity of the matrix rank, we have that Ck
and Bk are full rank matrices for all sufficiently large k, i.e., Gk has m infinite elementary
divisors with exponent two.

If n m we have proved that Ct is continuous at G. If n > m we apply Lemma 1.2
(it is possible to do so because rkn (G + ,E) n + m) as we did in Theorem 2.9 (see



300 INMACULADA DE HOYOS

also the proof of Theorem 3.7). So we obtain that Ct(Gk) -’* Ct(G) and thus Ct is
continuous at G.

If Ct is continuous at G we deduce from Corollary 4.4 that G has only invariants of
the indicated types. Moreover, G must have m infinite elementary divisors with exponent
two because if G has less than m then C and B are not full rank matrices and Ct will not
be continuous at G.

If n m we have proved the theorem. If n > m and G has the indicated infinite
invariant factors but G does not have the indicated finite invariant factors, it suffices to
consider the submatrix Afof G, in canonical form, and to apply Theorem 2 of 4 as we
do in the proof of Theorem 3.7. Therefore, Ct is not continuous at G.

THEOREM 4.8. Let Ct Dn,m,p - D,,m,p with n < min {p, m }. Then Ct is continuous
at G ifand only ifG has as invariants n infinite elementary divisors with exponent two,
m n column mi;imal indices equal to zero, and p n row minimal indices equal
to zro.

Proof. If G has the indicated form we have that B and C are full rank matrices. By
the, lower sernicontinuity of the matrix rank, if G - G then for all sufficiently large k
matrices B and C are also full rank, i.e., C(G) G for all sufficiently large k. Thus
C is continuous at G.

Conversely, if C is continuous at G, by Corollary 4.4, G has invafiants of the three
enunciated types. If G has less than n infinite elementary divisors with exponent two it
will be rk (B) < rt and rk (C) < n and C will not be continuous at G. So G has exactly
n infini a elementary divisors with exponent two, and then it is easy to deduce that the
other ivariants must be as indicated.

5. Conclusion. The characterization of the continuity points of each one of the
three canonical forms studied here depends on the relations among the sizes ofthe different
matrices concerning each case. When these relations together with the continuity at one
point (matrix pencil, quadruple, triple) allow a Jordan part, the eigenvalues must be
simple and with different real parts. When there is no possibility of continuity at points
with Jordan part, the invariants allowed are those corresponding to an equivalence class.
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ON RUTISHAUSER’S APPROACH TO SELF-SIMILAR FLOWS

D. S. WATKINS AND L. ELSNER

Abstract. Certain variants of the Toda flow are continuous analogues of the QR algorithm
and other algorithms for calculating eigenvMues of matrices. This was a remarkable discovery of the
early eighties. Until very recently contemporary researchers studying this circle of ideas have been
unaware that continuous analogues of the quotient-difference and LR algorithms were already known
to Rutishauser in the fifties. Rutishauser’s continuous analogue of the quotient-difference algorithm
contains the finite, nonperiodic Toda flow as a special case. A nice feature of Rutishauser’s approach
is that it leads from the (discrete) eigenvalue algorithm to the (continuous) flow by a limiting process.
Thus the connection between the algorithm and the flow does not co.me as a surprise. In this paper
it is shown how Rutishauser’s approach can be generalized to yield large families of flows in a natural
manner. The flows derived include continuous analogues of the LR, QR, SR, and HR algorithms.

Key words. Toda flow, self-similar flow, quotient-difference algorithm, LR algorithm, QR
algorithm

AMS(MOS) subject classifications. 15A18, 15A23, 58F19, 58F25, 65F15
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1. The Toda flow and the quotient-difference algorithm. In recent years
there has been considerable interest in flows that are continuous analogues of the QR
algorithm and other algorithms for calculating the eigenvalues of a matrix [2], [16],
[18]. The present interest dates from Toda’s study [17] of a dynamical system that
came to be known as the Toda lattice. This is a system of infinitely many points
of unit mass constrained to lie on a line, such that each point exerts an exponential
repelling force on its two nearest neighbors. If the ith point has position qi and
momentum pi, then

(1) Oi =pi, i5i exp(qi_l qi) exp(qi qi+l).

In addition Toda applied a periodicity condition qn+i q + 2r/, for all i. Here n
and are fixed positive numbers, n an integer. Toda’s work was published in 1970.
Subsequently many workers in dynamical system theory studied the Toda flow and
numerous variants and generalizations. See, for example, [3], [5], [7], [8], [15], and
the works cited above. (Additional works are cited in the bibliography of [19].) We
will focus on a few of these. Moser [8] studied a variant with finitely many points
and no periodicity condition. This finite, nonperiodic Toda lattice satisfies (1) for

1,...,n with q0 - and qn+l . We will restrict our attention to this
version of the Toda lattice. Flaschka [3] noticed that the change of variables

exp(bi - -(qi qi+))

leads to the system

&i 2(b 2 1, n,bi_l)
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(2) i bi(ai+l ai), 1,..., n 1,

bo bn O,

which can be expressed as a matrix differential equation

(3) Bp(B) p(B)B,

where B and p(B) are the tridiagonal matrices

al bl
bl a2

an- bn-
bn- an

0 -bl
b 0

p(B) ".. "..
0

bn-

Note that B is symmetric and p(B) is skew-symmetric. Given any symmetric, tridi-
agonal initial matrix B, let B(t) be the unique solution of (3) satisfying B(0) =/.
:Fhen it is not hard to show that B(t) is orthogonally similar to B for all t. Hence we
say that the flow is self-similar. It is also called isospectral because the eigenvalues of
B(t) are invariant. Since the points of the lattice repel one another, we must eventu-
ally have qi -qi+ -c. Thus bi --. 0 for 1,.-., n- 1, and the ai converge to
the eiger..values of/. In a paper published in 1982, Symes [16] made the remarkable
observation that the finite, nonperiodic Toda flow is a continuous analogue of the QR
algorithm [22] for calculating the eigenvalues of a matrix. Starting from some initial
matrix A0, the QR algorithm produces a sequence (Ak) of matrices similar to A0.
Symes showed that the unshifted QR algorithm with initial matrix A0 exp(/) pro-
duces the sequence (Ak) (exp(B(k))). This observation was generalized in various
directions. Deift, Nanda, and Tomei [2] considered more general flows of the form

Bp(f(B))- p(f(B))B

for suitable functions f. For a fixed f, the more general flow produces B(t) such that
the QR algorithm with starting matrix A0 exp(f(/))) produces the sequence

(Ak) (exp{f(B(k))}).

In particular, the choice f(x) log x yields a flow for which B(O),B(1),B(2),... is
exactly the sequence produced by the unshifted QR algorithm with starting matrix

A0 -/. In other words, this flow interpolates the QR algorithm. Chu [1] extended
the family of flows to include nonsymmetric, nontridiagonal B. We refer to this family
of flows collectively as QR flows. In [18] Watkins introduced a family of LR flows
(called LU flows in [18]) that are related to the unshifted LR algorithm [22] in exactly
the same way.

All of this work was published after 1970, and all of it was done in ignorance
of earlier work of autishauser [11], [14]. It is well known that autishauser invented
the LR algorithm in the fifties [13], [14]. In 1958, in one of his early papers on
the subject [14], he included a section entitled "A continuous analogue to the LR
transformation," in which he developed the LR analogue of the Toda flow. It turns
out that Rutishauser’s flow is a member of the family of LR flows introduced by
Watkins [18] much later.
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A pleasing feature of Rutishauser’s derivation is that it proceeds from the LR
algorithm to the flow in a natural way, i.e., by taking a limit. Thus the connection
does not come as a surprise, as it did in the case of Symes’s discovery of the connection
between the Toda flow and the QR algorithm. One might well wonder what led
Rutishauser to this natural approach. The answer lies in the historical roots of the LR
algorithm. The LR algorithm evolved from the quotient-difference (q-d) algorithm,
which was also developed by autishauser [9], [10], [12]. The q-d algorithm started out
as a method for finding the poles of a meromorphic function. For almost all choices
of x,y e (n, the function f(A) yT(AI- A)-lx has the eigenvalues of A as its
poles, so the algorithm can also be used to find the eigenvalues of a matrix. As it was
originally formulated, the q-d algorithm consisted of filling out a so-called q-d table,
which resembles a table of differences, except that the rules for forming a q-d table
are more complicated. For details see the original work of Rutishauser or Henrici’s
book [6]. The zeroth column of an ordinary difference table consists of the values of
a smooth function at equally spaced points. As the spacing tends to zero, the first
and higher order differences tend to zero as well. However, if the table is modified so
that it contains divided differences instead of simple differences, the column of kth
differences will tend to the kth derivative as the spacing tends to zero. Notice that
if we let gk(t) denote the limit of the kth column, then [lk= gk+l for k 0, 1, 2,....
Thus the columns are related by a simple system of differential equations. The entries
in the zeroth column of a q-d table can also be viewed as values of a certain function at
equally spaced points. It is therefore quite natural to ask what happens as the spacing
converges to zero. It turns out that the limit is not very interesting. Certain columns
(the quotients) tend to 1, while others (the differences) tend to zero. However, we
would hope to be able to modify the table in the spirit of divided differences, so
that an interesting limit is obtained. This turns out to be possible, but since the
formation rules for a q-d table are more complicated than for a simple difference
table, the columns (of the modified table) do not converge to simple derivatives of the
original function. Instead, the limit satisfies a more complicated system of differential
equations:

( E- E_I, 1,...,n,
(4) i Ei(Qi+ Qi), i= 1,...,n- 1,

Eo=O=En.

Qi(t) is the limit of the ith column of (modified) quotients and Ei(t) is the limit of the
ith column of (modified) differences. This continuous analogue of the q-d algorithm
was published by Rutishauser [11] in 1954. The equations (4) resemble Flaschka’s
form (2) of the finite, nonperiodic Toda equations. In fact, the change of variables

Qi 2a, E 4b2

transforms (4) into (2). Thus Rutishauser published a form of the Toda flow 16 years
before Toda. The system (4) is actually more general than the Toda flow, since the
Toda flow corresponds to the special case Ei > 0, 1,..., n- 1.

The original formulation of the quotient-difference algorithm was found to be
unstable. A better approach is to fill in the q-d table from top to bottom, rather than
from left to right. Rutishauser quickly recognized that the top-to-bottom procedure
could be interpreted as a process of matrix factorization and recombination, and the
LR algorithm was born. The q-d algorithm is just the LR algorithm applied to
a tridiagonal matrix with l’s on the superdiagonal. Once the algorithm assumed
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this new guise, it became easy to forget the q-d table and its infinitesimal limit.
But Rutishauser did not forget. Generalizing from the q-d algorithm, he obtained a
continuous analogue of the LR algorithm [14], which he published in 1958.

Given that the Toda flow is a continuous analogue of the QR algorithm, whereas
Rutishauser’s flow (4) is associated with the LR algorithm, it might seem surprising
that (4) should include the Toda flow as a special case. Actually, this need not be
such a surprise. Suppose the LR algorithm, or, equivalently, the q-d algorithm, is
applied to a symmetric, positive definite, tridiagonal matrix. The symmetry is not
preserved by the algorithm, but a trivial rescaling transforms the LR algorithm to
the Cholesky LR algorithm [22], which does preserve symmetry. The outputs of the
two algorithms differ by diagonal similarity transformations, so we can think of them
as the same, at least in principle, it is well known [22] that two steps of the Cholesky
LR algorithm are equivalent to one step of the (symmetric, unshifted) QR algorithm.
Thus, in a sense, the q-d algorithm includes as a special case the QR algorithm for
symmetric, positive definite, tridiagonal matrices. The same must be true of the
continuous analogues.

In the remainder of the paper we will show how to construct flows by Rutishauser’s
method. Our construction will be based on Rutishauser’s LR flow, not the q-d
flow; the former is more general than the latter. We will present a generalization
of Rutishauser’s construction that produces QR, SR, HR, and other flows as well.
We begin by introducing a generic eigenvalue algorithm, the FG algorithm. We then
derive a continuous analogue, a generic FG flow. In 3 the construction is generalized
to yield a whole family of FG flows associated with each FG algorithm. This is exactly
the family of autonomous FG flows discussed in [19]. The contribution of the present
paper is not to develop new flows, but to show how Rutishauser’s construction can be
generalized to produce known flows in a very natural manner. An additional contri-
bution is that our development is rigorous. By contrast, Rutishauser’s development
was sketchy and omitted numerous details.

The approach developed here can also be used to derive families of flows associated
with algorithms for the generalized eigenvalue problem e{x A/x. These are exactly
the autonomous FGZ flows of [20]. The same approach can also be used to derive
the autonomous flows associated with the singular value decomposition discussed in
[21]. The constructions are straightforward, and we omit them.

2. Construction of flows by Rutishausers approach. In order to achieve
the desired level of generality, we will make use of some notions from elementary Lie
theory. The reader who would rather not learn about Lie theory at this time should
skim the next two paragraphs lightly, then have a close look at Examples 2.1L and
2.1Q. The reader can then read the rest of the paper easily by substituting either QR
or LR for FG.

Let or g’, and let GLn() denote the general linear group of nonsingular
n x n matrices over F. Given a closed subgroup of GLn(F), let A() C Fnx
denote the Lie algebra associated with G. The basic facts about Lie algebras of
matrices are stated in [19]. For more complete information about Lie groups and
algebras see [4], for example. The Lie algebra A(G) is most easily viewed as the
tangent space of the manifold G at the identity element. Thus it can be thought of as
a subspace of Fnxn. Let .T and be two closed subgroups of GLn() such that

(5) A(’) (3 A(G) gnx’,

and A({) contains the identity matrix. This last assumption implies that A(G) con-
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tains the Lie algebra of all real multiples of I, which is equivalent to the condition
that G contains the Lie group of all positive multiples of I. We could equally well
require that A(.T’), rather than A(g), contain the identity matrix. However, as we
shall later see, neither of these assumptions is really necessary. The assumption (5)
means that every X E n, can be decomposed in exactly one way as

(6) x + p(X) e A(.T), a(X) e A(g).

This equation defines linear transformations p and a, which are complementary pro-
jectors of ,nn onto A(.T’) and A(), respectively. The existence of the additive
decomposition (5) implies the existence of a multiplicative decomposition: There is a
neighborhood l; of I in GLn() such that every A 12 has a unique FG decomposi-
tion; that is, A can be expressed uniquely as a product A FG, where F .T and
a e [4],

Let A(e) be an analytic function of e with A(0) I. Then for sufficiently small
e, A(e) has an FG decomposition n(e) F(e)G(e), and the factors F(e) e " and
G(e) e g are also analytic functions satisfying F(0) G(0) I. Expanding each in
a Taylor series we have

F(e) I + eX + e2M + O(e3), G(e) I + eY + e2N + O(e3),

where X F’(0) 6 A(.T) and Y G’(0) 6 A(Q). We will need to use expansions of
this type to derive the FG flows.

Example 2.1L. Rutishauser considered the special case in which the FG decom-
position is the LR decomposition. In this case .T is the group of unit lower triangular
matrices, and is the group of nonsingular upper triangular matrices. (1’ can be
either

_
or IT.) Thus A(’) and A() are the Lie algebras of strictly lower triangular

and upper triangular matrices, respectively. Clearly (5) holds, and A(Q) contains I.
Given X 6 ,nxn, we obtain a(X) by setting the lower triangular entries of X to
zero. Then p(X) X- a(X).

Example 2.1Q. Let . If we take .T" to be the unitary group and the group
of upper triangular matrices with real, positive, main diagonal entries, then the FG
decomposition is just the QR decomposition. The Lie algebras A(.T’) and A(Q) are
just the skew-Hermitian matrices and the upper triangular matrices with real main
diagonal entries, respectively. Obviously A(Q) contains I. It is easy to show that (5)
holds. Every X 6 nxn can be expressed uniquely as a sum X L + D + D + U,
where L is strictly lower triangular, Dr is diagonal and real, Di is diagonal and
imaginary, and U is strictly upper triangular. We have p(X) L + Di L* and
a(X) Dr + U + L*. There is also a real QR decomposition, which we obtain by
taking " to be the group of real, orthogonal matrices and the group of real, upper
triangular matrices with positive entries on the main diagonal.

Two other examples, the SR and HR decompositions, are discussed in [19].
Associated with each FG decomposition is an FG algorithm for calculating eigen-

values of matrices. The shifted FG algorithm associated with $" and begins with
a matrix/) E GLn(;’) and produces a sequence (Bk) by setting B0 B, and then
defining Bk, for k 1, 2, 3,..., by the equations

(7) Bk-1- akI fi’kOk, kk + akI Bk,

where /k ’, (k G, and the shift ak is chosen so that Bk-1 --(rkI has an FG
decomposition. The meaning of (7) is that a shift is subtracted from Bk-1, an FG



306 D. S. WATKINS AND L. ELSNER

decomposition of the shifted matrix is performed, the factors of the decomposition are
multiplied back together in reverse order, then the shift is added back on, giving Bk.
It is easy to show that the Bk so produced are all similar to/, so they have the same
eigenvalues. Under certain conditions on/}, .T, , and (crk) the sequence (Bk) can be
shown to converge to triangular or quasi-triangular form, yielding the eigenvalues of
The shifts are generally chosen with an eye to accelerating convergence. Rutishauser
used shifts for a different purpose, namely, to pass to a continuous limit. Following
Rutishauser we consider a constant shift ak --#, where # is positive and large. (We
plan to take a limit in which # oc.) Then the sequence (Bk) is generated by

Bk-1 + #I Fk(#ak), (#(Ik)-Pk #I Bk.

We have factored the scalar # out of Ok for convenience. Because of the assumption
that G contains all positive multiples of the identity matrix, we have (k E G if and
only if lzGk . .

Notice that this choice of shifts actually slows convergence. This is so because the
rate of convergence (when it occurs at all) is determined, at least in part, by ratios
of eigenvalues of B + #I. As # is made larger, the ratios of the eigenvalues approach
one, indicating progressively slower convergence.

It is easy to show that

Letting

we have

(9) Bk Fk-Fk Gk[Gk-.
We can also show easily by induction that

(10) ( + #I)k #kFkGk.
We prefer to work with a small parameter rather than the large parameter #, so let
e 1/#. Then (8) and (10) can be rewritten as

(11) I + eB 1%)I: kk I +

(12) (I + e/))a FkGk.

We used the assumption that A(6) contains the identity matrix to write the
shifted FG algorithm in the form (8), which we then rewrote in the equivalent form
(11). This assumption will not be used anywhere else. If we use (11) as our point of
departure instead of the shifted FG algorithm, we can drop the assumption.

It is useful to view the FG algorithm (11) as a discrete-time dynamical system
governed by the difference equation

1
(13) Bk Bk- + -(k.k .kk).
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We will view each step forward as a time step of length e. Thus the elapsed time
after k steps is ke. If we let e --, 0 and k oe, holding t ke fixed, the difference
equation (13) is transformed into a differential equation, a continuous analogue of the
FG algorithm.

In order to carry out the limiting process rigorously, we need to know that certain
limits exist. The matrices Bk, Fk, Gk, k, and Ok are all functions of e as well as k,
and we will write Bk B(k, e), for example, when we want to emphasize this fact.
From (12) it is clear that F(k,e) and G(k,e) are well defined for all complex k and
sufficiently small complex e, and they are analytic in both variables. From (9) and (11)
we see that the same is true of B(k, e), F(k, e), and G(k, e) as well. Since we intend
to hold t ke fixed as we pass to the limit, it is useful to write F(k, e) F(t/e, e),
for example. With this notation we can rewrite (12) as

(14) (I + }(D))’I FCtle, e)G(tle,

The limit of the left-hand side as e ---, 0 is exp(t/)). Suppose exp(t/) has an FG
decomposition. (This will certainly be the case if t is sufficiently small.) Define
F(t) E and G(t) e g to be the FG factors of exp(t/)); that is,

(15) exp(t/)) F(t)G(t).

Since the FG decomposition is analytic, it is certainly continuous. Thus (14) and
(15) imply that

lim F(t/e, e) F(t) lim a(t/e e) G(t).
e-.-O

For fixed t the left-hand side of (14) is an analytic function of e in a deleted neighbor-
hood of zero, with a removable singularity at e = 0. Therefore F(t/e, e) and G(t/e,
are also analytic functions of e with removable singularities at zero, provided exp(tB)
has an FG decomposition. Define another analytic function B(t) by

(16) B(t) F(t)-XF(t) a(t)a(t)-.
The equations (9) can be rewritten as

B(tle, ) F(tle, e)-i[F(tle, ) a(tle, e)[a(tle, )-.
Therefore B(t/e, e) is an analytic function of e in a neighborhood of zero. Taking the
limit as e --- 0, we find that

lim B(t/e, ) B(t).

The function B(t) is, in fact, our continuous analogue of the sequence (Bk).
We now have in hand the tools to prove the following interpolation result" Let (Ak)

be the output of the FG algorithm with zero shifts, starting with Ao exp(/)).
Then

Ak exp(B(k)), k 0, 1, 2, 3,....

The main tools for proving this are (15) and its discrete analogue k FkGk, which
holds for the unshifted FG algorithm. See [19] for a proof. Rutishauser stated the
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LR case of (15), but he did not arrive at it in the same manner as we have here. He
may have been unaware of the interpolation result, as he did not mention it in [14].

We will now derive the continuous analogue of the FG algorithm, i.e., the dif-
ferential equation that B(t) satisfies. The usual approach is just to differentiate (15)
and (16). This yields differential equations for F(t) and G(t), as well as B(t). Now let
us see how Rutishauser obtained them by passing to a limit. For this we need Taylor
expansions of the quantities/k (t/e, e) and (k (t/e, e), which appear in (13).
The first equation in (11) can be written as

(17) I + eB((t )/, ) F(t/e, e)G(t/e, ).

Letting A(e) I + eB((t )/, ) we see that A(e) is analytic, and lim._.0 A(e) I.
Thus (t/e, ) and ((t/e, ) have Taylor expansions

(18)
P(t/e, ) I + eX(t) + e2M(t) + O(e3),

((t/e, ) I + eY(t) + e2N(t) + O(e3),

where X(t) e A($’) and Y(t) e A(). Substituting the expansions (18) into (17), we
find that

B((t )/, ) X(t) + Y(t) + 0().

Letting e --. 0, we obtain

B(t) X(t) + Y(t).

Since X(t) E A(.’) and Y(t) A(G), it follows that

X(t)=p(B(t)) and Y(t)=a(B(t)),

where p and a are defined by (6). We are finally ready to pass to the limit. Following
Rutishauser we substitute the expansions (18) into (13), which can then be rewritten
as

B(t/,) B((t e)/,e) [Y(t),X(t)] + 0(),

where [Y, X] YX- XY. Taking the limit as 0, we obtain

(19) (t) [a(B(t)), p(B(t))].

This is our continuous analogue of the FG algorithm. Since [a(B), p(B)] [B, p(B)]
[a(B),B], (19) also has the forms

(20) / [B, p(B)] and / [a(B), B].

This shows that this flow is a member of the family of FG flows introduced in [19].
The differential equations for F and G are also easily obtained.

Taking the limit, we have

(21)

Fk-l{p(B(t)) + O(e)}.

Fp(B)= Fp(F-IF).
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Similarly,

(Z) (; a(B)G

These equations are familiar from [19]. They were also stated by Rutishauser [14] for
the LR case.

A second way to obtain the differential equation for B(t) is to use the equation

(23) Bk k-lBk-lk.
From the first expansion in (18) it is obvious that

I eX(t) + O(e2).
Substituting this expansion and the first expansion of (18) into (23), we find that

(24) Bk Bk-1 + e[Bk-, X(t)] + O(e).
Thus

(25) B((t

Taking the limit as e 0 we obtain

/(t) [B(t), p(B(t))],

the first equation of (20). We could equally well have started with the equation

(26) Bk OkBk-lGk
This gives

Bk Bk-1 + e[Y(t), Bk-1] + O(e2),
which leads to/) [a(B), B], the second equation of (20). The nicest feature of this
approach is that it can be generalized. We will carry out the generalization in the
next section.

In order to carry out the construction, we have had to assume that t is such that
exp(t/)) has an FG decomposition. We have already shown in [19] that the points at
which exp(t/)) does not have an FG decomposition are exactly the points at which
the flow has singularities.

3. Ca.rrying the generalization further. So far we have derived FG flows of
the form B [B, p(B)l. This is a special case of a more general family of autonomous
FG flows of the form B [B, p(f(B))], which we studied in [19]. Here f is any locally
analytic function defined on the spectrum of/). In the present section we will show
how to derive this entire family of flows by taking limits.

We will make use of the following generalization of the FG algorithm. Instead
of choosing a sequence of shifts (ak), we choose a sequence (Pk) of analytic functions
defined on the spectrum of/). Then, starting with B0 B, we define, for k
1,2,3,...

I Bk k-lBk-lk OkBk-lOk-1,
(27) / where p(B_) , .T’, .
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If we choose pk(x) x ak, (27) reduces to the shifted FG algorithm introduced
in the previous section. The choice pk(x) (x- ak)(X- rk) gives the double-step
FG algorithm. In actual implementations the Pk would be chosen with the intent
of accelerating convergence, but for our purposes we will choose pk(x) 1 + el(x),
k 1, 2, 3,..., where f is a fixed analytic function defined on the spectrum of B.
Then

(28)

Defining Fk 1"’" k and Gk k’’" (, we have

and

(29) (I + ef())k FkGk.

In the case f(x) x, (28) and (29) reduce to (11, first equation) and (12), respectively.
Letting t ke and using the same notational conventions as before, we can rewrite
(29) as

(z +
which is analogous to (14). Obviously the limit of the left-hand side as e --. 0 is
exp(tf()). The entire development of the previous section can be generalized in a
straightforward manner. Now F(t) and G(t) are defined by the FG decomposition

exp(tf(/)) F(t)G(t).

The Taylor expansions

(t/e, e) I + eX(t) + O(e2),

((t/e, e) I + eY(t) + O(e2)
continue to be valid, but now

so

X(t) + Y(t) f(B(t)),

X(t) p(f(B(t))) and r(t) a(f(B(t))).

Equations (23), (24), and (25) continue to hold, except that now X(t)= p(f(B(t))).
Taking the limit as e 0 in (25), we obtain

[B, p(f(B))],

as desired. Alternatively we can start from (26) and obtain the form/ [a(f(B)), B].
Finally, in analogy with (21) and (22) we find that

Fp(F-f([)F), a(Gf()G-)G.
This flow has the interpolation property exp{f(B(k))} Ak, where (Ak) is the

output of the FG algorithm with zero shifts, starting with A0 exp{f(B)}. In
particular, the choice ’f(x) log x yields a flow that interpolates the FG algorithm.
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INCREMENTAL CONDITION ESTIMATION*

CHRISTIAN H. BISCHOFt

Abstract. This paper introduces a new technique for estimating the smallest singular value,
and hence the condition number, of a dense triangular matrix as it is generated one row or column
at a time. It is also shown how this condition estimator can be interpreted as trying to approximate
the secular equation with a simpler rational function. While one can construct examples where
this estimator fails, numerical experiments demonstrate that despite its small computational cost, it
produces reliable estimates. Also given is an example that shows the advantage of incorporating the
incremental condition estimation strategy into the QR factorization algorithm with column pivoting
to guard against near rank deficiency going unnoticed.

1. Introduction. Let A [al,...,an] be an m n matrix and let al k k
O’min(m,n) 0 be the singular values of A. The smallest singular value

O’min __---- (Tmin(m,n)

of A is important in that it measures how close A is to a rank-deficient matrix [10, p.
19]. The condition number

2(A) O’1

O’min

which determines the sensitivity of equation systems involving A [10], [19], also de-
pends crucially on rmin. For most practical purposes an order-of-magnitude estimate
of O’min or a2(A) is sufficient. Most of the schemes for estimating O’min and a:(A) apply
to triangular matrices, since in common applications A will be factored into a prod-
uct of matrices involving a triangular matrix. An excellent survey of those so-called
condition estimation techniques for triangular matrices as well as their applications
is given by Higham [12].

All of these condition estimators do, however, estimate the smallest singular value
of a triangular matrix after it has been factored and cannot be used to monitor the
factorization of an upper triangular matrix as it is generated one column at a time (or
a lower triangular matrix as it is generated one row at a time). Since a matrix and
its transpose have the same singular values, we assume without loss of generality that
we are generating a lower triangular matrix L one row at a time. The advantage of
the incremental condition estimator we present in this paper is that it does allow us
to update estimates of min(L) and a2(L) cheaply as L is generated one row at a time.
In particular, if we are given an n n lower triangular matrix L, an approximate
singular vector x such that ffmin(/) 1/llxl[e, and a new row (vT,) of L, we are
able to obtain a new approximate singular vector of
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such that O’min(L’ 1/11y112 with 3n ops and without accessing L again. In this
fashion, incremental condition estimation makes it possible to monitor the condition
number of L as it is generated.

In the next section we motivate the idea behind incremental condition estimation
and describe the algorithm. Section 3 explains why incremental condition estimation
works and explores its limitations. Section 4 presents numerical results showing the
robustness of the proposed scheme. In 5 we give an example of the usefulness of
incremental condition estimation in the context of the QR factorization with column
pivoting. Lastly, we summarize our contributions and outline directions for further
research.

2. Estimating the smallest singular value of a triangular matrix. A com-
mon idea underlying condition estimators [7], [8], [11] is to exploit the implication

1
Lx=d =IlL 1112O’min(L)

by generating a large norm solution x to a moderately sized right-hand side d and
then to use

(min (L):--

as an estimate for amin(L). We hope that x will be an approximate singular vector
corresponding to the smallest singular value and that as a consequence min(L) will
not be too much of an overestimate of amin(L).

For our incremental condition estimator we want to monitor amin(L) as L is
generated one row at a time. As a consequence, it is not feasible to reaccess L, since
that would require O(n2) flops at every updating step, which is too expensive. To be
more precise, given a good estimate (min(n) defined by a large norm solution x to
Lx d and a new row (vT, ") of L, we want to obtain a large norm solution y to

L 0) dLy
vT /

Y

without accessing L again. None of the condition estimators surveyed by Higham [12]
has that property.

We achieve this objective by choosing the new right-hand side d in a fashion that
allows us to reuse the previous approximate singular vector x. The idea is as follows.

Given x such that Lx d with Ildl12 1 and amin(L) 1/llxl12, find s := sin
and c := cos such that IlYlI2 is maximized where y solves

0)(1) vT "
Y= c

By setting up the problem in this way we obtain immediately

Either an addition or a multiplication of two floating-point numbers is counted as a flop.
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where

O vTx

and IId’l12 -Ildl12 1. The proper (s, c)is found using (2) and expressing

where

(4) B=( 1+/- -)1
with

(5) 3"2xTx "4" O2 1.

Assuming that 3’ # 0 (otherwise L’ is singular and amin(L’) 0), the optimal

(Sis the eigenvector corresponding to the largest eigenvalue Smax of B. In the

case # 0 we define

(6) n

and obtain

and # r/+ sign(c)V/r/2 + 1

(7) Amax a# + 1

and

(s)

For the special case a 0 we obtain

B ( 3"2xTx

in (4) and choose

(:)
0

(0)therwise’l
vector y as defined by (2) and the resulting estimate for the smallest singular value
of rmin(L’ of L’ is

1
(9) min(L’) IlYlI"
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Given L, we need save only the current approximate singular vector x to compute
an estimate for the smallest singular value of L. Furthermore, the calculation is
inexpensive. Since

(10)

we need only 3k flops (a dot product and a scaling) to arrive at an estimate for
amin(L). In particular, it costs only 23-n2 flops to run this condition estimator along-
side the generation of an n n triangular matrix.

The incremental condition estimation idea can also be used to obtain good es-
timates for amax, the largest singular value. Traditionally, the norm of the largest
column, i.e.,

max Ilalle (< ffmax)(11) rmax
l<i<n

is used as an estimate for amax(A). It is easy to show that

rmax V/

_
ffmax

and hence rmax underestimates O’max at most by a factor of vf. For large n this could
be a substantial underestimate. Furthermore, in the estimate

(12) k2(L)---- r-max (_ a2(L)),
(Tmin

the errors in both/’max and min multiply.
To obtain a better estimate for O’max, observe that an approximate singular vector

x for O’max is a small norm solution to Lx d, Ildl12 1 for a suitably chosen vector
d. Note that this vector d is different from the one involved in estimating the smallest
singular value. Given such a vector x for ix d, we compute (s, c) such that IlYlI2 is
minimized where y solves (1). The optimal (s,c) is then computed as in (5) through
(8), except that we define

# - sign(a)V/r2 + 1.

We mention that the incremental condition estimation scheme is related to the
two-norm condition estimator suggested by Cline, Cons, and Van Loan [7], [18]. While
their scheme looks backward and forward in a matrix, our scheme looks only backward
to allow for the estimator to proceed in an incremental fashion.

3. Limitations. Given that there are counterexamples for computationally more
expensive condition estimation schemes [12], it is not surprising that incremental con-
dition estimation can fail as well. To understand why incremental condition estimation
works, consider the singular value decomposition

L UEVT, U Is1,..., Un], V Iv1,’", vn]

of L and assume that incremental condition estimation was exact and computed

1
(13) x

amin (L) vs.
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x is the largest possible solution to an equation system Lx d, where Ildll2 1.
Letting

vT ’7

consider the so-called secular equations [4], [5] for the singular values of L’. The roots

A1 A2 An+l 0

of

’ (vrvi) ,
(14) f(A)’=E 2 ----t-1

i= ai (L) ,
determine the singular values of L in that

2(L’) AiO"

Now define

(VTVn )2 2(15) ](A)’= 2 +1
O’min (L) A A

The smallest root of ] is

1
(T-- V/T2 2 2-4/ O’min(L))

where

f and ] are identical if

2 2 ,),2T O’min(n nt- (vTvn) +

and then

2 (L’)., An+l O’min

In this special case it is also easy to verify that /max, as defined in (7), is

1
max

20.min (L)
!

(T -- /T2 4,v2(r2min(n)

and the resulting estimate for (min(Lt) defined by (9) and (10) satisfies

^2 (L’) VO’min

and hence is exact.
This analysis shows that incremental condition estimation can be viewed as trying

to approximate the secular equation (14) with the sim21er rational function (15). This
is a reasonable strategy, since the smallest root of f is a good approximation to the
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smallest root An+l of f when the roots of f are reasonably well separated and VTVn
is not too small in comparison with Ilvl12.

In the general case, i : ffmin(/t) 2, but instead i O’min()2, where

with

vTx
:=

ll ll 
x=

being the projection of v onto span(vn) span(x). Hence, incremental condition
estimation approximates rmin(L’ by ffmin().

This analysis shows that incremental condition estimation can be unreliable when

(16) vTx I<< Ilxl1211vl12.
Then the singular values of L and L can differ by an arbitrary amount. It should
be noted, however, that even in the case where v and x are orthogonal, incremental
condition estimation need not necessarily fail. If is small enough, the contribution of
v to the change of the smallest singular values is negligible and incremental condition
estimation still works. This is the reason why in the QR factorization with column
pivoting [6], [9], [10] the smallest diagonal element usually works as a predictor of
(Tmin.

We also point out that the previous analysis leads to a counterexample for the two-
norm condition estimator suggested by Cline, Cons, and Van Loan [7], [18], since the
nth step of their condition estimator is identical to incremental condition estimation.
No counterexample for this condition estimator had been known thus far.

4. Numerical experiments. To assess the reliability of incremental condition
estimation, we performed the test suite suggested by Higham [12] using PRO-MAT-
LAB [16]. Three different types of test matrices are employed. In each test, upper
triangular matrices R were generated by computing the Householder QR factorization
of various n n matrices A for n 25, 50, 75,100 both with and without column
pivoting.

Test 1. The elements of A were chosen as random numbers from the uniform
distribution on [-1, 1]. Fifty matrices were generated for each n. As observed by
Higham, this type of matrix usually is well conditioned. Over the whole test the
minimum, maximum, and average values of the two-norm condition number a2(A)
allan were 24, 1.5.104, and 2.4.106, respectively.

Tests 2 and 3. In these tests we used random matrices A with preassigned singular
value distributions (ai. Random orthogonal matrices U and V were generated using
the method of Stewart [17] and then A was formed as A UFVT. For each value
of n and each singular value distribution, fifty matrices were generated by choosing
different matrices U and V. For Test 2 we chose the exponential distribution

ai=a l<i<n

where c < I is determined by a2(A).. For Test 3, we chose the sharp-break distribution

1 (T (Tn_l > (Tn
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TABLE 1
Maxavg values of 5min(R)/amin(R).

Test 1" Uniform Distribution of Singular Values
n No pivoting Column pivoting
25 6.6/2.4 2.9/2.0
50 7.0/3.1 5.6/2.6
75 8.5/3.5 4.9/3.2
100 9.6/4.1 5.5/3.4

Test 2: Exponential Distribution of Singular Values

n

75
100

2 10
1.6/1.3
1.7/1.4
1.5/1.4
1.5/1.4

No pivoting
n2-106 n2- 10I2

4.2/2.5 11/3.6
6.1/2.9 6:9/3.8

4:0/3’0 6.1/3’9
4.3/3.0 7.3/4.1

Column pivoting
a:-=10 a 10 a. 10’
1.7/1.4 3.3/2.2 4.1/2.1
1.6/1.4 3.4/2.4 4.1/3.0
1.6/1.4 3.5/2.7 5.1/3.1
1.6/1.4 3.4/2.8 5.0/3.5

TABLE 2
Max/avg values of a2(R)/k2(R).

Test 1" Uniform Distribution of Singular Values
n No pivoting Column pivoting
25 6.8/2.4 ,. 2.9/2.0
50 7.0/3.1 5.6/2.6
75 8.6/3.5 4.9/3.2
100 9.7/4.1 5.5/3’4

Test 2: Exponential Distribution of Singular Values

25
50
75
100

t2 10
2.2/1.6
2.1/1.6
i.8/1.6
1.8/’1.6

No pivoting
t2 106 t2 1012
6.8/3:0 21/4.1
7.1/3.5 9.7/4.5
7.0/3.6 9.7/4.8
5.2/3.8 8.2/5.1

Column pivoting
2 10 t2 106 2 1012
2.1/1.5 3.3/2.2 4.1/2.1
1.8/1.6 3.5/2.6 4.2/3.0
1.8/1.6 4.4/2.9 5.9/3.3
1.9/i.6 3.9/3.1 5.4/3.7
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The figures given in Table 1 are the ratios

’min(R)/O’min(R)

_
1.

The figures in Table 2 are the ratios

n2(R)/k2(R) >_ 1

where

2(R O’max

O’min

and both ’max and min have been computed using incremental condition estimation.
The first number in each pair is the maximum ratio over the fifty matrices, and the
second is the average ratio. All results were rounded to two significant digits. For
Test 3 we observed a ratio of 1.0 (i.e., the estimate had at least two correct figures)
in all cases. These results show that our condition estimator is reliable in producing
good estimates. We overestimate 6min(R) (or underestimate g2(R)) only by a small
factor and the results vary only little with condition number, matrix size, and singular
value distribution. Since

(min) (ffmax2 kamin max ]

the conparison of Tables 1 and 2 shows that

max
ffmax

in most cases, and hence the estimate for the largest singular value is very good.
We also note that although pivoting somewhat increases the accuracy of the

condition estimator, it is not needed to obtain reliable estimates. This is in contrast
to the estimator for ffmin arrived at choosing

min(n) rain ]lii
l(i<n

This estimator also works in an incremental fashion, but is unreliable when the matrix
is not graded (as it is, for example, in the QR factorization with column pivoting). In
particular, this condition estimator fails on matrices produced by the QR or Cholesky
factorizations without column pivoting.

5. Guarding the QR factorization with column pivoting. A well-known
strategy for extracting a set of reasonably independent columns of a given matrix A
and for computing an orthonormal basis for the span of A is the QR factorization with
column pivoting [1], [6], [15]. Viewed geometrically [10, p. 168, P.6.4-5] this strategy
chooses at every step that column of A that is farthest away (in the two-norm sense)
from the subspace spanned by the columns that were selected before. In matrix terms
we are computing a QR factorization

(17) AP=QR

where P is an n n permutation matrix determined by the pivoting strategy, Q is an
m m orthogonal matrix, and R is an m n upper triangular matrix. If A is dense,
Q is typically generated as a sequence of Householder transformations [10, p. 37].
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We hope that the rank of A will reveal itself by a small trailing subblock of R: if
we partition R into

(18) (/110 R22R12 /
with an r x r lower right-hand block R22, then it is easy to show [10, p. 19] that

Hence, if R22 is small, A can be considered to have numerical rank n- r, and the first
n r columns of Q form an orthonormal basis for the range space of A.

This strategy works well in practice, but there are counterexamples where it fails
without giving any indication of failure. A well-known example (originally suggested
by Kahan) is

(19) AN=diag(1, s,s2,...,8n-l) ......... nt- A

". 1 -c
0 0 1

where A diag(ne, (n- 1)e,..., e), c2 + s2 1, and e is the machine precision An
is very ill conditioned, but although each leading principal submatrix Ak (k <_ n) is
also ill conditioned, there is a well-defined gap between aN and a-l. As an example,
for n 50 and c 0.5 we have a49 1.2.10.3 and a0 3.7.10-12. Even in
floating-point arithmetic the matrix is its own QR factorization with pivoting but no
trailing block of R is small enough to reveal its ill conditioning.

However, the incremental condition estimator integrated into the QR factoriza-
tion algorithm detects the ill conditioning of the leading principal submatrices Ak
and, in fact, we observed that in this particular example it never overestimates the
smallest singular value of Ak, k 1,..., 50 by a factor of more than 1.5. So while the
column pivoting scheme fails to detect rank deficiency, the incremental condition esti-
mator prevents this failure from going unnoticed. Given its negligible cost compared
to the QR factorization, this suggests the usefulness of incorporating the incremental
condition estimator into the traditional column pivoting scheme. In the same spirit we
believe incremental condition estimation to be useful in monitoring Gaussian elimina-
tion and Cholesky factorization. The traditional "after-the-fact" condition estimation
schemes, on the other hand, would only indicate that there had been problems at some
unspecified point in the factorization process.

6. Conclusions. We introduced a technique that allowed us to estimate the
smallest singular value of a dense triangular matrix R as it was generated one row (or
column) at a time. This strategy required only O(n) flops per step and the storage of
O(n) words between successive steps. In particular, it was not necessary to reaccess
the previously generated R when a new row or column was added to R. We also
showed how this strategy is related to the approximation of the secular equations.
While one can construct examples where this strategy fails, numerical experiments
indicate that the suggested scheme is reliable despite its small computational cost.
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In the context of the QR factorization with column pivoting we gave an example
that showed the usefulness of integrating the incremental condition estimator within
the factorization process. Another use of incremental condition estimation is finding
those columns of a matrix that are responsible for its ill conditioning. The Householder
QR factorization algorithm with column pivoting usually achieves this goal, but the
traditional pivoting strategy may conflict with other desirable features such as the
sparsity structure of a matrix or locality of memory reference in the program.

Incremental condition estimation performs well on all kinds of triangular matrices,
whereas the (also incremental) estimate of taking the smallest diagonal entry works
only on the graded matrices produced by the traditional pivoting strategy. Incremen-
tal condition estimation allows us to restrict pivoting without sacrificing numerical
reliability, and hence one can tailor the pivoting strategy to conform to other require-
ments. An example of such an application in the context of a rank-identifying QR
factorization on a distributed-memory MIMD machine is given in [3]. Other applica-
tions we are currently exploring are block QR factorization schemes for rank-deficient
matrices and algorithms for rank-deficient sparse matrices.

We also mention that it would be preferable to also have a lowerbound for O’min (R)
instead of the upper bound that the incremental condition estimator is computing.
To that end we experimented with the lower bounds derived from comparison ma-
trices [2], [13], [14] that can also be updated in an incremental fashion. We found,
however, that these bounds in most cases underestimated the smallest singular value
by several orders of magnitude (this is consistent with Higham’s [12] results) and as
a result were not of practical use.
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NODE IN A GRAPH*
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Abstract. A new algorithm for the computation of a pseudoperipheral node of a graph is
presented, and the application of this algorithm to reordering algorithms for the solution of sparse
linear systems is discussed. Numerical tests on large sparse matrix problems show the efficiency
of the new algorithm. When used for some of the reordering algorithms for reducing the profile
and bandwidth of a sparse matrix, the results obtained with the pseudoperipheral nodes of the new
algorithm are comparable to the results obtained with the pseudoperipheral nodes produced by the
SPARSPAK version of the Gibbs-Poole-Stockmeyer algorithm. The advantage of the new algorithm
is that it accesses the adjacency structure of the sparse matrix in a regular pattern. Thus this
algorithm is much more suitable both for a parallel and for an out-of-core implementation of the
ordering phase for sparse matrix problems.

Key words, sparse matrices, reordering algorithms, bandwidth reduction, reverse Cuthill-
McKee algorithm, Gibbs-Poole-Stockmeyer algorithm, eigenvalues of graphs
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1. Introduction. Algorithms for the numerical solution of sparse linear systems
of equations usually start out with reordering the coefficient matrix in order to re-
duce the fill-in during Gaussian elimination. Several reordering algorithms for sparse
matrices require as a first step the determination of a pseudoperipheral node of the
graph associated with the adjacency matrix of the problem. For example, the reverse
Cuthill-McKee [3] algorithm, the automated nested dissection algorithm, the refined
quotient-tree algorithm, and the one-way-dissection algorithm in SPARSPAK [7] all
require the determination of a peripheral (or at least pseudoperipheral) node in the
associated graph. A widely used algorithm for this purpose is due to Gibbs, Poole, and
Stockmeyer [8], and was improved by George and Liu [7], and by Lewis [10]. Other
related algorithms have been investigated by Smyth [15]. These heuristic algorithms
do not guarantee finding a peripheral node. However, the pseudoperipheral node
computed by these algorithms is usually well suited for the purposes of reordering the
sparse matrix.

The idea common to all these algorithms is the corrcept of a rooted level structure
of the graph. All these algorithms make direct use of the level structure in performing
some type of search heuristic. Here we consider a new and quite different algorithm for
determining a pseudoperipheral node. This new algorithm is based on the dominant
eigenvector of the adjacency matrix of the graph. Even though our new algorithm does
not yield a significant improvement in the performance of the reordering algorithms
for sparse linear systems, there are two reasons for writing this detailed investigation
of the new algorithm. First, it is indeed remarkable that an algebraic quantity such
as an eigenvector can be used in the solution of a discrete graph problem. Eigenval-
ues of graphs have been studied extensively [4]. Aspvall and Gilbert [2] have used
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eigenvectors of the adjacency matrix for the graph coloring problem. Our algorithm,
however, appears to be the first application of spectral properties of graphs to sparse
matrix reordering problems.

Furthermore, the new algorithm is more suitable for an out-of-core or a parallel
implementation. Its key computational requirement is a matrix-vector multiplication,
which can be easily implemented, both out-of-core and on a parallel machine. This
is in contrast to the algorithms based on a rooted level structure. The generation
of a rooted level structure requires repeated access to the adjacency structure of the
graph (or the sparse matrix). This involves a large number of random input/output
accesses, which make programming an out-of-core version of these algorithms difficult,
and their performance inefficient.

The current study of an alternative approach was motivated by the need for
an out-of-core reordering algorithm for sparse matrices arising in structural analysis.
Since the new reordering capability needed to be implemented in the context of an
existing structural analysis package, it was bound by severe core memory limitations.
These limitations were imposed rather by the structure of the package, than by actual
physical limitations. Details of the implementation are reported by Grimes and Pierce
in [9].

In a connected graph with n vertices and m edges an exact peripheral node can be
found in O(nm) time by an obvious algorithm. For sparse matrix applications, what is
wanted is an almost peripheral node in O(m) time. In this paper "pseudoperipheral"
means "approximately peripheral," i.e., a heuristic approximation to a peripheral
node. In some other contexts [7] a pair of nodes are defined to be pseudoperipheral
if they both have eccentricity equal to the distance between them. The SPARSPAK
algorithm finds such a pair of nodes, usually in O(rn) time in practice, although there
are examples that can make it run for at least O(rnx/) time, and perhaps more. A
different algorithm gets O(rnv/’ time in the worst case but is not practical [12].

The current report summarizes some of the initial investigations into an alterna-
rive algorithm for determining a pseudoperipheral node. Most of the material is based
on an earlier report [14]. In 2 we collect some definitions, and in 3 we present the
heuristic algorithm. Section 4 presents some bounds on the dominant eigenvector of
a graph, which give additional (albeit weak) justification for the heuristic algorithm.
Computational issues and numerical results are discussed in 5 and 6.

2. Definitions. Here we consider an undirected, connected graph G (X, E),
where X is the set of nodes, and E is the set of edges. The elements aij of the
adjacency matrix A of G are defined by

1
(1) aij 0

if node and j are adjacent, or if j
otherwise.

This definition differs from the common definition of an adjacency matrix for a graph
(e.g., in [4]) in that we also set aii= 1, whereas usually the diagonal elements are
set to be zero. If G is the ordered graph of a symmetric positive definite matrix M,
this definition proves to be more useful for our purposes. In this case the aij could
be defined directly by

1 if mij 0(2) aij 0 if mij 0,

i.e., the adjacency matrix reflects directly the zero-nonzero structure of a given matrix
and is therefore the appropriate tool for sparse matrix computations.
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Since we assumed G to be connected, the matrix A is irreducible. By the Perron-
Frobenius theorem, A has a simple, positive eigenvalue A. The corresponding eigen-
vector v (vl, v2,’", Vn)T has all components vi > 0, for 1,..., n. Here n IXI.
Therefore v can be normalized such that ni=1 v 1. In the following we will only
deal with A and v, such that

n

(3) Av=/kv, Ev=I’ v>0 for/=l,...,n.
i--1

No confusion with other eigenvalues and vectors is possible. Since G is connected,
every row sum of A is at least 2, for n > 1. Hence/k >_ 2.

We will also use the notation A > A2, implying that all elements of the matrix

A are larger than the corresponding elements of A2. Similarly, A > a for c E R
means that all elements of A are larger than the scalar a. We will use the same
notation for the componentwise comparison of vectors.

The distance of two nodes x and xj, i.e., the length of the shortest path connecting
xi and xj, is denoted by d(x,xj), or for short by dy. The eccentricity of a node x is
the quantity

(4)
j=l,...,n

The diameter of G is then defined by

i-’l,...,n

A node xi X is said to be peripheral if its eccentricity is equal to the graph’s
diameter, i.e., if 5(G) e(xi).

For a subset Y C_ X, the adjacency set of Y, denoted by Adj(Y), is

(6) Adj(Y) {x e X- Y[ {x,xj} e E forsomexj e Y}.

For a node x X, the level structure rooted at
satisfying

x is the partitioning L(x) of X

L(x)
Lo(x)
Li(x)

{Lo(x), Ll(x),"., Le(x)(x) },
{x}, L(x) Adj(Lo(x)),
Adj(Li_(x))- Li-2(x) for/= 2,3,

3. A heuristic algorithm for finding peripheral nodes. We are trying to
find a peripheral node of the graph G, i.e., a node with maximum eccentricity. Such a
node seems likely to have the greatest average distance from all other nodes. Consider
now the matrix Ak. Its (i, j)th entry denotes the number of different paths (or walks)
of length k leading from x to xj, where paths are included, which "stay for a while"
at a node, because of a 1. Now let u (1, 1,..., 1)T. Then the ith component of
Aku is equal to the number of paths of length k, beginning at an arbitrary node and
ending in xi. If a node xi is "peripheral," this number will be smaller and if a node

x lies in the "center" of the graph, this number will be larger. So for k --- c one
should obtain some average number, which indicates how many paths go "on average"
through a node. But with some suitable normalization, Aku converges to the largest
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FIG. 1. Counterexample.

eigenvector v of A, unless u were orthogonal to this eigenvector. But this cannot
happen; since u (1,..., 1)T, we have

(8) uTv vi 1 # O.
i=1

A similar argument has been used in [16] to determine the center of a graph for an
application in geography. We use the same method for a different, but closely related
application. These arguments suggest the following very simple algorithm for finding
pseudoperipheral nodes of a graph:

(1) Find v, the dominant eigenvector of the adjacency matrix A.
(2) The node corresponding to the smallest component in v is a pseudoperipheral

node.
This algorithm will only determine pseudoperipheral nodes and not necessarily

a peripheral node. As a counterexample, consider the graph in Fig. 1. Clearly all
the nodes in the two cliques at the end (Xl,X2,X3 and xs,xg, xlo) are peripheral.
The vector v, however, is given by v (0.1073, 0.1073, 0.1073, 0.1211, 0.0569, 0.0569,
0.1211, 0.1073, 0.1073, 0.1073)T. The smallest components of v are just corresponding
to the "interior" nodes x5 and x6. It is interesting to note that the graph in Fig. 1
also serves as the standard counterexample for a perfect elimination graph for which
the minimum degree algorithm does not find a perfect elimination order (see [5, p.

The proposed method will also fail if the graph is regular, that is, all vertices
have the same degree. In this. case the components of the dominant eigenvector are
all equal. Regular graphs are not common in practice, but it is easy to construct
regular graphs in which eccentricities vary widely.
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4. Bounds for the dominant eigenvector. Although the example above shows
that the heuristic algorithm from 3 will not always produce peripheral nodes, we are
able to obtain lower bounds on the components of the dominant eigenvector. These
bounds indicate that there is a certain inverse relationship between the components
of the eigenvector and the eccentricity of the corresponding node.

PROPOSITION 1. For n > 1 the components vi of the dominant eigenvector v
satisfy

(9) v >
e(xi)(A- 1)e(x) + 1

for 1,2,...,n.
Proof. Let Av Av and let L(x{) {Lo(x),Ll(x),

structure rooted at x. Furthermore, for brevity let
Le(x,)} be the level

(I0) E Vj
Adj(x)

denote the sum of all vj over all indices j, such that xj E

ELk(xi) Vj, etc.
Now Av Av implies that (for n > 1)

Adj(xi), and similarly

1 1
(11) vi=A_ 1 E vJ=A_ 1 E vj, i=1,

Adj(x

Substituting (11) into itself and taking into account that xi e Adj(xj) for xj Ll(xi),
we obtain

1
(12) v>_

(A-l)2 E vj, i=l,...,n.
L2(x)

This process can be repeated e(xi) times so that we obtain

1 E vj for/= 1,2,...,n andk 1,2,...,e(xi).(13) v _> (.. i)k
Lk(x,)

Summing up the e(x) inequalities (13), it follows that

e(i) n
1 vi1 1

(14) e(xi)vi vj L Vj (/_ 1)e(x, ).
k=l Lk(x)

Here A > 2 was used, which is correct for n > 1, as mentioned after formula (3).
Therefore

1
(15) vi>_

e(xi)(A-l),,1"e’x’+l for/=l,2,...,n.

This is also correct for n 1. ["l

PROPOSITION 2. Let 5 be the diameter of the graph. Then

--1

(16) A >_ 1 + 5
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Proof. From (9) it follows that

1
(17) vi _>

5(A- 1)1 + 1
for/= 1,2,...,n.

Summing up for 1, 2,..., n and rearranging yields the result.
For the proof of Proposition 3, the following lemma is needed.
LEMMA 4.1. Let a be the (i, j)th entry of the matrix Ak, k 1, 2, 3,... and let

n > 1. Then it holds that

(18) _(k) > 1

(19) _(k)
ij _> k

for all i, j with d(x, xj)

for all i, j with d(x, xj)

=k

(k)Proof. Let d(x, xj) p <_ k. Now aj counts the number of paths of length at
most k steps from xi to xj. If we follow the shortest path and make exactly k steps,
of which p go forward and k p stay at the same node (go around self-loops), there

(pk) possibilities for the choice of p forward steps. But (pk) >_ k if 1 _< p < k givingare

(19) if - j; the case j is treated similarly, and (pk) 1 if p k giving (18).
PROPOSITION 3.

1
(20) v >_

Ae(x) + 1
fori 1,...,n.

Proof. Let a be the (i, j)th entry of Ak as before, and let D be the distance
matrix of the graph, i.e., D (dj), where dj d(x,xj). Then the following

(k) and dij can be made for k i 2 using (18) and (19)"statements about aj

for all i, j with dij < k except
for the diagonal elements where dii 0

for all i, j with dij k

for all i, j with dij

_
k + 1.

Taking (21) (23) together in matrix form it holds that every element of the matrix
I + At: + D is greater or equal to k + 1, where I is the n n identity matrix. Let J
be the n n matrix with all entries equal to one. Then this fact can be written as

(24) I + Ak + D >_ (k + 1)J.

Therefore

(25) v + Akv + Dv >_ (k + 1)Jv (k + 1)u,

where u (1, 1,..., 1)T. The ith component of Dv can be bounded as follows:

(26)
n n

(Dv)i E dizvl <_ e(xi) E vl e(xi).
/=1 /=1
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TABLE 1
Eigenvector bounds for example graph.

vi e(xi) Lower bound
from Prop. 1

1 0.0364 4 0.00235
2 0.1111 3 0.00998
3 0.0756 4 0.00235
4 0.0414 4 0.00235
5 0.1144 3 0.00998
6 0.1315 3 0.00998
7 0.1330 3 0.00998
8 0.1232 3 0.00998
9 0.0871 3 0.00998

10 0.1480 3 0.00998

Lower bound
from Prop. 3

0.00317
0.01322
0.00317
0.00317
0.01322
0.01322
0.01322
0.01322
0.01322
0.01322

Using (25) and Akv Akv, one obtains for the components in (24)

(27) v/Akv+e(x)>_k/l fori=l,2,...,n and k=1,2,3,....

If k is chosen to be e(xi), then (20) follows. El
Note that the choice k e(x) in (27) makes the bounds the best possible, since

k < e(xi) yields trivial bounds and k > e(xi) yields in general some worse bounds
because of the rapidly growing denominator.

PROPOSITION 4.

(28) ) >_ /n- 1.

Proof. Set k 5 in (27). Then

(29) v > 5 + 1- e(xi) > 1
for/= 1,... n.A5 + 1 ,5 + 1

Summing over and rearranging yields (28). []

All the bounds in the propositions above are rather weak. But this is to be ex-
pected, since they were proven for general graphs without any further assumptions.
The bounds of Proposition 1 are better for some smaller graphs, whereas the bounds
of Proposition 3 are better for larger graphs (for larger e(xi)). It should also be noted
that the bounds of Proposition 3 are almost sharp, if the graph is a clique. There-
fore, there is not much hope to improve these bounds in all generality. However, all
bounds on the components of the eigenvector show that there is an inverse relationship
between eccentricity e(x) and the corresponding

The weakness of the bounds can be seen in the following example. The graph is
taken from [7], where it is also used to illustrate several algorithms and concepts. For
this graph the figures in Table 1 were obtained. Clearly the bounds from Propositions
1 and 3 are an order of magnitude smaller than the corresponding components of the
eigenvector.

Here 5 4 and A 4.21. The bounds of Propositions 2 and 4 yield

(30) A _> 1+ / ,,2.225

A _> 1.732.
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FIG. 2. Example.

5. Application to bandwidth and profile reduction for sparse matrices.
In 2 we proposed a new algorithm for computing a pseudoperipheral node in a graph.
Since this algorithm is only a heuristic, and since the term "pseudoperipheral" is only
defined in the context of this heuristic algorithm, there is only one way to assess the
efficacy of such an algorithm: to compare it to other algorithms in an application to a
practical problem. The application of the new algorithm that we are most interested
in is sparse matrix computations.

The solution of sparse linear equations of the form

(31) Mx=b

by direct methods has been an area of intensive research during the past 15 years.
For symmetric positive definite matrices most of the effort has been directed toward
a combination of Gaussian elimination with some reordering of the equations and
unknowns in (31). The goal is to obtain a permutation such that the solution of
the permuted system incurs less fill-in than the solution of the original system. The
actual numerical entries of M are irrelevant for this reordering phase, because if M
is positive definite, then so is the permuted system, and a Cholesky factorization can
always be computed. Thus the reordering can be based on the structural information
for the matrix, i.e., the graph of the adjacency matrix alone. For a detailed discussion
of the topic see the book by George and Liu [7].

Several reordering heuristics discussed in [7] ideally require the computation of a
peripheral node. The practical Fortran implementation of these algorithms, however,
relies on the Gibbs-Poole-Stockmeyer (GPS) algorithm, which computes a pseudope-
ripheral node. For most practical applications, this node is a good starting node for
the reordering algorithms in SPARSPAK. In order to test the new pseudoperipheral
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node finder, we replaced the subroutine FNROOT in SPARSPAK by a new subroutine
which computed the dominant eigenvector of the adjacency matrix using the power
method. Then the node corresponding to the component with the smallest entry in
the eigenvector was used as a pseudoperipheral node. We could have used a more
powerful algorithm such as the Lanczos algorithm, as is argued in [13]. But for our
purposes here a few steps of the power method were sufficient, as our results in the
next section will show.

The application of the power method is straightforward. The only question that
remains to be discussed is a suitable stopping criterion. We are interested only in the
location of the smallest entry of the dominant vector, possibly only in the location of a
small, but not necessarily the smallest entry. The numerical results indicate that four
steps of the power method were sufficient to obtain a pseudoperipheral node which
was efficient for our sparse matrix applications. This number of iteration steps was
also chosen in the implementation discussed in [9].

The new algorithm can be applied in the context of profile and bandwidth reduc-
tion algorithms for the reordering of sparse matrices. Recent research results [1], [11]
indicate that sparse Gaussian elimination based on profile and bandwidth is no longer
competitive with general sparse and multifrontal methods. However, band and enve-
lope methods are widely used in applications in structural engineering, and are used
in many software packages for engineers. For these applications the new algorithm is
an alternative, since it does not require a general redesign of the package based on
a new data structure for the sparse matrices. As in the case of [9] only one extra
subroutine is required. Another potential application of the new algorithm is in the
context of general sparse schemes, which sometimes require pseudoperipheral nodes
as well, e.g., the automated nested dissection algorithm [7].

6. Numerical results. In Table 2 we summarize some characteristics of the
sparse matrix test problems, which we used to evaluate the new heuristic algorithm.
All test problems are available in the Boeing-Harwell sparse matrix collection and
are described in [6]. Table 2 lists the problems, the number of equations (nodes), the
number of nonzeros in the matrix (edges in the graph), and both profile and bandwidth
of the unordered matrix. The first two examples are electric power networks. These
are planar graphs, which correspond probably most closely to the model we had in
mind, when developing the new algorithm. Problems 3 7 are finite-element models
of three-dimensional structures. They are probably distinguished by the existence of
many cliques. These examples are typical for the type of matrices encountered in
structural engineering. The last three examples are finite-difference approximations
to problems defined in very regular two-dimensional domains.

The matrices in Table 2 were first reordered with the reverse Cuthill-McKee
(RCM) algorithm as implemented in [7], and then reordered using the new eigenvector
algorithm. In order to evaluate the change in efficiency in the reordering, we computed
the smallest component of the iteration vector in the power method for each of the
first 25 iterations of the power method, and then at each iteration step the resulting
RCM ordering. In Table 3 we list the results of this numerical experiment. We give
the best result obtained with the eigenvector method, and the number of iterations
required to obtain this result. In most (but not all) cases more iterations of the power
method did not change the results in Table 3.

Table 3 demonstrates that the node corresponding to the smallest component of
the iteration vector in the power method is a suitable alternative as a pseudoperiph-
eral node. The RCM method yields about the same reduction in profile and bandwidth
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TABLE 2
Test matrices.

3
4
5
6
7
8
9

10

Title Equations Nonzeros Profile Bandwidth"
Western US’Power Network 1,723 6,511 472,515 i,663
Entire US Power Network 5,300 21,842 6,122,200 5,189
TV Studi 240,16i’ 590"
Fluid Flow- Stiffness Matrix
Geodesic Dome
Cannes Matrix
Connection Table
9-Point Operator on 40 40 Grid
9-Point Operator on 80 80 Grid
George’s L-shaped Problem

1,074
2,003
2,132
1,072
2,680
1,600
6,400
3,466

12,960
83,883
14,872
12,444
25,026
13,924
56,644
23,896

434,798
188,488
277,248
587,863
63,960

511,920
363,844

1,250
1,805
1,048
2,499

41
81

3,434

1
2
3
4
5
6
7
8
9
10

TABLE 3
Comparison with SPARSPAK RCM .for envelope reduction.

SPARSPAK RCM
Profile Bandw.
79,260 133

667,245 285
282,999 704
502,907 546
171,437 105
56,438 178

102,983 69
81,497 79

666,997 159
158,546 62

Best power with RCM Iter. Time
Profile Bandw. RCM
74,251 30 4 0.18

626,863 274 9 0.66
246,776 640 1 0.22
522,640 411 2 1.08
172,712 101 8 0.30
75,409 248 1 0.24

105,058 69 15 0.50
81,497 79 1 0.55

666,997 159 1 2.25
158,546 62 1 0.48

Time
power
0.44
3.10
0.20
1.86
1.94
0.14
5.96
0.46
1.86
0.32

TABLE 4
Comparison with SPARSPAK RCM as a pseudoperipheral node finder.

1
2
3
4
5
6
7
8
9
10

Diameter

38
5O
9

12
35
13
76
40
8O
91

Periph. Nodes

5
6
4

90
20
24
7

156
316

2

SPARSPAK RCM

418 38
1436 50
1063 9
659 12
633 35
203 13
243 76
40 40
80 80
16 91

Best power with RCM
Node Eccen.
224 38
92 48
1 9

34 11
192 34
46 12

240 73
1 40
1 80

16 91

Node Eccen.
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with either the SPARSPAK pseudoperipheral node as starting node or with the node
delivered by our algorithm. The execution times (in seconds) for these numerical tests
were obtained on a Sun 3/260 with a floating-point accelerator. The new method
does require somewhat higher execution times; however, this additional overhead is
insignificant when compared to actual numerical factorization times for these types
of matrices (cf. [1], [11]).

Table 3 demonstrates that the eigenvector method is suitable for the intended
sparse matrix application. The effectiveness of the eigenvector method for finding
pseudoperipheral nodes is demonstrated in Table 4. For the graphs corresponding to
the matrices in Table 2 we list the diameter, the number of peripheral nodes, and the
nodes found by SPARSPAK RCM and the eigenvector method together with their
eccentricity. The numbering of the nodes refers to the original ordering of the matrices
as given in the sparse matrix test collection [6].

In Table 5 we summarize the reduction in profile obtained by using the SPARSPAK
pseudoperipheral node, the node corresponding to the smallest component of the
power method iteration vector after 4 steps, and the node corresponding to the small-
est component of the dominant eigenvector. In addition, we list the envelope reduction
obtained from the GPS algorithm and from the Gibbs-King (GK) algorithm as im-
plemented by Lewis in [10]. Generally the Gibbs-King is known to obtain the best
reduction in envelope size, usually at the cost of increasing the bandwidth.

TABLE 5
Profile reduction using SPARSPAK RCM, GK, GPS, four iterations of the power method

(POW4), and dominant eigenvector (EIG).

RCM GK GPS
0. 4 0. 5

2 0.11 0.09 0.09
3 1.18 0.80 0.87
4 1.16 0.97 1.07
5 0.91 0.89 0.92
6 0.20 0.18 0.27
7 0.18 0.16 0.17
8 1.27 1.00 1.00
9 1.30 1.00 1.00

10 0.43 0.43 0.43

POW4 EIG
0.16 0.18
0.16 0.13
1.27 1.27
1.20 1.30
0.94 0.92
0.36 0.20
0.25 0.18
1.27 1.27
1.30 1.30
0.43 0.43

Four iterations of the power method were used in [9], and Table 5 demonstrates
that this is a reasonable choice. The node thus selected delivers a profile reduction
comparable to the GPS node, at a cost which is slightly higher. Note that Table 5
lists the reduction in profile obtained, normalized so that the profile of the original
matrix as given in [6] is one. Apparently Problems 3- 5 are given in a reduced profile
form already, since we are not able to obtain any improvements. All algorithms fail
in the same way on the regular grid problems. If there is no reduction in the envelope
size, GPS and GK are returning the original ordering.

These results demonstrate that the new pseudoperipheral node finder based on
the dominant eigenvector, or the computationally more efficient algorithm based on
a few steps of the power method, is an alternative to the GPS, GK, and SPARSPAK
RCM algorithms. The figures in Table 5 indicate the better performance of GPS
and GK on this test set. These are results with the unmodified versions of these
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algorithms. We did not merge our eigenvector algorithm with GPS and GK in the
same way as we combined it with SPARSPAK RCM. These tests were not carried
out, since we expect to see very similar results.

Because of its simplicity the above algorithm has been implemented as an out-of-
core alternative in a software package for solving linear systems arising in structural
analysis [9]. The advantages of the new algorithm for a parallel implementation
are clear, but have not yet been pursued by the authors. More fundamentally, we
were able to exploit the algebraic properties of the adjacency matrix of a graph for
computational purposes. That it is possible at all to utilize this information in order
to uncover structural properties of the graph and the corresponding sparse matrix
came as a surprise to us. We believe that spectral properties of the adjacency matrix
have more potential use in sparse matrix computations beyond the ideas discussed
here.

Acknowledgment. We would like to thank John Lewis for making several valu-
able suggestions for improving the manuscript, as well as for providing the numerical
test results with the GPS and GK algorithms.
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AVERAGE-CASE STABILITY OF GAUSSIAN ELIMINATION*

LLOYD N. TREFETHENf AND ROBERT S. SCHREIBER

Dedicated to the memory of Jim Wilkinson.

Abstract. Gaussian elimination with partial pivoting is unstable in the worst case: the "growth factor" can
be as large as 2"- l, where n is the matrix dimension, resulting in a loss of n bits of precision. It is proposed
that an average-case analysis can help explain why it is nevertheless stable in practice. The results presented
begin with the observation that for many distributions of matrices, the matrix elements after the first few steps
ofelimination are approximately normally distributed. From here, with the aid ofestimates from extreme value
statistics, reasonably accurate predictions ofthe average magnitudes ofelements, pivots, multipliers, and growth
factors are derived. For various distributions of matrices with dimensions n =< 1024, the average growth factor
(normalized by the standard deviation of the initial matrix elements) is within a few percent of n2/3 for partial
pivoting and approximately n 1/2 for complete pivoting. The average maximum element of the residual with
both kinds of pivoting appears to be of magnitude O(n), as compared with O(n /2) for QR factorization.

The experiments and analysis presented show that small multipliers alone are not enough to explain the
average-case stability of Gaussian elimination; it is also important that the correction introduced in the remaining
matrix at each elimination step is of rank 1. Because of this low-rank property, the signs of the elements and
multipliers in Gaussian elimination are not independent, but are interrelated in such a way as to retard growth.
By contrast, alternative pivoting strategies involving high-rank corrections are sometimes unstable even though
the multipliers are small.

Key words. Gaussian elimination, stability, pivoting, growth factor, extreme values
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Notation.
matrix in R"’,
standard deviation of elements ofA,
modified matrix before step k of elimination,
modified matrix at step k after pivoting but before row operations,

U At’) final upper-triangular matrix,
^(k)

Ukk akk kth pivot,
n + k (partial pivoting), (n + k)2 (complete pivoting),

(k)standard deviation of elements a0 (k

_
i, j

_
n),

average absolute value of pivots Ukk,
^(k). ^(k)standard deviation of multipliers aik /akk (k

growth factor, growth factor normalized by
extreme value or "winner" function for normal random variables,
sample size,
expected value.

0. Introduction. At the beginning of the computer era, it was feared that Gaussian
elimination would be an ineffective method for solving systems of linear equations. A
paper by Hotelling in 1943 [19] predicted that in the solution of n n systems of the
form A TAx b, errors might be amplified by as much as 4 n- l, so that a "78-rowed
matrix would need to be carried to no less than 46 places to insure even an approximate

Received by the editors May 23, 1988; accepted for publication (in revised form) July 13, 1989.
f Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(lnt@math.mit.edu). The research of this author was supported by an IBM Faculty Development Award and
a National Science Foundation Presidential Young Investigator Award.

Research Institute for Advanced Computer Science, Moffett Field, California 94035 (schreiber@riacs.edu).
The research of this author was supported by Office of Naval Research contract N00014-86-K-0610, by U.S.
Army Research Office grant DAAL03-86-K-0112, and by the Saxpy Computer Corporation.

335



336 L. N. TREFETHEN AND R. S. SCHREIBER

accuracy in the first decimal place." Another paper by Bargmann, Montgomery, and
von Neumann in 1946 stated that "very little is known about the stability of the
methods so far described, [but] what information there is tends to indicate that these
methods are unstable and that rounding errors accumulate so seriously that the methods
are impractical for large values of n."

By the early 1950s, computational experience had revealed that these fears were
groundless, and Gaussian elimination with partial pivoting rapidly became the universal
algorithm for solving general dense systems of linear equations. Progress was also made
on the theoretical side by Turing 30 ], von Neumann and Goldstine 31 ], and especially
Wilkinson 32 ], 33 ], whose elegant arguments based on condition numbers and back-
ward error analysis shed light on every aspect of the elimination process. The result of
these developments is that a widespread view among numerical analysts nowadays, thirty
years later, is roughly that "Wilkinson proved that Hotelling’s prediction was too pes-
simistic."

This view is not entirely accurate, however, for a fundamental gap in our under-
standing remains. When Gaussian elimination with partial pivoting is performed on an
n n matrix A, the result is a factorization PA LU, where P is a permutation matrix,
L is unit lower triangular, and U is upper triangular. Let denote the solution ofa linear
system Ax b computed in floating-point arithmetic. Wilkinson proved that under rea-
sonable assumptions, the relative error in satisfies

(0.) I1.- xll <=4n2r(A)pe
Ilxll

where e is the michine precision, too (A) is the condition number ofA in the supremum
norm, and o is the growth factor,

(k)
rnaxi,, a0(0.2) o
maxi, laol

with a 0 denoting the i, j element before the kth step of elimination [33]. (Results like
(0.1) appear in various forms, with different definitions of o, norms, and polynomial
factors; we have picked a representative one.) Unfortunately, 0 may be as large as 2"-
(though no larger), as is proved by the simple example shown here for n 5:

(0.3)

-1 -1 2
-1 -1 -1 -1 4
-1 -1 -1 -1 -1 -1 8
-1 -1 -1 -1 -1 -1 -1 -1 16

A L U

It follows that unless (0.1) is highly pessimistic, Gaussian elimination will be useless for
certain matrices. And so it is.

Thus Gaussian elimination is unstable in the worst case; the improvement from
Hotelling to Wilkinson is merely from 4n- to 2n- i. Why, then, is it successful in practice?
Indeed, partial pivoting is so reliable that most of the software in use todaymincluding

Thanks to the integer entries and unit diagonal elements, experiments with this matrix A sometimes
reveal no instability. To be sure of seeing it, choose a right-hand side with negative as well as positive entries,
or perturb the elements ofA slightly in such a way that the pivot sequence is preserved.
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LINPACK 8 ]--does not even bother to monitor pivot growth, although that would be
a fail-safe method of guarding against instability.

We propose that a partial answer would be obtained ifwe could show that Gaussian
elimination is stable on average. Average-case analysis has not been popular in numerical
linear algebra, partly because ofthe obvious fact that the matrices encountered in practical
problems are by no means random. Indeed, some researchers have expressed the opinion
that Gaussian elimination is stable in practice precisely because the matrices that occur
in practice are better behaved than if they were random.2 The purpose of this paper is
to argue the opposite opinion. We believe that Gaussian elimination is stable because
the matrices encountered in practice are random, to a sufficient degree, and that the
essential reason examples such as (0.3) do not cause trouble is that they occupy a negligible
proportion of the space of matrices.

We began this project with the optimistic conjecture that Gaussian elimination is
stable on average for a combination of two reasons:

The magnitudes of the multipliers are on average much less than l;
(2) The signs of the multipliers and elements are effectively random and tend to

cancel.
Both of these hypotheses are readily translated into quantitative predictions, but when
carried out, it was quickly found that the two of them, taken together, are not enough
to explain experimental observations. In actuality, as will be discussed in 6, average
growth factors in Gaussian elimination exhibit a mild t/2/3 dependence on n, at least for
n _-< 1024, whereas (1) and (2) lead to a prediction on the order of en/4 log n (see eq.
(5.4)). This paper can be viewed as an exploration of how (l) and (2) can be made
precise, and modified where necessary, to explain this behavior. To summarize, 2-4
show that hypothesis is valid: simple estimates based on extreme value statistics give
good predictions ofobserved multipliers, which are indeed on average small. The trouble
lies in hypothesis (2), which must be corrected as follows:

(2’) The signs of the multipliers and elements are "better than random" from the
point of view of cancellation.

For many distributions of matrices the multipliers and elements are uncorrelated in the
sense that their covariances are zeromthis follows from simple sign considerationsmbut
they are not independent. On the contrary, there are relationships among them that
conspire to retard growth. A tentative explanation of this phenomenon, together with a
quantitative model of it, are proposed in 5.

For a quick demonstration that the numbers produced by Gaussian elimination
with pivoting are highly dependent, factor a random matrix A into PA LU, i.e., U
L-PA, and you will find that L-II is reasonably small--33.2 in one experiment with
n 256. Now, randomize the signs of the elements of L and compute L- again. It
will be dramatically larger--in the same experiment, 2.7 l08.

Our statistical arguments and numerical experiments indicate that for matrices that
are random in various senses, both growth factors and computed residuals tend to be no

For example, Gaussian elimination is particularly stable for ill-conditioned matrices, and some have
suggested, with discretization of partial differential equations in mind, that its stability in practice comes about
because most matrices arising in practice tend to be exceptionally ill-conditioned. However, this is not true; the
average n n matrix has condition number O(n) or larger ], 12 ], while the condition number for the
standard discretization of Poisson’s equation is O(n) in two space dimensions and only O(n2/3) in three di-
mensions. (See a similar remark on p. 460 of ].) Even if it were true, this kind ofargument could not explain
the success of Gaussian elimination. If examples such as (0.3) were typical in the space of matrices, it would
not be enough for most matrices arising in practice to be exceptionally well behaved; essentially all of them
would have to be exceptional, which is highly implausible.
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larger than O(n) on average. This is true for matrices with elements drawn from a normal
distribution and for various other classes of matrices too; in fact, the growth factors and
residuals often depend only on the standard deviation of the initial matrix elements.
Although the initial matrix elements may be far from normally distributed, a few steps
of Gaussian elimination typically bring them toward that form. A more systematic sum-
mary of our results can be found in the final section.

An analogous problem of average- versus worst-case behavior--concerning speed
rather than stability--appears in linear programming. The simplex method was invented
in 1947, and it was soon recognized that the numberof steps to convergence is usually
small in practice, even though the worst-case behavior is exponential 20 ]. The problem
of obtaining an average-case convergence result became well publicized beginning in
1963 [6, p. 160], and in recent years has been solved in various senses by Borgwardt,
Smale, and others 3 ], 25 ], 26 ], 24 ].

The problem of stability of Gaussian elimination is an embarrassing theoretical gap
at the heart of numerical analysis. We believe that it is also of practical importance. One
reason is that pivoting conflicts with both sparsity preservation and parallelization, so
that less stringent strategies such as threshold pivoting [10] and pairwise pivoting [27]
are attracting increasing attention (see 8). We can hardly assess these variants fully
while our understanding of classical Gaussian elimination remains incomplete. A more
basic reason is that as computers grow more powerful, n is getting bigger. Traditionally,
polynomial factors like the n 2 term in (0.1) have been ignored as moderate in size and
in any case generally pessimistic, but as n increases from 102 (Wilkinson?) to 103 (LIN-
PACK?) to 10 4 (supercomputers?) to 106 (the year 2000?) and beyond, the need for a
more quantitative understanding of stability will grow. Average-case modeling of error
propagation is already a well-established tool, for example, in the study of fast Fourier
transforms for digital signal processing [22].

We wish to acknowledge several previous experimental studies of the behavior of
Gaussian elimination for random matrices and related matters: by Goodman and Moler
[16] (reported also in the LINPACK manual [8]), by Birkhoff and Gulati [2], and by
MacLeod [21], [34] who presents detailed statistics from Gaussian elimination applied
to random matrices ofdimensions n -< 100 with sample sizes 10,000. Higham and Higham
have investigated general classes of matrices with large growth factors [18]. Many theo-
retical questions concerning eigenvalues and condition numbers of random matrices
have recently been settled by Edelman [11], [12].

1. Preliminaries. Throughout this paper A denotes a real n X n matrix, and A k),
=< k -< n, is the modified matrix, with zeros below the diagonal in the first k

columns, that remains before the kth step of Gaussian elimination. The end result is an
upper-triangular matrix U A "). We denote by k) the intermediate matrix obtained
after pivoting but before elimination at step k; thus the kth elimination step has the form

Step k" Ak)---tk)--A+ ) (1 <=k<=n 1).
(k)) and dj) respectively, and,The i, j entries of A Ck) and) are denoted by a 0

a(, u is the kth pivot element.
The growth factor 0 of (0.2) is intimately connected with the pivots uk: for complete

pivoting (rows and columns) o max ul/I u exactly, and for partial pivoting (rows
only) the details are more complicated but large growth is again usually associated with
large pivots. On the other hand, a constraint on the size of the pivots is provided by
Hadamard’s inequality,

1.1 I l"l ]det A] =< I [la II,
k=l k=l
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where Ilak is the 2-norm ofthe kth column ofA. IfA is fn times an orthogonal matrix
(the factor Vn being introduced to make the standard deviation of the elements equal
to ), then 1.1 becomes

(1.2) fi Ukkl H n.
k=l

Similarly, ifA is a random matrix with independent elements drawn from the standard
normal distribution of mean 0 and standard deviation 1, a known result on expected
determinants 15 gives

(1.3) lul fn.(2rn)/4(V)n.

(Here and throughout the paper, (.) denotes the expected value.) These observations
imply that so long as the pivots are reasonably uniform in magnitude, they must be of
a modest size, comparable to Vn. Large pivots can occur only if the pivots are highly
nonuniform, as in (0.3).

Sections 2-5 of this paper are devoted to investigating, by statistical arguments and
numerical experiments, the dependence on n and k of the following quantities:

(k))2 21.4 trk ( a ij standard deviation of elements (k <= i,j <= n ),

(k)5) rk (l"kk I) (lUkk l) average absolute value of pivots,

g)t) 2 standard deviation of multipliers (k<i<=n).(1.6) Uk ((,.,ik /,kk ) /z

(In the definitions of ak and Uk, and j are any integers in the ranges indicated; for most
distributions of matrices A of practical interest, symmetry implies that the statistics are
independent of these indices.) We shall argue that for many distributions of matrices, ak
and rk grow slowly and steadily with k, never attaining very large values. Section 6
applies these results to investigate average growth factors and 7 reports numerical ex-
periments concerning average residuals.

Our experiments are based on eight classes of matrices:

normal standard normal distribution of mean 0, variance 1,
[- 1, uniform distribution on [- 1, ],
0, uniform distribution on 0, ],
{- 1, } discrete distribution with p(-1 p( 1/2,
0, } discrete distribution with p(0) p( 1/2,

symm. symmetric matrices with elements from the standard normal dist.,
Toep. Toeplitz matrices with elements from the standard normal dist.,
orth. orthogonal matrices distributed by Haar measure.

In the first five cases, the elements ofan individual matrix are independent samples from
the distributions indicated, while the final three cases have dependent elements. The
random orthogonal matrices are calculated by a sequence of Householder reflections as
proposed by Stewart [28 ]; Haar measure is a name for the isotropic distribution of
orthogonal matrices in which each column or row is uniformly distributed on the unit
(n )-sphere.

In each of our experiments, matrices A of one or more dimensions n are selected
at random from one of these classes, with the sample size N diminishing with n to keep
the computing time within reasonable bounds. A typical set of dimensions and sample
sizes are listed below, although for some of our experiments the samples were larger.
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dimensionn 2 4 8 16 32 64 128 256 512 1024

sample sizeN 4096 2048 1024 512 256 128 64 32 20 10

Our calculations have been carried out in single precision Fortran 77 on SUN workstations,
IBM-compatible personal computers, a CRAY-2, and an Ardent Titan; no machine
dependences were observed. Most of our experiments, but not all, have made use of the
shuffled random number generators RAN and GASDEV in 23 ]. Plotting, data analysis,
and hundreds of supporting tests of every kind were carried out with the superb matrix
"workbench" program MATLAB, without whose powerful assistance a project of this
kind would have been difficult indeed.

2. Elements. Our arguments begin with a fundamental observation: for many classes
(k)of matrices, the elements a ij at the kth step ofGaussian elimination tend to be normally

distributed with mean 0. This statement is not exactly valid for k > 1, even ifthe elements
ofthe initial matrix A A( are themselves normally distributed, nor is it asymptotically
valid in any limit such as k, n -- , so far as we know, since the conditions of the
central limit theorem are not satisfied by Gaussian elimination. Nevertheless, the hy-
pothesis of normally distributed elements is often an excellent approximation, after the
first few steps of elimination, even when the elements ofA are not normally distributed.

Figure 2.1 provides evidence for this claim. For each half of the figure--partial and
complete pivotingm 1280 matrices of dimension 64 with normally distributed elements

(k)have been factored, and the elements aij. (k =< i, j =< n) in columns k 1, 9, 17,
57 accumulated in bins. The data are plotted as asterisks after being rescaled to have

17

25

33

49

57

(a) partial pivoting (b) complete pivoting

FIG. 2.1 Distributions ofelements,.-o rescaled to have variance 1, for n 64: observed (,) and normal
distribution(
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standard deviation 1, and the solid curves show the normal distribution for comparison.
The agreement ofthe two is excellent. (The noise toward the end results from the smaller
numbers ofelements in the samples.) It is not perfect, however; evidently partial pivoting
leads to a distribution that is slightly more peaked in the center than the normal distri-
bution. Similar plots are obtained for other values of n and k.

Although the shape of the element distribution is roughly independent of k, its
standard deviation rk grows considerably. This is visible in the increasing density of
asterisks in Fig. 2.1 as k -- n, especially for partial pivoting. (The bins holding the raw
data before rescaling were equally spaced.) This dependence of ak on k is essentially the
growth that is the subject of this paper. We shall model it in 5.

When matrices from nonnormal distributions are investigated, the results are often
surprisingly similar to those of Fig. 2.1. As a modest example, Fig. 2.2 details the initial
steps of Gaussian elimination for matrices with elements from the uniform [-1, dis-
tribution. At k 1, the asterisks reveal the initial square wave, but by k 8, the distri-
butions have become very close to normal, and for higher k (not shown) they are barely
distinguishable from those of Fig. 2.1. The same phenomenon occurs with most of the
classes of matrices listed in the last section. The exception is orthogonal matrices, for
which the element distribution is approximately normal for much ofthe elimination but
changes to a pronounced bimodal form toward.the end.

From now on, then, we shall assume that at every step of elimination, the elements
(k)

aij are normally distributed with mean 0; only the standard deviation ak depends on k.
For most of the argument, we shall further assume that the elements are independent,
until we are forced to abandon that assumption at (5.5).

k=l

2

3

4

5

6

7

8

(a) partial pivoting (b) complete pivoting

FIG. 2.2. Similar to Fig. 2.1, but for matrices with elements uniformly distributed in [-1, ]. Only the
initial steps <- k <= 8 are shown.
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---.k ---*k
0

0 5 i0 15 20 0 20 40 60 80

(a) n= 16 (b) n=64

FIG. 3.1. Average ratios rk/ rk ofpivots to elements: observed (,) and predicted ().

Except where otherwise indicated, the experiments reported in the remainder ofthis
paper are based on matrices A with elements from the standard normal distribution.

3. Pivots. Even without knowing ak, the standard deviation of the elements at the
kth step of elimination, we can predict 7rk/rk, the size of the average pivot relative to

(k)
trk. The pivot element Ukk -gg is the largest in absolute value among m contes-
tants, where

n + k (partial pivoting),
(3.1) m

n + k) 2 complete pivoting ).

If the elements are normally distributed with standard deviation r, the distribution of
the pivots is a standard result from the field ofthe statistics ofextreme values, going back
to Tippett and Fisher in the 1920’s 13 ], 17 ]. Let W(m) (the "winner function") be
defined as the mode of the distribution of the largest absolute value among m numbers
taken from a normal distribution of mean 0, variance 1.3 From equations 4.2.3 11, 15
of Gumbel 17 ], W(m) is asymptotic to

(3.2) o:= /2 log (mVlr)
as m - o, and a more accurate estimate is4

(3.3) W(rn) 1-1+o +O 0grn
(We define W( V/r, the expected absolute value of a single normal variate.) Thus
our model of Gaussian elimination makes the prediction

(3.4) r kW(m).

We have chosen to work with the mode (the most frequent value) rather than the mean, although the
two are asymptotic as m oo. The reason is that the extreme value distribution is far from symmetric: for
practical values ofm the mode is several percent smaller than the median, which is several percent smaller than
the mean. We shall be dividing by W(m) to compute multipliers in the next section, and the mode is a
convenient statistic that is relatively insensitive to this inversion.

Gumbel has m/2 instead ofm in (3.2), since he is concerned with the largest element in signed magnitude.
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In the calculations and plots to follow we shall assume that each pivot element is exactly
equal to +agW(m), although in actuality it is, of course, a random variable.

Figure 3.1 provides experimental confirmation of this prediction for matrices with
normally distributed elements. For n 16 and 64 and both partial and complete pivoting,
the figure compares experimentally obtained ratios -g/rg with the prediction W(m), as
a function of k. The agreement is not perfect, but it is quite good. Similar agreement is
obtained with most of the other matrix distributions listed in 1.

4. Multipliers. The previous two sections lead readily to a prediction of the distri-
bution of multipliers at step k and of their standard deviation ug. First the pivot element
gg is chosen and the rows and possibly columns permuted accordingly; we have as-

^(k) (k) (k)sumed akk is equal to +.trkl4(m). The multipliers are then the numbers dig /,kg, and
(k)what we know about -ig is that it comes from the normal distribution of mean 0,

standard deviation ag, except with the tails beyond +rgW(m) deleted and the total
probability renormalized to compensate. That distribution has probability density function

/f--)e-tx/k)2/2

(k)p.d.f. (dig),-- rgerf(W(m)/f)
for Ixl

0 for xl >W(m),
where erf is the error function. (By (3.3) and standard estimates we have 1-

) aW(m) now giveserf(W(m)/) W(m)/2masm .) The division by,
the following approximate density distribution for the multipliers:

)
(1/) W(m)e-xwm))z/2

( )
for Ixl 1,

,ig erf (W( m)/)(4.1) o.d.f.
" 0 forlxl>l,

This is a rather remarkable formula, for it asses that the multiplier distribution is in-
dependent of evething except the length of the column on and below the diagonal,
n + k (which determines m by (3.1)). From (4.1), by integration by pas, we can
fuher derive an approximation for the variance of the multipliers at step k:

f/ Tr W(m)e-W(m)2/2 )erf (W(m)/V)

(4.3)
2 log (mV/Tr)

For experimental confirmation of these predictions, Fig. 4.1 is patterned after Fig.
2.1, but shows both n 16 and n 128. This time the solid reference curves are not
simply rescaled Gaussians, but the predicted multiplier distributions (4.1). The agreement
with predictions is excellent for partial pivoting and reasonably good for complete pivoting.
Note that the multipliers are smaller for large n and for complete pivoting.

5. Dependence on k. Sections 2-4 have proposed models ofthe behavior ofelements,
pivots, and multipliers at each step k, but did not consider how the scale of these quan-
tities- rg and 7rgmchanges with k. We turn now to this question.

The first half of step k is the interchange of rows and possibly columns A Cg) -- .3 g),
2(k)which moves some large element a }f) to the pivot position ugh. In the case of complete

pivoting, this repeated removal of the largest element from the submatrix k 5 i, j n
has a pronounced retarding effect on element growth, especially toward the end of the
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k=l

(a) partial pivoting, n 16

k=l

17

33

49

65

81

97

113

(b) complete pivoting, n 16

(c) partial pivoting, n 128 (d) complete pivoting, n 128

FIG. 4.1. Distributions ofmultipliers ai /a, observed (,) and predicted (). The cutoffpoints are +_1.
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pvots
0000000 O0

0
0 5 i0 15 20 0

(a) partial pivoting, n 16

pivots

elements k

5 i0 15 20

(b) complete pivoting, n 16

8

0 0
0 80 0 8020 40 60

(c) partial pivoting, n 64

20 40 60

(d) complete pivoting, n 64

FIG. 5.1. Average elements G and pivots rk: observed (,, O) and predicted (--).

elimination. At step k the elements ak) with k _-< i, j _-< n have variance a; thus the
expected sum oftheir squares is ma with m (n + k) 2. When the pivot +trkW(m)
is removed from this collection, the remaining m elements have expected sum of
squares (m W(m)E)tr. If k denotes the standard deviation of the elements d,.k) for
k < i, j _-< n, we conclude

i2( )
trk (partial pivoting),

(5.1) = m_W(m)2
m

(complete pivoting).

The downturn resulting from this mechanism is clearly apparent in Figs. 5.1 (b), 5.1 (d).5
The second half of step k is the elimination calculation ,4(k) - A(k+ ),

(k)
(k+ 1) (k) ik (k)(5.2) aij :=dij (k)Ukj (k<i,j<=n)

Ukk

,(k) (k)By assumption -ij and Ukj have variance , and (4.2) gives a prediction of the vail-

The growth-retarding mechanism just described is analogous to the cooling that occurs in evaporation
of a liquid, in which the most energetic molecules escape from the surface, leaving those that remain behind a
little less energetic on average. Further analogies can also be found between Gaussian elimination and statistical
mechanics.
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ance of ik /kk denoted by #. If all of these quantities were truly independent, (5.2)
would imply that tr/ was related to by

(5.3)

thus completing our model ofGaussian elimination. But this foula is utterly inaccurate:
it leads to a prediction for paial pivoting of nearly exponential groh,

(5.4) en/(4

which fails to match experiments except for n 1. Equation (5.4) is derived by iterating
(5.1) and (5.3),

ff k=l

and then taking the logarithm and using (4.3) to obtain

n n -1 n
log --=e =1log(l+,)=l==21gm 41ogn"

We have now reached the point where hypothesis (2) mentioned in the Introduction has
failed us; it is time to replace it by some quantitative version of (2’).

We have found that the following simple assumption is sufisingly accurate, at
least until the last few steps of elimination: the variances accumulate additively rather
than multiplicatively according to the formula

22(5.5 +.
We do not have a rigorous justification of why (5.5) is an appropriate replacement for
(5.3), but here is a heuristic one. Equation (5.5) amounts to the statement that the
operations performed in Gaussian elimination do not compound, from the point ofview
ofgroh factors; it is as if the kth elimination step were applied to the original matrix
A A( rather than to A(. Why should this be? Our best answer is to describe the
following mechanism, which suggests that the groh introduced at one elimination step
tends not to contribute to fuher groh at later steps. At step k, the coecfion subtracted
from( by (5.2) is a rank-1 matx. Taking the extreme, suppose this coection hap-
pened to be much larger than the elements it was being added to. Then the new matx
A(+1 would be close to a matrix of rank one in its lower-fight subsquare k + N i,
j N n. Consequently, the large numbers just introduced would vanish at step k + 1.

This argument is ceainly not complete, nor precise enough to distinguish (5.5)
from various other possible modifications of(5.3). But we believe the feedback mechanism
it describes is essential to the stability of Gaussian elimination: large groh makes the
remaining matrix close to a matrix oflow rank, which in turn inhibits large groh. Note
that in keeping with the distinction in the Introduction between (2) and (2’), the low-
rank ropey would be destroyed if the signs ofthe correction matrix were randomized.
Experiments with a qobotomized Gaussian elimination" algorithm of this kind confirm
that (5.3) and (5.4) then become accurate. See 8 for the occurrence of this instability
phenomenon in a computation of practical interest based on parallel pivoting."

Equation (5.5) completes our model of average element and pivot groh as a
function of k, which consists in its entirety of equations 3.1 ), 3.2 ), 3.3 ), 3.4 ), (4.2),
(5.1), and (5.5).
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Figure 5.1 compares predicted element and pivot sizes with experimental observa-
tions. For all our inexact assumptions, the agreement is remarkably good except at the
very end ofthe elimination. We emphasize that all ofthe solid curves in Fig. 5.1 represent
predictions from general principles, dependent on no adjustable parameters.

Figure 5.2 returns once again to nonnormal distributions of elements. The first two
plots repeat Figs. 5.1 (c), 5.1 (d) for matrices with elements from the { 0, } distribution.
Ofthe nonorthogonal distributions we have considered, this is as far from having normally
distributed elements as any, but even so, the figure reveals that our element and pivot
predictions are roughly valid after k 8. Similar but generally better agreement is observed
in most ofthe other cases. Figures 5.2 (c), 5.2 (d), however, repeat the same experiments
for random orthogonal matrices, and the results are very different. In keeping with 1.2)
and (1.3), we see that the geometric mean of the pivots has increased by a factor of
approximately e. Hypothesis (5.5) has failed in this case, although the growth is still
far less rapid than (5.3) would predict.

6. Growth factors. At last we are prepared to turn to the problem ofaverage growth
factors. We will begin with experiments, and then see how these can be related to the
statistical model of the last four sections.

Figure 6.1 summarizes various theoretical and experimental results concerning the
average growth factor (p) of(0.2), all plotted on a log-log scale. The highest curve shows
the worst-case bound p _-< 2- for partial pivoting, which we know by (0.3) is sharp.

0
0 20 40 60 80 0

(a) partial pivoting, {0, matrices

20 40 60 80

---,k

(b) complete pivoting, {0, matrices

30 o

25 O*

0

20

lO

5

0
0 20 40 60

(c) partial pivoting, orthogonal matrices

80

30

25

20

15

i0

5

0 20 40 60

(d) complete pivoting, orthogonal matrices

FIG. 5.2. Repetition ofFigs. 5.1 (c), 5.1 (d) for random 0, and orthogonal matrices, n 64.
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2 4 8 16 32 64 128 256 512 1024

FIG. 6.1. Average growth factors (o). The solid curves represent various theoretical worst-case bounds.

The next curve shows the best available worst-case bound for complete pivoting, p =<
Vn(2 31/2...n/t, 1))1/2 Cn/2+ /4og,, due to Wilkinson [32], which is known to
be not sharp.6 The straight line shows the bound p =< n that was conjectured by Wilkinson
for real matrices with complete pivoting 33, p. 213 ], which has never been proved
except for n -< 5 [4], [7], [18]. Below these curves, we have plotted two sets of experi-
mental values of() based on matrices with random elements from the standard normal
distribution.7 It is’evident that the average growth factors for both partial and complete
pivoting grow sublinearly with n and lie well below all of the worst-case bounds.

The pattern in these data can be made more apparent if we modify the definition
of . Rather than dividing by the maximum element ofA, let us divide by the standard
deviation OA of the initial element distribution,

(k)
max/,j,k aij(6.1) p=

(aa is not the same as a, unless the elements of A have mean 0: the former is a true
standard deviation, while the latter is defined in (1.4) relative to 0.) For matrices with
elements from a uniform distribution, this modification will increase () by a constant
factor, whereas for matrices with normally distributed elements, the factor is approximately
W(n) O(/log n ). Figure 6.2 repeats the experimental data of Fig. 6.1, but showing
() instead of (). The data points lie strangely close to two straight lines:

(6.2) partial pivoting" () /,/2/3, complete pivoting" () ?//2.

The proof of Wilkinson’s bound is a reasonably straightforward recursive application of 1.1 ).
In Fig. 6.1, the last two data points in each sequence (n 512 and n 1024) are fabricated by extrapolation;

in our computer experiments we neglected to measure these numbers beyond n 256. All the data in Fig. 6.2
are genuine, however, and since the two figures are nearly equivalent, the extrapolations are unlikely to be far
wrong, so we have included the extra points in Fig. 6.1 to make the comparison clearer.

Goodman and Moler 8 ], 16 report that in the LU factodzation of 10,000 random matrices ofdimensions
10

_
n =< 50 drawn from four different distributions, the largest growth factor encountered was p 23. MacLeod

[21], who increased n to 100, observed a maximum growth factor p 35. We regret to say that in our own
experiments, we were so focused on average-case behavior that we neglected to measure the largest growth
factor.
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FIG. 6.2. Average normalized growth factors ( . The solid lines are purely empirical.

In this observation there is not even a constant factor to worry aboutmthe fractional
power of n is multiplied by 1! Despite these surprisingly close agreements, howeverm
especially for partial pivoting and n2/3mwe do not claim that the approximations (6.2)
are asymptotically valid as n --* oo.

The data from Figs. 6.1 and 6.2 are recorded in Table 6.1. The sampling errors in
this and subsequent tables probably range from about percent for small n to more like
5 percent for large n.

Average growth factors change remarkably little when we turn to other distributions
of matrices. Tables 6.2 and 6.3 list observed growth factors () for Gaussian elimination
with partial and complete pivoting for the eight distributions of matrices listed in 1.
For larger n, except in the case of random orthogonal matrices, the numbers are nearly
independent ofthe matrix distributionmso much so that a plot would be uninformative.
Thus (6.2) appears to continue to hold with the constant factor 1, independently of the
matrix distribution--a remarkable degree of a regularity that would have been obscured
had we not normalized by aA in (6.1).

TABLE 6.1
Average growth factors (p) and

2
4
8
16
32
64
128
256
512
1024

Partial
pivoting

1.04
1.15
1.42
1.93
2.89
4.31
6.14
8.74

Complete
pivoting

1.01
1.04
1.10
1.20
1.45
1.91
2.62
3.56

Partial
pivoting

1.52
2.39
3.63
5.92
9.77

15.9
26.3
40.0
63.7
97.3

Complete
pivoting

1.48
2.15
2.82
3.64
4.97
7.17
10.8
16.1
24.3
36.1
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n

2
4
8
16
32
64
128

TABLE 6.2
Average growth factors (for matricesfrom various distributions, partial pivoting.

Normal

1.52
2.39
3.63
5.92
9.77
15.9
26.3

[-1, 1]

1.48
2.23
3.5O
5.85
9.67
15.5
24.6

[0, 11 {-1, 1} {0, 1} Symm. Toep. Orth.

2.77 1.50 1.87 1.40 1.41 1.59
3.33 2.02 2.13 2.26 2.12 2.78
4.06 3.61 4.18 3.60 3.37 5.20
6.17 6.63 6.86 6.06 5.83 10.3
9.85 9.86 9.91 10.0 10.3 20.7
16.3 15.7 16.6 16.5 18.3 42.5
25.2 24.9 25.9 25.6 30.1 81.4

The observation that orthogonal matrices fare worse in Gaussian elimination is not
new, but goes back at least to Wilkinson (cf. Fig. 5.2). For example, the extreme case of
element growth under complete pivoting in any example yet devised is achieved by
Hadamard matricesmmultiples of orthogonal matrices with elements 1--for which
p >= Unn n (proof by Cramer’s rule [4]). See [7] and [18] for more on this subject.

It remains to relate these observations to our statistical model ofthe past four sections.
To begin the discussion, let us for the first time take a look at the effect ofGaussian

elimination on individual matrices rather than just averages. Figures 6.3 (a), 6.3 (b) show
pivots Ukkl from the factorization of a single matrix with n 64 compared with the
prediction rk of Fig. 5.1. Figs. 6.3 (c), 6.3 (d) superimpose the pivots Ukkl from 25 such
matrices. These four plots show vividly that our average-case predictions have definite
relevance even to an individual matrix, for although Ukkl oscillates considerably, its
overall trend follows the predicted average. They also show that the extent ofthe oscillation
is much greater for partial than complete pivoting.

The growth factor k will, in general, be larger than maxk rk, since k is a maximum
while maxk rk is a maximum ofan average. Figure 6.3 suggests that for complete pivoting
the excess is typically modest, whereas for partial pivoting it may be quite substantial.
These considerations explain how it is possible that the average size ofrk can be insensitive
to the type of pivoting (in keeping with 1.3 )) while the growth factor still varies signif-
icantly.

We can estimate (k) as follows. Figures 5.1 and 6.3 suggest that very roughly, the
last n/2 steps ofGaussian elimination are equally likely to contribute the largest element

tk) (The crudeness of this estimate is not so important, since W(m) depends verya0
weakly on m.) These final n/2 steps generate a total of n3/24 new elements _tk)

aij
Therefore we estimate

(6.3) () W(n3/24) maxk ak,

2
4
8
16
32
64
128

TABLE 6.3
Average growth factors (?a) for matricesfrom various distributions, complete pivoting.

Normal

1.48
2.15
2.82
3.64
4.97
7.17
10.8

[--1, 1] [0, 1] {-1, 1} {0,1} Symm. Toep.

1.42 2.77 1.50 1.87 1.38 1.39
1.98 3.27 2.02 2.14 2.06 1.97
2.75 3.50 3.40 3.76 2.83 2.74
3.70 4.13 4.10 4.15 3.73 3.84
5.11 5.34 5.48 5.55 5.10 5.72
7.40 7.49 7.73 7.88 7.34 8.94
11.0 11.2 11.3 11.4 11.0 13.9

Orth.

1.59
2.63
4.30
7.26

13.0
23.3
43.3
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FIG. 6.3. Pivots Ukk for matricesfrom the standard normal distribution, n 64. The solid lines represent
the same predictions as in Figs. 5.1 c 5.1 d ).

where ak is the predicted value derived in 5.5 ). Figure 6.4 compares this prediction with
the lines n /2 and n 2/3 of Fig. 6.2. The agreement is not bad! The predictions for partial
pivoting are somewhat too low, however, which reflects the fact that our predicted values
of ak were too low toward the end of elimination (Fig. 5.1 ).

128

64

32

16

n2/3

nl/2

2 4 8 16 32 64 128 256 512 1024

FIG. 6.4. Predicted average growth factors ( >. The solid lines arefor comparison with Fig. 6.2.
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What about asymptotics as n -- ? We must be cautious here, for as is well known,
extreme value statistics for normal distributions are approached painfully slowly. But as
n , W(n3/24) O(/log n), by (3.2)and (3.3), and maxk ak o(/n//lOgn),
by (4.2) and (5.5). Thus the natural conjecture appears to be

(6.4) () O(Vn) as n-- ?

for both partial pivoting and complete pivoting, despite (6.2). This guess is tidy but
hardly astonishing, in the light of (1.3).

7. Residuals. Our next set ofexperiments concerns the actual errors introduced by
Gaussian elimination, and also by QR factorization, as measured by residuals computed
in double precision. Let an n X n matrix A be factored in one of the following ways:

A PLU (Gaussian elimination with partial pivoting),
A PI LUP2 (Gaussian elimination with complete pivoting),
A QR (QR factorization),
A QRP (QR factorization with column pivoting),

where L is unit lower triangular, U and R are upper triangular, Q is orthogonal, and P,
P,, and P2 are permutation matrices. The QR factorizations are carried out by House-
holder reflections, and as is customary, the vector associated with these reflections is
stored rather than an explicit matrix Q. Let L, U, R, and so on denote the matrices
obtained in floating-point arithmetic, and define the residual for Gaussian elimination
with partial pivoting by E A PLU, and similarly for the other factorizations.

After a factorization has been carried out, we measure the size ofE by its maximum
element normalized by rA and also by machine epsilon:

(7.1) E max
maxi,j eijl.

At the end of a series ofN factorizations, we compute the average (Emax > as usual.
Figure 7.1 begins with the most important case ofthe standard normal distribution,

showing computed quantities (Emax > as a function of n for Gaussian elimination with

256

128

64

32

16

FIG. 7.1. Average maximum residual element (Emax. The solid lines are empirical.
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partial and complete pivoting and for QR factorization without pivoting. The data from
the figure, together with corresponding numbers for QR factorization with column pivot-
ing, are listed in Table 7.1. They suggest, somewhat surprisingly in the light of the last
section, that the maximum residual elements in partial and complete pivoting differ only
by a constant factor: both satisfy (E max) Cn. They also suggest that QR factorization
is asymptotically more stable than either form of Gaussian elimination, with (E max)
Cn /2. Thus it would appear that in practice, there may be little difference between partial
and complete pivoting in Gaussian elimination, but not because both are entirely stable;
apparently both suffer mildly from the unstable effects of pivot growth. The same con-
clusion is obtained if one measures the residual matrix E in ways other than by its
maximum element.

TABLE 7.1
Average maximum residual element (Emax.

2
4
8
16
32
64
128
256

Gaussian elim.

Partial
pivoting

0.43
1.47
3.64
8.13
17.2
36.0
73.0

134.

Complete
pivoting

0.33
1.13
2.68
5.71

11.4
22.6
44.6
86.2

QR factorization

No
pivoting

4.75
8.87

12.8
18.0
24.2
35.8
56.4
84.3

Column
pivoting

5.10
8.42

12.5
16.7
24.9
35.6
54.6

2
4
8
16
32
64
128

TABLE 7.2
(Emax)mvarious matr distributions, partial pivoting.

Normal

0.43
1.47
3.64
8.13

17.2
36.0
73.0

[-1, 1l [o, 1l {-1, 1}

0.47 0.75 0.00
1.52 1.92 0.00
3.67 4.24 0.12
8.03 8.80 5.62

17.3 17.5 16.9
33.6 35.1 34.5
71.6 72.1 69.1

{o,}

0.00
0.00
0.27
6.32
17.6
35.5
71.5

0.46
1.45
3.71
8.33
17.2
36.3
72.2

Toep.

0.46
1.45
3.63
8.35

17.9
37.6
74.1

Orth.

0.58
2.01
5.08

12.2
28.2
68.7
149.

TABLE 7.3
(Emax)--various matrbc distributions, complete pivoting.

2
4
8
16
32
64
128

Normal

0.33
1.13
2.68
5.71

11.4
22.6
44.6

[-1, 11 [0, 1] {-1, 1}

0.42 0.68 0.00
1.32 1.75 0.00
2.98 3.61 0.28
6.03 6.82 4.86
11.5 12.4 11.5
22.1 24.2 23.9
46.5 43.3 44.8

{0,1}

0.00
0.00
0.64
5.34

11.9
24.4
46.8

0.40
1.19
2.79
5.85

11.4
22.9
43.5

Toep.

0.41
1.27
3.00
6.25
12.7
26.2
50.9

Orth.

0.58
1.78
4.39
9.25
19.9
42.0
88.2
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As with the growth factors ofthe last section, our observations concerning residuals
are closely duplicated for random matrices from many other distributions. Tables 7.2
and 7.3 reveal that once again, only orthogonal matrices among the classes we have
examined behave much differently.

8. Alternative pivoting strategies. The previous sections have examined "classical"
Gaussian elimination with partial or complete pivoting, and concluded that these algo-
rithms are highly stable on average. In this final section we shall look more superficially
at three variants of Gaussian elimination based on alternative pivoting strategies:
"threshold," "pairwise," and "parallel" pivoting. All ofthese variants are less stable than
partial or complete pivoting, and the last turns out to be markedly unstable for large n
even though the multipliers are all less than in magnitude. Table 8.1 summarizes our
conclusions, which are based on experiments with n =< 1024. The most interesting ob-
servation is that as discussed in earlier sections, the stability of Gaussian elimination
depends not only on the size of the multipliers, but also on whether the corrections
introduced at each step are of low rank.

TABLE 8.1
Summary ofexperimental results for various pivoting strategies.

Size of Rank of
Pivoting strategy multipliers corrections Average-case stability

partial or complete =< highly stable
threshold -<r- reasonably stable for larger
pairwise -< low reasonably stable
parallel <- n/2 unstable

We begin with threshold pivoting, a well-known idea that is discussed by various
authors (for a discussion and references see [10]). The idea is to require only that

(k) (k)(8.1) lukk ’i’[dik l, i> k,

where z [0, is a parameter. For z this is partial pivoting, and for z 0 it is no
pivoting at all; of course in practice z is taken to be positive. The motivation behind
threshold pivoting is that it allows for more than one row to be a candidate for the pivot
row, and some other criterion, such as sparsity, can be used to make the choice.
With this strategy, the multipliers are at most z-l and the growth factor satisfies o =<
(1 + z-1)n-l. AS with partial or complete pivoting, each step involves an elimination
operation of rank 1.

Several authors have espoused ways to choose 7, with recommended choices being
as low as 0.01 [29] or as high as 0.25 [5]. Duff[9], [10] reports an experiment with
four sparse matrices and arrives at the interesting conclusion that z 0.1 affords both
good reduction of fill-in and loss of only one to two digits of accuracy in the solution,
whereas smaller - (0.01 or less) can be disastrous to accuracy and may actually increase
the fill-in. To explain this counterintuitive observation, he notes that when r is small the
variance of elements becomes large, so that the number of elements that satisfy (8.1)
becomes small.

We performed a brief series of experiments using dense matrices of dimensions
n =< 128, with independent elements from the standard normal distribution and with
z { 0.5, 0.25, 0.1, 10 -2, 10 -4, 10-8 }. The sample sizes were approximately as listed in

1, and at each step the pivot row was simply taken to be the first candidate satisfying
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0.5 n213
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FIG. 8.1. Average growth factors ()for threshold pivoting with various thresholds r. The solid lines are

for comparison with earlierfigures.

(8.1). In Fig. 8.1, the observed average growth factor (k) is plotted against n for each
of the values of r, with the curves/,/2/3 and 2"- shown for comparison. The numbers
are listed in Table 8.2. These experiments support the conclusion that for larger values
of r, threshold pivoting is reasonably safe; the growth factors are nowhere near the worst-
case bound 2 ,-l. Ofcourse, in applications involving sparse matrices the behavior may
be different.

What about the limit r 0--no pivoting? The data for r 10 -s in Fig. 8.1 are not
much different from what would have been observed in the same experiment with r

0, but there is an important mathematical difference nonetheless: although any single
experiment will yield a finite result with probability l, the expected growth factor is
infinite in the absence of pivoting. (This is obvious; we need only consider the very first
division a (2 I)/ I)all .) For a meaningful theory ofthe statistical behavior of Gaussian elim-
ination without pivoting, we would have to employ a different measure of average-case
growth such as exp ( log >), as in the study ofexpected condition numbers ], 26 ].

Another well-known variant ofGaussian elimination is pairwise or neighborpivoting,
in which only adjacent rows are interchanged or eliminated. Here is the algorithm. The
scope of each control structure is indicated by indentation, and row (i) denotes the

TABLE 8.2
Average growth factors (7)for threshold pivoting.

2
4
8

16
32
64
128

r 0.5

1.58
2.74
5.07
9.86
18.7
34.8
62.2

0.25

1.75
3.86
9.05

21.6
46.6
90.6
164.

r 10-
2.06
6.07
17.7
50.9

124.
270.
523.

r 10-2

3.24
15.1
56.1

172.
464.
1370.
2670.

r 10-4

5.54
39.9

136.
535.
1660.
7340.
15600.

r 10-s

5.16
60.7

249.
1030.
3210.
16100.
30900.
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FIG. 8.2. Average growth factors ( ) for pairwise pivoting. The solid lines arefor comparison with earlier
figures.

elements { ai,k, ai,k+ l, ai,, }"
fork’= lton-

fori’=ntok+ lstep-1
if a,l > [ai- l,k[ then

exchange row (i) and row
row (i) row (i) (ai,k/ai-,k),row (i

This algorithm is of interest for parallel computing because it avoids the search for a
maximum required by partial and complete pivoting--a substantial bottleneck for parallel
computations--yet keeps all multipliers less than in magnitude. Sorensen has obtained
a worst-case bound 4n- on the growth factor [27].

Our experiments involved matrices of dimensions n 2, 4, ..., 1024 with inde-
pendent elements from the standard normal distribution. The sample sizes were 10,000
for n =< 8, 1000 for 16 =< n =< 128, and 250 for n >= 512. Figure 8.2 plots the observed

TABLE 8.3
Average growth factors ( ) for complete, partial, pairwise, and parallel pivoting.

2
4
8
16
32
64
128
256
512
1024

Complete
pivoting

1.48
2.15
2.82
3.64
4.97
7.17

10.8
16.1
24.3
36.1

Partial
pivoting

1.52
2.39
3.63
5.92
9.77
15.9
26.3
4O.O
63.7
97.3

Pairwise
pivoting

1.52
2.41
3.83
6.68

12.1
21.3
41.8
85.2

179.
432.

Parallel
pivoting

1.55
2.41
3.94
7.67

18.7
64.1

483.
1.53 104
7.72 106
4.2 1012
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FIG. 8.3. Average growth factors ( ) for parallel pivoting.

average growth factors (b) as a function of n, and the numbers are listed in Table 8.3.
Evidently pairwise pivoting is quite stable on average, though not as stable as partial or
complete pivoting. We explain this by observing that first, the magnitudes ofthe multipliers
are somewhat bigger but still much less than on average; second, the corrections intro-
duced at each step are still on average of low rank, although not of rank 1.

Finally, what we call parallel pivoting is a (nonstandard) variant of Gaussian elim-
ination in which as many as n2 elements are eliminated in parallel. For example, if
n 2m, we first eliminate aj / m, for j 1, 2, m by subtracting a multiple of row
j from row j + m. These two rows are exchanged first if necessary in order to keep the
multiplier no greater in magnitude than 1. Here is the algorithm:

fork: ton-
nelts := n k
while nehs> 0

n2:=(nelts+ )/2
nelts := nelts n2
for/:= ton2

rowl :=k+i-
row2 := k+ + nelts

/ * number below diagonal * /

/ * number to eliminate * /
/* number remaining * /

/ * pivot row * /

if arow2,k > arow,kl then exchange row (row and row (row2)
row (row2):= row (row2) (arow2,k/arow,g)*row (rowl

We tested this algorithm on matrices of orders n 2, 4, 8, ..., 1024 from the
standard normal distribution. Except for n 1024, where only two matrices were factored,
the sample sizes were at least 100 matrices. Figure 8.3 plots the observed growth factors
(k) as a function of n, together with the curves n 2/3, en/(41gn) (equation (5.4)), and
2"- for comparison. The data were listed already in Table 8.3 above. Clearly, this
parallel pivoting strategy is unstable. We explain this by observing that first, the multipliers
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are bigger than in standard Gaussian elimination (although still no greater than );
second and more important, the corrections introduced at each step are of high rank, so
that there are no favorable dependences among signs to retard growth. The rough agree-
ment of the data with the curve en/(4 log n) suggests that perhaps this particular pivoting
strategy, unlike partial or complete pivoting, approximately satisfies hypotheses ( and
(2) of the Introduction.

9. Conclusions. Is Gaussian elimination with partial pivoting stable on average?
Everything we know on the subject indicates that the answer is emphatically yes, and
that one needs no hypotheses beyond statistical properties to account for the success of
this algorithm during nearly half a century of digital computation.

This paper has presented a model of the average-case behavior of Gaussian elimi-
nation supported by extensive experiments. Although no theorems have been proved,
we believe that there is reasonably good evidence for the following conclusions. These
statements are approximate, not exact, and they apply to the average case for many, but
not all, distributions of matrices. Except where otherwise indicated, they apply to Gaussian
elimination with either partial or complete pivoting.

For QR factorization with or without column pivoting, the average maximum
element of the residual matrix is O(n/), whereas for Gaussian elimination it is O(n).
This comparison reveals that Gaussian elimination is mildly unstable, but the instability
would only be detectable for very large matrix problems solved in low precision. For
most practical purposes Gaussian elimination is highly stable on average. ( 6, 7)

(2) The statistical behavior of Gaussian elimination depends on the standard de-
viation ofthe initial matrix elements, but is otherwise insensitive to the matrix distribution.
In particular, the statements below apply equally to random matrices with elements from
normal, uniform, or discrete distributions, as well as to random symmetric and Toeplitz
matrices (but not to random orthogonal matrices). ( 2-6)

3 For n -< 1024, the average growth factor (normalized by the standard deviation
of the initial elements) is within a few percent of n2/3 for partial pivoting and is approx-
imately n /2 for complete pivoting. ( 6)

(4) After the first few steps ofGaussian elimination, the remaining matrix elements
are approximately normally distributed, regardless of whether they started out that way.
({}2)

(5) The average magnitudes ofpivots relative to elements at each step ofelimination
can be predicted by extreme value statistics. The distribution of multipliers at each step
can then be predicted based on the pivot magnitudes. ( 3, 4)

(6) The signs of the elements and multipliers are not independent, and their de-
pendence is essential to the stability ofGaussian elimination. It results from the fact that
each step of elimination introduces a rank-1 correction to the remaining matrix, which
provides a feedback mechanism that inhibits potential element growth and instability.
( 5, 8)

(7) This dependence of elements and multipliers can be modeled by hypothesizing
that the corrections added at each step of elimination accumulate additively rather than
multiplicatively. The resulting predictions of growth factors agree reasonably well with
observations. ( 5, 6)

(8) By contrast, nonclassical variants of Gaussian elimination involving higher-
rank elimination steps are sometimes markedly unstable, even though the multipliers
are small. ( 8)
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Note added in proof. This paper has focused mainly on averages, not distributions.
Ultimately, however, it is the tail of the growth factor distribution that is of greatest
concern. Experiments leave little doubt that the tail decays exponentially, and to illustrate,
the following figure is a histogram ofcomputed growth factors p in an experiment involving
partial pivoting applied to N 20,000 matrices of dimension n 32 with normally
distributed elements. Note the logarithmic scale. We leave it to others to determine how
close such figures are to standard distributions such as the extreme value distribution.
A. J. MacLeod has previously carried out experiments in this line 2 ], 34 ], and further
statistical analysis of pivoting data is being carried out by D. Hoaglin in the Dept. of
Statistics, Harvard University.
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FIG. Partial pivoting growth factor distribution based on 20,000 matrices ofdimension n 32.
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MONOTONE CORRELATION AND MONOTONE DISJUNCT PIECES*

DEVENDRA CHHETRY’, JAN DE LEEUW:, AND ALLAN R. SAMPSON

Abstract. Suppose X, Y are random variables taking values on the m n lattice x < < Xm
y < < y, with Q Prob (X xi, Y y.) }. Let pcMc(Q) and PDMC(Q) be the concordant and discordant
monotone correlations defined, respectively, by the maximum and minimum of correlation f(X), g(Y) over
all f, g increasing with nonzero variances. A number of results concerning pcuc(Q) and PDuc(Q) and their
evaluations are obtained. One result shows that pcuc(Q) 1, if and only if Q consists of at least two in-
creasing disjunct pieces, i.e., Q Diag (Q, Q2). Necessary and sufficient conditions are also given for
PCMC(Q) ODMC(Q).

Key words, maximal correlation, concordant monotone correlation, disjunct pieces, monotone disjunct
pieces

AMS(MOS) subject classifications, primary 15A51; secondary 62H20

1. Introduction. Let X and Y be two discrete random variables taking values in the
mnlatticeS T--{Xl<... <Xm} {Yl<"" <Yn}with

Q qij} Prob (X xi, Y= yj.) },

where we assume r qi > 0 for all and c qi > 0 for all j. There is a substantial
literature in statistics and probability dealing with measuring the association between
the random variables X and Y (see Goodman and Kruskal (1979), Haberman
(1982) or Raveh (1986)). One such measure of association introduced by Hirschfeld
1935 is the maximal correlation coefficient p’(X, Y) (or p’(Q)) defined to be the
max { p(f(X), g(Y)) }, where p denotes correlation and the maximum is over all f and
g with nonzero variances. Clearly, 0 _-< p’(X, Y) _-< 1.

The properties of p’(X, Y) have been extensively studied (e.g., Richter (1949),
R6nyi 1959 ), Lancaster 1969 ), Sarmanov (1958a), (1958b), and Hall 1969 )). One
of the interesting and important results is that p’(X, Y) 0 is equivalent to X and Y
being independent random variables, and p’(X, Y) is equivalent to Q consisting of
at least two disjunct pieces, where this concept is defined as follows.

DEFINITION 1.1 (Richter (1949)). The probability matrix Q is said to consist of k
disjunct pieces if there exist partitions $1, Sk of S and TI, Tk of T such that

(l.1) Prob ((X, Y)Sg Ti)>0, l, ,k,

and

1.2 Prob (X, Y) s Si T) 0 for all :/:j.
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Additionally, the probability matrix Q is said to consist of exactly k disjunct pieces, if
(1.1) and (1.2) hold, and Q cannot further consist of k + disjunct pieces. Richter
(1949) has extended this result concerning disjunct pieces utilizing Fisher’s canonical
decomposition of Q. Define Q* DTI/2QDT/2, where Dr Diag (r,..., rm) and
De Diag (cl, Cn). Then, assuming here for convenience m =< n, the spectral de-
composition of Q* can be written as Q* F[Diag (1, p, Pm-): Om,n-m]G’,
where F [D)/21m Il] and G [D/21n GI] are orthonormal matrices, Om,n_ m is an
m (n m) matrix of zeros, and >= -> >= O2m_ >- 0 are the eigenvalues of
Q*’Q*. Based on this spectral decomposition, Fisher’s (1940) canonical decomposition
can be written

Q= re’+ Dlr/2I’lDo(Dlc/2G1)’,
where Do [Diag (01, "", Pm-1) Om-l,n-m]. The values p, ..., Pm-1 are called
the canonical correlations of the distribution Q, where it is known that p’(X, Y) p.
(See Lancaster 1969, Chap. 6) or Chhetry and Sampson 1987 for further discussions
concerning the canonical decomposition and its interpretation.) The result obtained by
Richter (1949) is that Q consists of exactly k disjunct pieces if and only if pl

p-l= landor< 1.
Another related concept is the following one. If rn n and Q consists of rn disjunct

pieces, then X and Y are called mutually completely dependent (Lancaster 1969 )), and
there exists a one-to-one function h such that the random variablesXand Yare completely
related by Y h(X).

For the purposes of this paper we require a further refinement of the concept of
disjunct pieces. To define this refinement, we employ the notation that if U, V are sets
of real numbers, U < V means u < v for all u U and all v V.

DEFINITION 1.2. The probability matrix Q is said to consist of k increasing
(decreasing) disjunct pieces if there exists partitions S < $2 < < S of S and
Tl < (>) T2 < (>) < (>) Tk of T such that 1.1 and (1.2) hold.

We say Q consists of k monotone disjunct pieces if Q consists of either k increasing
or decreasing disjunct pieces.

Q consisting of k increasing disjunct pieces is equivalent to

Q=Diag(Q1, Qk),

where Qi is an mi rli matrix and Z mi m, ,
rti n. This also can be viewed as Q

being the direct sum QI (R) (R) Qk, when direct sum in this context is analogous to
the direct sum of square matrices (see MacDuffee (1949, p. 114)). If m n and Q
consists ofm increasing (decreasing) disjunct pieces the notion ofXand Ybeing mutually
completely dependent can be refined. In this case X and Y are related by h strictly in-
creasing (decreasing) and the probability matrix corresponds to a special class of
probability distributions called the upper (lower) Frrchet bounds (see Kimeldorf and
Sampson 1978 )).

In order to measure positive association between arbitrary random variables X and
Yand also to circumvent some ofthe difficulties pointed out by Kimeldorfand Sampson
(1978), Kimeldorf, May, and Sampson (KMS) (1982) introduced the concordant
monotone correlation PCMC (or alternatively PCMc(Q)), defined by

(1.3) PCMC max { p(f(X),g(Y)) }
where the maximum is taken over all increasing f and g with nonzero variances. Also
introduced by KMS is the discordant monotone correlation ODMc(Q) defined by (1.3)
where "max" is replaced by "min." KMS show that -1 =< PDMC =< OCMC =< 1, and
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0DMC OCMC 0 is equivalent to X and Y being independent random variables. Also
they provide an example where ODMC < 0CMC 0 and yet X and Y are dependent
random variables. It is also direct to show that 0DMC >- 0 (0CMC -< 0) if and only if
X and Y are positively (negatively) quadrant dependent (Lehmann (1966)), i.e.,
Prob (X -< x, Y _-< y) >= (-<) Prob (X =< x) Prob (Y -< y) for all x, y.

The purpose of this paper is to obtain some additional results in the bivariate discrete
setting concerning 0CMC and PDMC, and their evaluation.

2. Some results for ocmc. For a given probability matrix Q the notation used for
the correlation betweenf(X) and g(Y) is

pQ( f, g) f’(Dr- rr’) f)-l/2(g’(Dc-cc’)g)-/2( f’(Q- rc’)g),

where

r=(rl, ,rm)’, c=(cl, ,c,)’,

f =(f(x), ,f(Xm))’, g=(g(Yl), ,g(Yn))’,

and the denominator is nonzero.
Throughout we say the vector (w, wp)’ is nondecreasing if w -< -< wp;

and use ek to denote the kth coordinate unit vector of the appropriate dimension. Often
we use the simple fact that for every rn n probability matrix Q, there uniquely corre-
sponds an rn n cumulative distribution matrix defined by

F= Fo Prob (X<=xi, Y<= yj) },
i.e., F0 i= = qk.

THEOREM 2.1. A necessary and sufficient condition for
pcMc(Q) ODMc(Q)

is that Q consists ofat least two increasing (decreasing) disjunct pieces.
Proof The sufficiency follows immediately (see Kimeldorf, May, and Sampson

(1982, p. 120)).
To show necessity, suppose occ(Q) 1. Then, there exist two nondecreasing

vectors f0 and go, such that 0Q( f0, g0) and thus, Q consists of at least two disjunct
pieces. Assume that Q consists of exactly disjunct pieces, where >_- 2. Hence, there
exist permutation matrices P and P2 such that Q* PQP’z consists of exactly increas-
ing disjunct pieces, i.e., Q* Diag (Q, Q? ), where Q is an m nk matrix, such
that Z mk rn and Z n n. It then follows (see Richter 1949 or Bastin et al. (1980))

ksUs, where Us em + + ms-that OQ, f, g3) if and only if f3 Z
emt+...+ms, andg Ys=l (aks +/3)vs, where v enl+...+ns_+l + + ent+...+,s,
and where there exists <j such that )k :/= j and a > 0. It is direct to show that
oo( fo, go) if and only if fo P’ f and go Pg3 for any f3, g3, which satisfies
OQ*( f3, g3 1. For each vector f 6’, g$ of the preceding form, let i* >= 2 be the first
value such that ,i. 4: kl; the existence of i* follows from ),i 4: ,j for some < j. Because
fo is nondecreasing and fo P’I f3, it follows that P1 Diag (PI 1), PI2)), where
is an m* m* permutation matrix and PI2) is an (m m*) (m m*)permutation
matrix, where m* ,*__- ink. Similarly, P2 is in block diagonal form and, hence Q
consists of at least two increasing disjunct pieces.

Now suppose oDIc(Q)=-1. Use the preceding argument and the fact that
PDMc(Q) -ocrc(Q*) where Q* Q(e,, el) to get the result.

KMS show that monotone correlation 0 * (Q), introduced by Kimeldorfand Samp-
son (1978), is also given by o*(Q) max { occ(Q), --0DMc(Q) ). From Theorem 2.1,
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it immediately follows that o * (Q) if and only if Q consists of at least two monotone
disjunct pieces.

While Theorem 2.1 deals with the case p’(Q)= 0CMc(Q)= 1, more gener-
ally we have o’(Q)>= 0CMc(Q). However, in some cases Schriever (1983) shows
that o’(Q)= 0CMc(Q) without their necessarily being unity. We observe that o’(Q)=
ocMc(Q) means that there exists at least one pair of nondecreasing functions f0 and go
such that o(fo(X), go(Y)) o’(Q). For a further discussion of Schriever’s results we
need the following Definition due to Lehmann (1966).

DEFINITION (Lehmann (1966)). A random variable X is said to be positively
regression dependent (PRD) on Y if Prob(X>xlY=y) is nondecreasing in y
for all x.

In terms of the probability matrix Q, the condition that X is PRD on Y can be
written as follows: For all 2, m 1, j < j’ implies ’f= qo/cj <= ’f= qo’/cj,.

THEOREM 2.2 (Schriever (1983)). IfX is PRD on Y and Y is PRD on X, then
p’(Q) pCMc(Q).

We note that it is easily shown if Q corresponds to Y being PRD on X (X being
PRD on Y), then every has the same property, where is obtained from Q by adding
together (which is equivalent to statistically collapsing data categories) any sets of adjacent
rows or adjacent columns. As a consequence of this fact and of Theorem 2.2, it follows
that Q corresponding to Y is PRD on XandXis PRD on Yimplies that p’() 0CMC()
for every collapsed . However, Chhetry and Sampson (1987) provide an example that
the conditions of Theorem 2.2 are not necessary for p’(Q) PCMc(Q).

In the study of bivariate dependence concepts, it oftentimes is of interest to con-
sider P(r, e), the class of all m n probability matrices with fixed row and column mar-
ginals, r and e, respectively. It is well known that (see Schriever (1985, Ex. 4.2.3))
PCMc(Q+) -> PCMc(Q) for all Q P(r, e), where Q+ is the probability matrix uniquely
corresponding to the cumulative distribution matrix of the upper Fr6chet bound, which
has F+ {(min (Fi, G))}, where Fi ;=l rk and G Z=I ck. If the random
variables X and Y are both continuous, the CMC for the correspondingly defined upper
Fr6chet bound is one (see Kimeldorf and Sampson (1978)). However, in the discrete
situation it is not always the case that pcMc(Q+) is one. In the following theorem we
provide a necessary and sufficient condition for pcMc(Q+) in terms of the marginal
row and column sums.

THEOREM 2.3. A necessary and sufficient condition for pcMc(Q+) is that there
exist s < m and < n such that F Gt.

Proof In view of Theorem 2.1, we need to show that Q+= Diag (Qi, Q-)
if and only if Fs=Gt, where Q is st and Q is (m s) (n t). Ob-
viously, Q+ Diag (Qi, Q) implies that Fs Gt. To prove the converse assume that
Fs Gt. Let F be the (i, j)th element of F+; then it can be easily checked that

Fi ifi=l,2,...,sandj>_-t,

F= Gj. ifi =s,andj<t,

G; ifi>s, j<=t.

This implies that the corresponding Q+ is of the required form. Vq

To motivate the next theorem, consider first the simple case when Q is a 2 2
probability matrix. Then it is trivial to show that pcMc(Q) PDMc(Q); additionally,
PCMc(Q) (PDMc(Q) if and only ifqll q22 0 (q12 q21 0). The analogous
results do not continue to hold when m > 2 or n > 2, as we now show.
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THEOREM 2.4. Ifm > 2 or n > 2, then PCMc(Q) PDMc(Q) ifand only ifX and
Y are independent.

Proof Suppose 0CMc(Q) ODMc(Q) 7/ 0 (if rt 0, independence follows).
Without loss of generality assume m > 2, so that we can choose three nondecreasing
functions al, a2, and b such that (i) o(a(X), a2(X)) < and (ii) Var [a(X)]
Var [a2(X)] Var [b(Y)] 1. Then, by the assumption that OCMc(Q) ODMc(Q),

7 o(a(X)+ a2(X),b(Y)) 2rt(2 + 20(al(X),a2(X))) -/2,

which implies that o(al(X), a2(X)) 1, a contradiction.
COROLLARY 2.5. Ifm > 2 or n > 2, then OCMc(Q) > -1 and ODMc(Q) < 1.
The proof of Corollary 2.5 is obvious.

3. Some results concerning evaluation. While the quantities o’(Q) and 0CMc(Q)
are of interest in their own right as measures of association, the vectors at which these
maxima occur play an important role in rescaling of the values of the random variables.
These notions are particularly useful in statistically analyzing both nominal and ordinal
contingency tables (e.g., Nishisato (1980)). The vectors that maximize o’(Q) can be
derived from certain results of statistical correspondence analysis (e.g., Benzecri 1973
and Hill (1974)). The increasing vectors that yield OCMC(Q) can be interpreted as either
providing dual scalings for ordinal contingency tables or a form ofordinal correspondence
analysis. However, their evaluation is substantially more complicated than the nonordinal
case (e.g., see KMS, or Breiman and Friedman 1985 ), and the comments of Buja and
Kass 1985 )). Chhetry and Sampson (CS) (1987) provide an approach that simplifies
somewhat the calculation of OCMc(Q) and the maximizing vectors. We briefly discuss
that approach and then detail how to employ it effectively when the ordinal table is
collapsed, i.e., when neighboring row or columns are added. The latter issue is important
for the statistical modeling using hierarchies for ordinal tables in which collapsing is used
for model simplification.

For every rn n probability matrix Q, CS define the (rn + n 2) (m + n 2)
matrix Z(Q) (denoted where there is no ambiguity as Z) by

0 Dr Q
(3.1, 2:(Q,=(;’ /,)(Q, D)(; ;)’
where A (Ira lmlD)m, B (I, I,I,D)I’,, and I’p is the p (p matrix
whose (i,j)th element is zero, if -< j, and 1, otherwise. Let Zl A’DA, ,12 A’QB,
Z22 B’DcB, and 221 Z’12. CS also show that 21 and Z22 are positive definite and
is a nonnegative-definite matrix. For any Q, let Z be given by (3.1) and define for
ott.Rm-I 6Rn-I

(3.2) re( O,B (O’2110)-I/2 Ott Z 12/) (/’ Z22B) -1/2

where a 4:0 and/3 4: 0. Then CS show that the maximal correlation coefficient and the
two monotone correlation coefficients can be evaluated as follows:

(3.3a) o’(Q) max rQ(a,B),

(3.3b) 0CMc(Q) max rQ(a,B),
a_ 0,_ 0

(3.3c) ODMc(Q) min rQ(a,/3).
_0,/3_ 0
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The relationships of (3.3a)-(3.3c) can be viewed as simplifying computation by
reducing dimensionality. Also note that if a0 and/30 optimize any of (3.3a), (3.3b), or
(3.3c), then the corresponding maximizing vectors f0 and go defining the left-hand sides
are related by f0 Aao and go B30. For example, if re(a,/3) is maximized at a0,/30,
then 0a( f, g) is maximized at fo Aa0 and go B/30.

An additional advantage of the problem formulation given by (3.2) and (3.3) is
that these optimization problems can be reformulated analogously to the problem of
finding the canonical correlation for the multivariate normal. A good discussion con-
cerning traditional multivariate normal canonical correlations is given in Anderson 1984,
Chap. 12). For the p-dimensional multivariate normal distribution with positive-definite
covariance matrix 2;, canonical correlation analysis involves a study ofthe determinental
roots and solutions for 2;212;-: 2;12 }k22;22, where 2;11, 2;12, 2;21, 2;22 are a partitioning
of 2; with the dimension ofZ being Pl < P. A description of the relationship between
our problem and traditional canonical correlation analysis is given in the following lemma
whose proof follows from Lemma 4.1 and Theorem 4.2 of CS.

LEMMA 3.1. The positive square root of the largest eigenvalue o2 of
2;-: 2;122;- 2;21 (or _J 2;212;]-: 2;12) is pt(Q). If or (1) 4=0 and 0 (1) 40 satisfy the equa-
tions

(3.4a) Z -11 2122; -21 2;2 lt3t
(1)

0O (1)

and

(3.4b) /3 (1)= 2; -21 2;210! (1),

then pQ(a(I), 3(1)) p’( Q). Moreover, p’( Q) ocMc(Q) ifand only ifthere exist non-
negative vectors a (1) and 13 (1) satisfying (3.4).

We now relate the computation of the maximal correlation and the monotone
correlations for collapsed contingency tables to the original uncollapsed tables. Recent
discussions on the general issue of collapsing nonordinal contingency tables are given by
Gilula and Krieger (1983) and Gilula (1986). The following definition is useful in our
discussion.

DEFINITION 3.2. An m n matrix P { Pij }, m =< n, is said to be a C-matrix if
(a) the rank of P is m; (b) each column of P has one and only one nonzero element,
and the nonzero element is unity; and (c) ifpij Pik for k > j implies Pie for all
e=j+l,...,k-1.

Obviously, in the above definition, if m n then P is a permutation matrix;
and if m < n then appropriate multiplication of a probability matrix by P collapses
sets of adjacent rows or columns. Suppose Q is transformed to by ( PIQP, where
PI and P2 are, respectively, s m and n C-matrices. Then, is an s prob-
ability matrix obtained from Q by collapsing and with row and column marginals

Plr (/1, /s)’ and z P2c (tl, tt)’, respectively. Moreover, if De
Diag (?1, ?s) and De Diag (1, ct), then De P1DrP’ and De P2DcP’2.

In the following theorem, we establish the relationship between 2;(Q) and 2;().
THEOREM 3.3. IfQ P1QP’2, where PI and P2 are, respectively, s m and n

C-matrices, then

2;(0) Diag (K,, K,) 2;(Q) Diag (Km, Kn),

where Km A’mP’ Xs, Kn A’P’2 qt, and Ap is the p (p matrix

(e2-el,ea-e2, ,ep--ep-l).
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Proof From CS (Lemma 3.2 (i))

’P Q- re’)P’2 ,.
From the quadrant dependence decomposition (CS (equation (3.4))), we obtain

12(0) II/P1 Am12(Q)k%P,
K,z(Q)K,.

The relationship concerning Z(0) and Z22(0) are established similarly. H
Note that the results of Theorem 3.3 also hold ifP and P2 are more general in that

they collapse nonadjacent rows and columns; however, such matrices would not be
meaningful for ordinal tables. The usefulness of Theorem 3.3 especially when used in
conjunction with Lemma 3.1 can be seen in the following example.

Example 3.4. Let P and P2 be C-matrices of orders (m-s)X m and
(n- t) X n, respectively, where

P(e,..-,e,e2,’-.,em_) and Pz(e,...,e,ez,...,e,_t).

Then, the matrices, Km and K, defined in Theorem 3.3 reduce to the form

(3.5) K=(O,Im_s _)) and K%=(02,I,--))

where 0 and 02 are zero matrices of orders (m s 1) X s and (n 1) X t,
respectively. Hence, using (3.5) in Theorem 3.3, we obtain

Z(0) [1,2, ,s; 1,2, ,s],

and

22(Q) 22[1,2, ,t; 1,2, ,t],

where Ell[l, 2, i; 1, 2, k] is the submatrix obtained from 2;ll(Q), by deleting
the first rows and the first k columns, etc.
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AN EIGENVALUE FORMULA FOR THE RADIUS OF STABILITY
OF A STABLE GAME MATRIX*

MARVIN D. TROUTT"

Abstract. This note develops an alternative to computing the radius of stability of a stable game matrix
in terms of the eigenvalues of matrices derived from the game matrix.

Key words, stable game matrices, eigenvalue, perturbation methods

AMS(MOS) subject classifications. 65F15, 90D99

Connections between games and eigensystems have been studied by several authors,
including [1 ]-[ 6]. In a previous paper [7], the author introduced the concept of stable
optimal mixed strategies in two-person zero sum games and gave a computational formula
for the radius of stability. An alternative formula for the radius of stability is presented
here. This result demonstrates a relationship to eigenvalue problems for matrices derived
from the game payoff matrix by deleting rows and columns.

Let A be an n n matrix, and let M(i) be the n n matrix whose ith row consists
of l’s and whose other entries are 0. Let ,* (,*, ..., *) be an optimal strategy of
player I in the game with payoff matrix Ann, where i* is the optimal probability of
playing row i. Let v be the value of the game. A strategy , is called completely mixed if
Xi > 0, to n. A game is said to be completely mixed if and only if every optimal
strategy of either player is completely mixed. We have the following.

DEFINITION 1. We will call * stable if there is a 6 > 0 such that ,* is an optimal
strategy of player I in all of the games with payoff matrices A + Z 7--1 xiM(i) for all
[]x]] < 6. Similar concepts for player II and columns are evident.

The following result was obtained in 7 and is stated without proof.
THEOREM 1. Let * be an optimal strategy ofplayer I in the game with payoff

matrix An n. Suppose * is completely mixed. Then the game is completely mixed if
and only if* is stable.

Remark. A similar characterization ofcompletely mixed games was obtained earlier
and independently by Filar [8, Cor. 3.2].

DEFINITION 2. Let p(x) be the largest value ofp for which * is an optimal strategy
for player in the game with payoff matrix.

n
XiA +p,]i[[Mi..=

If this number is not finite, define p(x) to be +. Then define

o *= min o(x).

We may call 0 * the radius of stability of A.

Received by the editors June 15, 1987; accepted for publication (in revised form) October 18, 1989.

" Department of Management, 215 Rehn Hall, Southern Illinois University, Carbondale, Illinois 62901
(GA0435@SIUCVMB).

Alternate notation: Let e be the n matrix [1, 1,..., 1] and Ix] be the n matrix
[Xl, X2, Xn]. Then Z xiM(i) may be written as [x]re.
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DEFINITION 3. Let Ai,jlk,! be the matrix A with rows and k, and columns j and l
deleted. Denote by d;,klj, the determinant det Ai,jlk,t. Define

n

D CofAij,
i=lj=l

where Cof denotes cofactor of, and

CJi--(--1 )i+j a a (--1)k+ldk,ilj,l.
kilj

Note D 0 here.
Finally, let C be the matrix with entries

j 12C ck cJ(cJ) T
j j

where is the optimal strategy vector for player II. That is, is the optimal probability
for selections of the pure strategy column j by Player II.

Hence C: is positive definite and symmetric and has only positive eigenvalues. The
main result is the following.

THEOREM 2. For a completely mixed game, * (max: e:) -z/2, where e: denotes
the largest eigenvalue ofmatrix C.

Before completing the proof of this theorem, two lemmas are obtained.
LEMMA 1. IrA (x) is completely mixed then

u:(x) + xc:.
i=1

Proof. This result follows easily by expression ofthe : in terms of cofactors.

(0")2= min min( J- )2.[[xl[ J 7= 1XiCij

LEMMA 2.

Hence

Proof. It is easy to see that

p* min
Ilxll

max {p’#j(x)>=O,j ton}.

(p*)= min max{p2:#y(px)>=0;j=l ton}

min max { p 2: ts + p , xicij O,j
""llXll

ton }.

Clearly for c sufficiently large, and taking x (c, 0, 0), the optimal for player
I in the game with matrix A + , ’/xiMi will be X* 1, 0, 0). Hence p * is finite.
Also p * -> 0. Now minllxll max { p: + p S, xici >-- 0 must be attained for an x for
which ,i xicij < 0 for at least one j, otherwise the positivity of the z and p* would
provide a contradiction. For a given x, p may be increased until the first of the u +
p ,i= xici achieves its zero at
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Thus evidently for a given x 4: 0,
n

max {0:+0 ,xco>-O,J >-- to n}

where the minimum is over those j for which

Z XiCij < O.

Since x and -x are candidates for the minimum point, and the last relation is true for
all x # O, we obtain

p* min min
27- xiij

Hence

(P*)2 min min ( L )2
and the lemma is proved.

To complete the proof of the Theorem, note that Lemma 2 implies

max max
j Ilxll ]2j

=max max XiXkCk
j Ilxll=l k=li=l

It is well known that maxllxtt ’= Z im=- XixkCk is the largest eigenvalue of Ck. Let
us denote this eigenvalue as e.. Now

and hence

---g max ej,
J

p* =(max ej) -1/2
J

This concludes the proof of Theorem 2. []

The above result provides an alternative computational formula to that of the fol-
lowing theorem also obtained in [7].

THEOREM 3.

p * min g* c II-’,
J

where c is thejth row ofA- t**, , and* are optimal strategiesfor players I and

II respectively, and v is the value ofthe game (here * is n and #* is n so that
g*k* is n n).

Remarks. It is not known whether Theorem 2 or Theorem 3 provides the most
efficient computational formula. Interest in Theorem 2 is in providing a further connection
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between games and eigensystems. Clearly a translation that adds the same number to
each element of every column preserves stability. Hence o * is actually the radius of a
cylinder in which stability holds. It should also be noted that in 8 ], Filar raised the
question ofcharacterizing the size ofsuch perturbations and gave a cubical neighborhood
result [8, Lem. 3.3] independent of eigenvalue considerations.

Acknowledgments. The author thanks the editor and an anonymous referee for
many useful suggestions, especially calling attention to the Filar reference.
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AFFINE PSEUDOMONOTONE MAPPINGS AND THE
LINEAR COMPLEMENTARITY PROBLEM*
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Abstract. In this article, it is shown that for an affine pseudomonotone mapping, the feasibility of the
(linear) complementarity problem implies its solvability. A result ofthis type was proved earlier by Karamardian
under a strict feasibility condition.

Key words, pseudomonotone, copositive, Linear Complementarity Problem, Lemke’s algorithm
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1. Introduction. In the theory of Linear Complementarity Problems, the class of
positive semidefinite matrices has played a prominent role. It is well known that the
positive semidefiniteness of a matrix M is equivalent to the monotonicity of the affine
mapping x - Mx + q. In [7], Karamardian introduced the class of (nonlinear) pseu-
domonotone mappings. In this article, we establish a connection between affine pseu-
domonotone mappings and the Linear Complementarity Problem. Given a real n n
matrix M and a vector q 6 n, we say that the mapping x Mx + q is pseudomonotone
(on ) if

x, y >= O, (y- x) 7(Mx + q) > 0 (y- x) T(My + q) >= O.
The Linear Complementarity Problem corresponding to the pair (M, q), denoted by
LCP(M, q), is to find a vector x n such that

x>=O, Mx+q>=O, and xT(Mx+q)=O.

LCP(M, q) is said to be feasible (strictly feasible) if there is an x >_- 0 such that Mx +
q>=O(Mx+q>O).

A result of Karamardian [7] (when stated for affine mappings) says that pseudo-
monotonicity of x Mx + q and strict feasibility of LCP(M, q) imply the solvability
of LCP(M, q). In this article we extend this result by replacing the strict feasibility
condition by the ordinary feasibility condition. We further show that, when M has no
zero column, pseudomonotonicity and feasibility for a single q imply the solvability of
all feasible LCPs. We also show that LCP(M, q) can be solved by Lemke’s algorithm
[8 ]. From pseudomonotonicity and feasibility, we deduce several interesting properties
of the matrix M.

2. Preliminaries. The (usual) inner product oftwo vectors x and y in is denoted
by xTy.

_
denotes the nonnegative orthant in En, and we write z >= 0 when z 6 _.

For any k , ) + max {), 0} and )- (-k)+. For any z (z, z,) r 6 ,
+ T -z and(z =0. For =<z+’-(z],’’’,z) andz-’=(-z) + Clearlyz=z+ + 7’z-

<= n, ei denotes the ith coordinate vector (containing at the ith spot and zero else-
where). denotes the set of all n n real matrices. For an M n", M denotes
the transpose.

Received by the editors May 16, 1988; accepted for publication (in revised form) June 10, 1989.
? Department ofMathematics and Statistics, University ofMaryland, Baltimore County, Baltimore, Mary-

land 21228. (GOWDA@UMBC and GOWDA@UMBC1.UMBC.EDU ).
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A matrix M is said to be

a copositive if xrMx >= 0 Vx >= O,
(b) positive semidefinite if zrMz >= 0 Vz
(c) pseudomonotone if x, y >= O, (y x)rMx >- 0 (y x)rMy -> O,
(d) a Po-matrix (or M e P0) if every principal minor ofM is nonnegative,
(e) a row sufficient matrix (cf. 3 if for any z,

zi(Mrz)i-<-O(i 1,2, ,n) zi(Mrz)i=O(i 1,2, ,n),

(f) a column sufficient matrix ifMr is row sufficient, and
(g) a Qo-matrix (or M e Q0) if for any q, feasibility of LCP(M, q) implies its

solvability.

The notion of pseudomonotonicity of a map can be defined on any cone [6], [7].
However, in this article, pseudomonotonicity is studied only on N. We note that M is
pseudomonotone if and only if the mapping x Mx is pseudomonotone.

3. General results.
THEOREM 1. Suppose that LCP(M, q) is feasible and that the mapping x

Mx + q is pseudomonotone. Then M is copositive and belongs to P0.
Proof. Let Xo >= 0 be such that Mxo + q >= O. For any x >= 0, we have

{(Xo+X)-Xo} r(Mxo+q)>=O

and by pseudomonotonicity

xr{M(x+xo)+ q} >-O.

Since x >_- 0 is arbitrary, we get xrMx >= O. Thus M is copositive. To show that M is a
Po-matrix, we show that Mr is a Po-matrix. In view of a result of Fiedler and Ptfik
[5, Thm. 1.3], it is enough to show that for any nonzero z, maxz/0 z(Mrz) >= O.
Assume that for some nonzero z,

max z(Mrz)<O.
zi4O

Since M is copositive, the sets I i" zi > 0 } and J { j" zj < 0 are nonempty. Let
X be a large positive number such that

zrq X , zj(Mrz)>O and zrq+ X , zi(MTz)i<O.
J I

Then the inequalities

(Xz+- Xz-)r{ M(Xz-) + q} X2(z-)rMrz + Xzrq

=X[zrq-X,z(Mrz)]>O
J

and

(Xz+-Xz-)r{M(Xz+)+q}= X[zrq+x I zi(MTz)il<O
contradict the pseudomonotonicity assumption. Hence M is a Po-matrix. V]

Remark. The above result may not hold if the feasibility condition is dropped. For
example, if we let

M=
0 -1

and q=
-1
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then the mapping x Mx + q is pseudomonotone while M is neither copositive nor a
P0-matrix. We shall see later that if the mapping x Mx is pseudomonotone, i.e., ifM
is a pseudomonotone matrix, then M is a row sufficient matrix. Such a result fails for
general affine pseudomonotone mappings. To see this, we let

0 ] and
0 0

Then the mapping x Mx + q is pseudomonotone and LCP(M, q) is feasible, whereas
M is neither row sufficient nor column sufficient.

We note that in the above theorem, we can replace feasibility by copositivity and
then deduce that M is a Po-matrix from the pseudomonotonicity of the mapping x
Mx + q. This observation gives the following corollary.

COROLLARY 1. Suppose that M is symmetric. Then the pseudornonotone mapping
x Mx + q is monotone (i.e., M is positive sernidefinite) ifand only ifM is copositive.

Proof. The assertion follows from a well-known fact that a symmetric Po-matrix is
positive semidefinite.

When M is symmetric, the pseudomonotonicity of x Mx + q is equivalent (cf.
[7]) to the pseudoconvexity of the quadratic function Q(x) xr(Mx + q) on R. It
follows from Theorem that, when Mis symmetric, the pseudoconvex quadratic function
Q(x) is nonconvex on R only when LCP(M, q) is infeasible. From Corollary 1, we see
that on a pseudoconvex quadratic function Q(x) xr(Mx + q) is convex if and
only ifM is copositive. (For more results concerning pseudoconvex quadratic functions,
we refer the reader to the articles by Cottle and Ferland [2], Ferland [4], Schaible [9 ],
and to the references therein.)

Our next result (Theorem 2) leads to a characterization ofpseudomonotone matrices.
It turns out that a matrix is pseudomonotone if and only if the corresponding quadratic
form is nonnegative on a certain (nonzero) set. First we prove a simple lemma.

LEMMA 1. Let a ,n and a, . Let

I={i:ai>O}, J={i:ai<O},

U(,)= u:u>-_O,ua>=,), U()= { u: u>-_O,ua>=).

Then U(a)
_
U() ifand only ifthefollowing hold:

(i) a >= when I 4: and a >= O,
(ii) a >= 3 when J 4: and a <= O,
(iii) 3 =< 0 when a <= O.
Proof. Suppose that U(a) U(fl) and let be an index such that either ai > 0 and

a > 0 or ai < 0 and a -< 0. Then u (a/ai)ei belongs to U(a) and hence to U().
Therefore a u ra >= fl so that (i) and (ii) hold. If a =< 0, then 0 U(a) U() so that
/3 =< 0. This gives (iii). To see the converse, let u U(a), i.e., u >= 0 and ura >= a. If
a 0, then 0 ->- a. From (iii), we get 0 >= , i.e., u U(3). So let a 4: 0. We consider
two cases.

Case l. a >= O.
(a) If ai > 0 for some i, then by (i), a >=/3. Now u Ta >- a >= 13 gives u 6 U(3).
(b) If a -< 0, then u Ta >= a >= 0 implies a 0. From (iii), fl =< 0 and so u ra >--

a 0 >= /3. Hence u 6 U(3).
Case 2. a < 0. From (iii) we have/3 =< 0.
(a) If a >_- 0, then u ra >= 0 >= and hence u U(fl).
(b) If ai < 0 for some i, then (ii) holds and hence ura >= a >= 3. Therefore

u u(3).
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The definition ofpseudomonotonicity ofan afflne map on Rn involves two variables
in R. The following theorem shows that the pseudomonotonicity can be described in
terms of a single variable in n. For the pair (M, q), we let

(3.1)

(3.2)

(3.3)

A z" (MTz)i> 0 for some

B’= z" (Mrz)i < 0 for some

C’= {z’zr(Mz-+q)>-_O},

and zr(Mz- + q) <-O },

and zr(Mz-+q)>-O},

D { z" zr(Mz+ + q)>-0 }.
THEOREM 2. The mapping x Mx + q is pseudomonotone ifand only if
(a) zrMz >- O for all z A tO B,
(b) C_D.
Proof. We notice that the condition

x>= O, y>= O, (y- x) T(Mx+ q) >= 0 (y- x)T(My+ q) >= 0
is equivalent to

u>=O, zg, zr{M(z-+u)+q}>-OzT{M(z++u)+q}->O
which is the same as

u>=O, zNn, uTMTz>=--zT(Mz-+q)= urMTz>=-zr(Mz++q).

But this amounts to saying that for every z, the implication

u>=O, uTa>=a uTa>-t
holds, where a Mrz, a -zr(Mz + q), fl -zr(Mz+ + q). Equivalently, for every
z, conditions (i)-(iii) of Lemma hold. We note that a >_-/3 is equivalent to zrMz >=
O. Hence, upon rewriting conditions (i)-(iii ofLemma in terms ofz, we get conditions
(a) and (b) of the theorem.

It is clear that if M is positive semidefinite, then for any q, the mapping x
Mx + q is pseudomonotone. It turns out that even the converse is true.

COROLLARY 2. A matrix M is positive semidefinite if and only iffor every q, the
mapping x Mx + q is pseudomonotone.

Proof. We prove only the sufficiency part. Let z be any vector. If Mrz 0, then
zrMz 0. Suppose that MTz 4 0 and let q =-Mz- Then Mz-+ q 0 and hence
zcA UB, where A and B are as in (3.1) and (3.2). From Theorem 2 we get
zTMz >-- O. [-I

We see below that when q 0, the inclusion C D in Theorem 2 is superfluous.
COROLLARY 3. A matrix M is pseudomonotone ifand only ifz’Mz

A t.J B’, where

(3.4) A’={z’(MTz)i>O forsomei and zTMz-<--O},
(3.5) B’={z’(Mrz)i<O forsomei and zrMz->-_O}.

Proof. We prove (only) the sufficiency part by proving the inclusion C
__
D

(for q 0). Let z C. Then zrMz >- 0. If Mrz >= 0, then zrMz+ >= 0. If (Mrz)i < 0
for some i, then z e B’ and so zTMz+- zTMz-= zrMz >= O. Therefore, zrMz+>-
ZTMz- > 0, i.e., z D.

COROLLARY 4. IfM is pseudomonotone, then M is a row sufficient matrix.

Proof. Suppose that Zk(MTz)k <= 0 for k 1, 2, n. Let I i" z > 0 and
J j’z < 0 }. Since LCP(M, 0) is feasible, by Theorem 1, M is copositive. Thus,
if I or J is empty, then zTMTz >= O, which gives zi(MTz)i 0 for 1, 2, n.
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So we can assume that I and J are nonempty. Since zrMz -Yj zj(Mrz)j >- 0, either
from Theorem 2(b) or directly from the definition of pseudomonotonicity, we have
zrMz+ >- O, i.e., I zi(MTz)i >- O. This yields zi(MTz)i 0 Vi I. Replacing z by
-z and repeating the above argument we get zj(Mrz)j 0 Vj J. Hence zk(MrZ)k
0 for all k.

THEOREM 3. Suppose that M has no zero column. If the map x Mx + q is
pseudomonotone and LCP(M, q) isfeasible, then M is pseudomonotone.

Proof. In view of Corollary 3, it is enough to show that zrMz >= for all z
A’U B’.

(a) Let z e A’ so that (Mrz)i > 0 for some and zrMz <- O.
Case 1. z rMz < 0. In this case, choose a large positive X such that

(Xz)r{M(Xz-)+ q} <0.

By Theorem 2(a), we have (Xz)rM(Xz) >- O, i.e., zrMz >- 0.
Case 2. zrMz 0. Suppose, if possible, that zrMz < 0. Then zrMz+ < 0. We

put w -z and observe that (Mrw) < 0 and wrMw > 0. Using a suitable X we get
[Mr(Xw)]i < 0 and (Xw)r{M(Xw-) + q} > 0. By Theorem 2(a), we get X-wrMw >=
0, i.e., wrMw >- 0. Hence zrMz >- 0.

(b) Let z s B’ so that (Mrz)i < 0 for some and zrMz >- 0.
Case 1. zrMz > 0. We can proceed as in Case of (a) and get zrMz >- O.
Case 2. zrMz 0. If zrq >- O, then zr(Mz + q) >- 0 and hence (by Theorem

2(a)) zrMz >- O. So we can assume that z rq < 0. Thus

(Mrz)i<O forsomei, zrMz-=O and zrq<0.

Subcase (i). (Mrz) > 0 for some j. In this case, we can use Theorem 2 (a) to get
zrMz >- O.

Subcase (ii). Mrz < 0. In this case, zrMz 0 gives z- 0, i.e., z >- 0. By
copositivity ofM (cf. Theorem ), zrMz >- O.

Subcase (iii). (Mrz) 0 for some j. We find an e s N such that (Mre) > 0.
(This is true, since M has no zero column.) By continuity, we have for all small e > 0,
[MT(z + ee)] e(Mre) > 0 and

(z+ee)r{M(z+ee)-+q} <0.

From Theorem 2(a), we get (z + ee)rM(z + ee) >= 0 for all small e > 0. Hence
zrMz >= O. r--1

Remark. We note that in the above theorem, the feasibility condition can be replaced
by the copositivity condition. IfMhas a zero column, then the conclusion ofthe theorem
cannot be drawn. For example, let

M=
0 0

and q=
0

It is easily seen that the map x-Mx + q is pseudomonotone and LCP(M, q) is feasible.
But M is not pseudomonotone, since (e2 e )rMel 0 and (e2 e )rMe2 < 0. Also,
we cannot conclude the pseudomonotonicity of x Mx + q from that ofM (even if
LCP(M, q) is feasible). To see this, let

M=
0

and q=
-2

Then, for x, y >= O, (y- x)rMx 2xly x(x + y) >= O, we have (y x)rMy
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Y2(X1 + Yl 2X2Yl >= 0 where Xl and x2 are, respectively, the first and second com-
ponents of x, etc. (If x 0, the implication is easy to see; otherwise, (y- x)TMy

_
(2Xl)-Ix2(x1 nt- yl) 2 2x2y 0.) The mapping x Mx + q is not pseudomono-
tone, since (y- x)r(Mx + q) 0 and (y x)r(My + q) -1, where

2

4. Complementarity results.
THEOREM 4. Suppose that M is pseudomonotone. Then M Po f3 Q0 and every

feasible LCP(M, q) is solvable by Lemke’s algorithm.
Proof. IfM is pseudomonotone, then M is a row sufficient matrix (by Corollary

4). By Theorem 4 and subsequent remarks in [3], M P0 f’l Q0. Hence, by the main
theorem in [1], every feasible LCP(M, q) is solvable by Lemke’s algorithm, ff]

Remark. A proof for the above theorem (which avoids the sufficiency property)
can be given. Lemke [8, p. 104] showed (but did not state the result this way) that ifM
is copositive and

(4.1) x>=O, Mx>-O, xrMx=Oxrq>=O

then LCP(M, q) is solvable by Lemke’s algorithm. Now let M be pseudomonotone and
LCP(M, q) be feasible. Since LCP(M, 0) is feasible, by Theorem 1, M 6 Po and is
copositive. Let x >-_ O, Mx >- O, xrMx 0. From (u x)rMx >= 0 (Vu >= 0) and
pseudomonotonicity we get Mrx <= O. Now feasibility of LCP(M, q) gives q v Mu
for some u, v>_ 0. We have xrq vrx urMrx>= O. Thus (4.1) holds and so
LCP(M, q) is solvable.

The following result is immediate from Theorems 3 and 4.
THEO,EM 5. Suppose that M has no zero column. IfLCP(M, q) is feasible and

the mapping x Mx + q is pseudomonotone, then M P0 N Q0 and every feasible
LCP(M, q’) is solvable (by Lemke’s algorithm).

In order to prove the next theorem, we need
LEMMA 2. Suppose that

0 A
M=

0 B
and q=[qlq2

where A t k, B kx , q tm, q2 #, and n m + k. Let

X.tm, y #, and z=[;].
Ifthe mapping z Mz + q is pseudomonotone and LCP(M, q) isfeasible, then

A is a nonnegative matrix,
(ii) ql >= 0,
(iii) y By + q2 is pseudomonotone and LCP(B, q2) is feasible,
(iv) if solves LCP(B, q2), then solves LCP(M, q), where

Proof. (i) Let -< =< m. Since Mei 0, copositivity (which follows from Theorem
implies (M + Mr)ei >= O. Hence every row vector in A is nonnegative.

(ii) If any row ofA is zero, feasibility of LCP(M, q) implies that the component
ofq corresponding to that row is nonnegative. Without loss of generality, let the first row
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ofA be nonzero. We show that the first component ql) of q is nonnegative. We write

M=
0

q=
t

where a (n-), C (n- )n-), etc. Assume, if possible, that q]) < 0. Let e be
the vector of one’s in "-1). Put u (-q])/era)e,

(= and n
u

where X 0, 0 (in N), v 0 in N-I. We have

((- n)r(Mn + q) [ura+ql](-X)+(v-u)r(Cu+)

(v u) r(Cu + )(by the choice of u).

Now choose v 0 such that (v u)r(Cu + ) 0 and vra + ql) 0. (If b := Cu +
is zero put v 0; otheise, we find w such that wrb 0 and wra 0 and then put

v u + ew where e is a small positive number.)
By pseudomonotonicity, (( n)r(M( + q) 0, i.e.,

[vra + ql] (,_ X) + (v- u)r(Cv+)0.
Since vra + ql) 0 and X is arbitral, we reach a contradiction (to the pseudo-
monotonicity). Hence ql) 0.

(iii) This follows from

and

Byo + q2 B Yo q2

(iv) Suppose that 37 solves LCP(M, q). Then

(by (i) and (ii)), and fr(Mi+ q) r(B+ q) O. Hence ,2solves LCP(M, q).
We now come to the main result.
THEOREM 6. Suppose that the mapping x--, Mx + q is pseudomonotone and

LCP(M, q) is feasible. Then LCP(M, q) is solvable by Lemke’s algorithm).
Proof. IfM has no zero column, then the result follows from Theorem 5. Suppose

that M has a zero column. We show that (4.1) holds, i.e., xrq >-_ 0 for all x >- 0 such
that Mx >- 0 and xrMx 0, and then use Lemke’s result. (See the remark following
Theorem 4.) Let B be a proper principal submatrix of largest size having no zero col-
umn. (If no such B exists, then, by Lemma 2, q >_- 0 and in this case the zero vector
solves LCP(M, q).) We note that the mapping x ErMEx + Eq is pseudomonotone
for any permutation matrix E, and solving LCP(M, q) is equivalent to solving
LCP(ErME, Eq). Thus we can assume without loss of generality that B occupies the
lower fight-hand corner of M. We can write
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where the size of q2 agrees with that of B. Repeated use of Lemma 2 shows that q >- 0.
Also, LCP(B, q2) is feasible and B is pseudomonotone (since B has no zero column).
From the remarks following Theorem 4 (with B in place ofM) we see that

(4.2) y>=O, By>-_O, yTBy=Oqy->O.
Now let x >_- 0 such that Mx >= 0 and xTMx 0. Writing

X Xl]X2

(where the sizes ofx and x. agree with those of q and q2), we see that

x2 >= O, Bx2 >= O, and xBx2 O.

From (4.2) we get xq2 >= O. Since q >= 0, we get xrq xq + xq2 >= O. This completes
the proof. Ul

Remark. We note that the solvability also follows from Lemma 2 and an induction
argument. The following example shows that stronger conclusions (such as the ones
given in Theorem 5 cannot be drawn in Theorem 6. Let

M=
0

q= and q’=

Then the mapping x Mx + q is pseudomonotone, LCP(M, q) and LCP(M, q’) are
feasible but LCP(M, q’) is not solvable. In particular, M Q0.

Acknowledgments. I am grateful to Professor J.-S. Pang and to the referees for their
valuable suggestions.
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PREFACE TO THE SPECIAL SECTION ON
SPARSE MATRICES

Computation with sparse matrices unites many different parts ofapplied mathematics,
bringing together techniques from numerical analysis, combinatorics, and computer
science.
The SIAM Activity Group on Linear Algebra sponsored a Symposium on Sparse

Matrices at Salishan Resort in Gleneden Beach, Oregon, from May 22 through 24, 1989.
John Lewis chaired the organizing committee, which also included Loyce Adams, David
Scott, and Horst Simon. The Symposium advisory committee consisted of lain Duff,
Stan Eisenstat, Alan George, Gene Golub, Beresford Parlett, Ahmed Sameh, and Bob
Ward. The committees composed a program of 16 plenary talks and 12 workshops con-
taining 65 presentations. The topics covered the entire range ofsparse matrix computation,
from iterative to direct methods, from error analysis to graph theory, from engineering
applications to standards to experimental comparisons among competing codes. A fre-
quent theme was the emerging influence of large-scale parallel computation on sparse
matrix methods.
The editors of the SlAM Journal on Matrix Analysis and Applications (SIMAX) and

the conference organizers are pleased to present a selection ofpapers from the Symposium.
Authors were invited to submit their papers to SIMAX, after which they underwent the
usual SIAM refereeing process. This special section contains five papers, and several
more will appear in forthcoming issues of SIMAX.
The organizers would like to thank the SIAM Activity Group on Linear Algebra, Intel

Scientific Computer Corporation, and Cray Research for support of the Symposium.

J. G. Lewis
J. R. Gilbert
R. J. Plemmons
H. D. Simon
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A NONDETERMINISTIC PARALLEL ALGORITHM FOR GENERAL
UNSYMMETRIC SPARSE LU FACTORIZATION*

TIMOTHY A. DAVISf AND PEN-CHUNG YEW

Abstract. A parallel algorithm for the direct LU factorization of general unsymmetric sparse matrices is
presented. The algorithm D2 is based on a new nondeterministic parallel pivot search that finds a compatible
pivot set S of size m, followed by a parallel rank-m update. These two steps alternate until switching to dense
matrix code or until the matrix is factored. The algorithm is based on a shared-memory multiple-instruction-
multiple-data (MIMD) model and takes advantage ofboth concurrency and (gather-scatter) vectorization. The
detection of parallelism due to sparsity is based on Markowitz’s strategy, an unsymmetric ordering method. As
a result, D2 finds more potential parallelism for matrices with highly asymmetric nonzero patterns than algorithms
that construct an elimination tree using a symmetric ordering method (minimum degree or nested dissection,
for example) applied to the symmetric pattern of A + AX or AXA. The pivot search exploits more parallelism
than previous algorithms that are based on unsymmetric ordering methods. Possible extensions to the D2
algorithm are discussed, including the use of dense matrix kernels and a software-combining tree to enhance
parallelism in the pivot search.

Key words. LU factorization, general unsymmetric sparse matrices, parallel algorithms, nondeterministic
algorithms, synchronization techniques

AMS(MOS) subject classifications. 65F50, 65W05, 65F05, 65-04, 68-04

1. Introduction. Structural analysis, computational fluid dynamics, economic
modeling, chemical plant modeling, oil reservoir simulation, circuit and device simulation,
electric power network modeling, and many other problems in science and engineering
often require the numerical solution of a general unsymmetric system of sparse linear
equations, Ax b, where most of the elements in the matrix A nn are zero, and
where b " is given and the unknown x e n is to be determined. The most common
direct method for solving a system of linear equations is LU factorization, where A is
first factored into the product of a lower triangular matrix L and an upper triangular
matrix U, followed by forward and backward substitution to compute an estimate of
the true solution x. In the outer-product formulation ofLU factorization, A is transformed
into the product L)A)U) after stage k =< k <- n, A) A, and A) I). Each

-1)stage k selects a pivot a permutes the pivot row with row k and the pivot column
j with column k, and then applies a rank-one update (using the outer product of the
pivot row and pivot column) to compute the lower fight submatrix A s n-)n-g)
ofA tg). The notation al refers to the element in row and column j of A <g).

At least in a single-processor nonvector computer, the ideal ordering is usually the
one with the least fill-in. However, finding the ordering with minimum fill-in is too
difficult a problem to solve, so a heuristic must be used (it is probably NP-complete, see
for example [35] and [40]). Markowitz’s strategy for general unsymmetric matrices

<- ) with the lowest upper bound on the amount of fill-inselects as pivot the element a i1"

Received by the editors September 11, 1989; accepted for publication (in revised form) December 29,
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Agency (NASA NCC 2-559).- Center for Supercomputing Research and Development, 104 S. Wright St., University ofIllinois, Urbana,
Illinois 61801.
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31057 Toulouse Cedex, France (DAVIS@FRTLSI2.BITNET). The work of this author was supported in part
by a fellowship awarded by the American Electronics Association with funds from Digital Equipment Corporation.
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that the pivot can cause, (rk-i) 1)’( -(k-1)ci 1), where rk-l) is the number of
nonzeros in the ith row ofA(k- 1) and ck- 1)-is the number ofnonzeros in thejth column
of A (k- 1). The number of nonzeros in a row or column will also be referred to as the
length of the row or column. Each pivot must satisfy a threshold pivoting constraint (a
relaxed form of partial pivoting) 13 ],

(k-i) (k-l)(1) lakk >=U" max lak l,
k_jn

where 0 =< u =< 1.
Orderings for symmetric matrices can be applied to the symmetric pattern of A +

AT or ATA, where A is a general unsymmetric matrix with either symmetric or unsym-
metric nonzero pattern. The minimum degree algorithm by Tinney and Walker 37 is
a special case ofMarkowitz’s strategy. When the pivots are selected only from the diagonal
of a symmetric matrix, then the symmetry is preserved during factorization and the

(k-l)length of row (ri will always equal the length of column (c}k-1)). The pivot
search is reduced to finding the diagonal pivot aii with minimum rk- 1). One ad-
vantage over Markowitz’s strategy is that it can preorder the matrix with only as much
storage as the original matrix A [19 ]. In the undirected graph representation G
(X, E) ofa symmetric sparse matrix A, each node inXcorresponds to a diagonal nonzero
in A, and each edge from node to node j in E corresponds to the nonzero aij in A 18 ].
The graphs associated with the matrices A0, Ai, "", An are called elimination graphs.
Performing one stage of LU factorization to obtain Ak corresponds to removing a node
from the elimination graph of Ak-l and adding fill-in edges so that the nodes adjacent
to the pivot node k form a clique (that is, a set of nodes that are all adjacent to each
other). A recent version of the minimum-degree algorithm by Liu [30 improves upon
the earlier version by eliminating more than one node from the elimination graph between
each update. George’s nested dissection method [18] finds a set of nodes that split the
graph representing the matrix into two disconnected subgraphs when removed from the
graph. Each subgraph is recursively divided into smaller graphs. For some problems,
nested dissection can result in shorter elimination trees than the minimum degree method,
and it is particularly appropriate for finite-element problems [18].

The ordering schemes form the basis ofmany ofthe parallel algorithms summarized
in 2, which introduces the mathematical basis for the additional parallelism due to
sparsity, which does not occur in the solution of dense linear systems, and summarizes
the elimination tree and compatible pivot set concepts that describe the parallelism due
to sparsity in a given matrix. An algorithm based on a symmetric ordering uses a sym-
metrized pattern of A (either A + AT or ATA) during the phase (or phases) of the
algorithm that determines the parallelism due to sparsity in the matrix (such as the
construction ofthe elimination tree, for example). An unsymmetric ordering works with
the unsymmetric pattern of A during all phases of the algorithm. A counterexample
matrix is given which shows that methods using a symmetric ordering may exploit much
less parallelism than is possible for matrices with highly asymmetric nonzero pattern.
Previous algorithms that use an unsymmetric ordering avoid this dilemma, but most do
not exploit parallelism in the pivot search. Section 3 presents a new algorithm, D2, which
addresses some of the limitations of previous approaches by exploiting parallelism in all
major phases ofthe factorization. It is based on the shared-memory multiple-instruction-
multiple-data (MIMD) model, and on a new nondeterministic parallel pivot search heu-
ristic that builds a compatible pivot set S of size rn for a subsequent parallel rank-m
update. Section 4 summarizes a series of experiments that compares the D2 algorithm
with previous algorithms on an Alliant FX/8 and an Alliant VFX/80. Portions of the
research discussed in these two sections have been previously reported [6], [8].
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2. Parallelism due to sparsity. A sequential sparse factorization can improve over
sequential dense factorization by skipping trivial operations, and further improvement
can be achieved in a parallel sparse factorization. There are two types of parallelism to
take advantage ofin sparse LU factorization: the first is apparent in dense LU factorization,
such as updating two rows of A (k) for the same pivot in parallel, and the second is
parallelism due to sparsity. The reductions for two pivots akk and aqq can execute in
parallel if aqk akq 0 [4]. For example, consider the case of q k + 1. Because

ak,k + ,k --O,

the first reduction does not affect column k + or row k + ofA (k), i.e.,

a(k) (k-) .(k) (k-) <_j<i,k+l=ai,k+l for k+ l<=i<=n, and ,k+l,j.=ak+l,j for k+ =n.

The second reduction,
(k+ 1) _(k) (k) (k) (k)

aij --(2ij --(tk+l,j’ti,k+l/k+l,k+l) for k+ <=i<=n,k+ <=j<=n,

can then be rewritten as
(k+l) ;) - (k-l) -1)a o =a -(a+l .ai,k+l/a+,,k+l) for k+Z<=i<-n,k+Z<=j<=n.

(k)Substituting for a0. gives
(k + l) (k- l) (k- l) (k- 1) (k- 1)) lj) (k- (k- 1)

aij =aij --(akj "aik /akk --(ak+l "ai,k+l)/ak+l,k+l)
(k-l)a ij + updatek + updatek + 1.

The two update terms, updatek and updatek+ 1, can be computed in parallel from
-1)A (k-l), followed by additions to the ak term to compute A (k +1). The two additions

cannot execute in parallel, but they can be computed in any order if variations in roundoff
errors are neglected. This concept can be generalized to more than two pivots. An in-
dependent or compatible pivot set S is a set of m pivots whose update terms can be
computed in parallel due to sparsity,

(k-) (k-l) (k-l) -<j=m+k k<i<m+k 1, and ivj}.S a a ij ai 0, for k <

The m pivots in a set S form a diagonal m-by-m leading submatrix of Ak-m.
The parallelism due to sparsity in a particular matrix can also be described by the

elimination tree associated with the matrix [31]. Elimination trees are usually associated
only with symmetric matrices. There are n nodes in the tree for a matrix A R n. Each
node k of the tree is a single task representing, for example, the elimination of pivot k
in the outer-product formulations, or the computation of column k in the column-Cho-
lesky method. The tree represents the dependences in the parallel task ordering that must
be satisfied to compute the factorization. In some algorithms, a parent task can start as
soon as all its children have finished, whereas in others, a parent can start after its children
start but must finish after its children finish (pipelining). The maxtrix A is first permuted
according to the pivot sequence. The parent of node k is given by the location of the first
off-diagonal nonzero in column k of the lower triangular factor L. The parent of a root
node is nil. The children of node k are all nodes whose parent is node k. Since A has
symmetric pattern, the patterns of L and U are identical, and the parent of node k is
also given by the first off-diagonal nonzero in row k of U. That is,

parent (k) min lik =/= 0, > k } min { j lllkj =/= O,j > k }.

The ancestors of node k are all nodes on the single path from node k to the root, and
the descendants of node k are all nodes in the subtree rooted at node k. Figure shows
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FIG. 1. Compatible pivot sets and elimination tree.

an example LU factorization and its associated elimination tree. Original nonzeros in A
are shaded darker than the four fill-ins. Note that if A can be permuted into block
diagonal form, the associated elimination tree will actually be a forest, with one tree for
each irreducible component. This discussion assumes that A has a single tree, but it can
be easily generalized to the reducible case.

In the context of a symmetric matrix, the idea of a compatible set can be related to
the elimination tree. First, a leaf node is a node with no children. That is, node k is a
leaf node if lkj ujk 0 for =< j < k. The set of leaf nodes of the elimination tree forms
the first compatible set So, with size mo. The leaves are removed from the elimination
tree, and the second set, S, with size m, consists ofthe leaves ofthe reduced elimination
tree. Equivalently, the compatible set So consists of all nodes with height q,

height(k)=( 0’ ifkisaleafnde’ }+ max height (j) lk parent (j) }, otherwise
j= 1,n

Sq { k height (k) q, for _-< k ___< n }.
The elimination tree height, h, is simply

h max height (k) } + 1.
k= 1,n

Note that the definition of the elimination tree height used in this paper is one more
than the standard definition of the height of the root node of a tree. The matrix in Fig.

is permuted such that the compatible sets, So, S, $2, and $3, lie on the diagonal, in
sequence. The compatible sets are highlighted in the matrix, and the nodes of the elim-
ination tree in each compatible set are circled. The height, h, of the elimination tree in
Fig. is four.

2.1. Previous parallel algorithms based on symmetric orderings. Some of the pre-
vious algorithms for general unsymmetric sparse matrices use a symmetric ordering and
work with a symmetric pattern ofthe matrix (either A + AT or ATA) during the analysis
phase when determining the parallelism due to sparsity (i.e., the elimination tree). Ifthe
pattern ofA is already symmetric (or nearly so) this approach has several advantages. It
is easier to predict or estimate the pattern of L and U, and quick symmetric orderings
such as minimum degree and nested dissection can be done using no more space than
the original matrix. Finally, all of the powerful graph theory for the symmetric matrices
(with undirected graphs) can be applied to the unsymmetric case [34], [35].
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Duff and Reid’s symmetric multifrontal method (MA27) [11], [13], [16] is an
outer-product factorization, in which each node k in the elimination tree represents a
rank-one update ofA tk) with the outer product ofrow and column k, and the computation
of column k of L. The updates are computed as small, dense frontal matrices to reduce
gather-scatter indirection. In their unsymmetric version with Amestoy and Dayde (MA37,
which in this paper refers to the experimental version [2], [3], [12], not to the one in
the Harwell Library [17]), they use the symmetric nonzero pattern of A + AT during
factorization. The frontal matrices still have symmetric pattern as in the symmetric mul-
tifrontal method, but the nonzero values are unsymmetric. Nodes in the tree are merged
to increase the granularity of the dense matrix operations within each node. Node amal-
gamation, as it is called, is done carefully, since it also increases fill-in. Numerical pivoting
constraints can change the original permutation and can delay the work of a node.
Alaghband and Jordan’s algorithm uses symmetric permutations to create a sequence
of compatible pivot sets. Since the algorithm does not permute off the diagonal while
building the compatible set, it essentially uses the pattern ofA + AT for the pivot search
and for determining the parallelism due to sparsity.

In George and Ng’s Sparspak-C outer-product factorization algorithm [20], [21],
[22 ], symbolic factorization creates a static data structure that allows for any row inter-
changes during the numerical factorization phase, which can then employ conventional
partial pivoting to maintain numerical accuracy. The patterns ofL and U for any partial
pivoting decisions are contained in the patterns of the Cholesky factors Lc and L ofthe
symmetric positive definite matrix AXA, assuming that A has a zero-free diagonal. Fill-
in is controlled with a symmetric ordering ofAXA applied as a preordering to the columns
of A. The symmetric patterns of AXA and Lc + Lcx are used only in the ordering phase
and are not used in the symbolic or numerical factorization phases. In their parallel
version, the symmetric ordering is followed by Liu’s heuristic elimination tree rotations
to reduce the elimination tree height [32 ]. In [23 ], Gilbert develops a parallel imple-
mentation of Gilbert and Peierls’s partial pivoting scheme [24]. As in Sparspak-C, the
elimination tree is formed from the pattern of the Cholesky factor of AXA. It is based
on a column-oriented inner-product form ofLU factorization, in which stage k computes
column k of both L and U. It uses a sparse triangular solver that takes advantage of
sparsity in the fight-hand side and works in time proportional to the number of floating-
point operations (a unique feature ofthe algorithm ). In contrast to Sparspak-C, the work
at each node can be pipelined with the work of its children. Both of these algorithms
(Sparspak-C and that ofGilbert and Peierls) are based on a partial pivoting method, and
therefore they recommend a symmetric ordering ofATA for the columns ofA. However,
it might also be possible to use a purely unsymmetric ordering for the columns ofA. No
preordering can be found for the rows because the algorithms use partial pivoting with
row interchanges during the numerical factorization.

Alternative symmetric orderings include Leuze’s method [28 ], which builds a se-
quence of compatible pivot sets for a symmetric positive definite matrix, or the method
of Lewis, Peyton, and Pothen [29 ], which is an efficient implementation of Jess and
Kees’s method [25 ], and is based on a clique tree representation of the chordal graph.

Using a symmetric ordering to determine the parallelism due to sparsity in an un-
symmetric matrix and to build the elimination tree has its drawbacks. The symmetrized
nonzero pattern of A has more nonzeros than the true unsymmetric pattern. Including
these elements (which are actually zero) during the ordering phase can reduce the amount
of parallelism due to sparsity, because parallelism due to sparsity depends, inherently,
on sparsity. The denser a matrix, the less parallelism due to sparsity. This is particularly
true for matrices with highly asymmetric nonzero pattern. Consider the matrix A in Fig.
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all a12

a31 a33

a25

a34 a35

a41 a42 a44 a46

asl a55

a62 a63 a65 a 66

PAQ

a22 azs

a55 asl

a12 air

a44 a46 a42 a41

a33 a34 a35 a31

a63 a66 a62 ass

FIG. 2. Counterexample sparse matrix.

2, designed so that both A + AT and ATA are dense. Note that the matrix is irreducible
(it cannot be permuted to upper block triangular form). A symmetric ordering based on
A + AT or ATA would find no parallelism due to sparsity. Even if the partial pivoting
method would use a column preordering that is not based on A + AT or ATA, the best
case would be a dense U and an L with three zeros in the last three rows of the first
column. No parallelism due to sparsity can be found for the partial pivoting method for
this matrix, because the preordering must allow for the worst-case pivoting of the rows
during numerical factorization. The parallelism must be found dynamically during the
numerical factorization, because no parallelism is available if the worst-case numerical
pivoting is assumed. In the unsymmetric multifrontal method, numerical pivoting during
factorization increases fill-in, delays the work of a node, and modifies the prediction of
parallelism. In both cases the prediction of parallelism due to sparsity can be much less
than what can be found with a purely unsymmetric ordering. For example, an unsym-
metric ordering during numerical factorization can select a23, a54, al6 as the first three
pivots (assuming they are numerically acceptable). The result after selecting these three
pivots is the matrix PAQ, also shown in Fig. 2. The reductions associated with the three
pivots can be carried out in parallel. This is an extreme example, but it highlights the
limitations of using a symmetric ordering for determining the parallelism due to sparsity
in a matrix.

2.2. Previous parallel algorithms based on unsymmetric orderings. In 1973, Calahan
developed a sequential unsymmetric pivot search algorithm for building a compatible
pivot set 4 ]. The method searches the matrix by rows according to the original ordering.
Smart and White [36] extend Calahan’s original method by placing a Markowitz cost
criterion on the pivots in S, and they search the nonzeros in order of increasing cost. As
in Calahan’s method, their search algorithm is sequential, and no numerical accuracy
criterion is placed on the pivots. Wing and Huang 38 present a fine-grain task graph
for scheduling unsymmetric factorization. They assume that the matrix is already ordered,
and they do not consider ordering for fill-in, accuracy, or finding the shortest task graph.
Yang 39 proposes a modified Markowitz cost function for use in a conventional sparse
factorization algorithm in order to produce a parallel ordering for the factorization of a
second matrix with the same pattern as the first. Parallelism is not exploited in the first
factorization. Finally, PSolve is a medium-grain parallel algorithm that computes a fac-
torization LpU with pairwise reductions, in which a single row is used to reduce a single
nonzero in another row, and where Lp is a product of pairwise operators [7].
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Previous algorithms that use an unsymmetric ordering either do not consider the
pivot search at all, or use a sequential pivot search to build a compatible pivot set for
subsequent parallel reduction. The exception is PSolve, which can have numerical ac-
curacy problems for some matrices, and also requires a good column preordering to
reduce fill-in (such as that used by Sparspak-C). The next section presents a new parallel
algorithm based on an unsymmetric ordering for the direct solution of general unsym-
metric sparse systems of linear equations. The motivation behind the algorithm is to
exploit more parallelism for matrices with highly asymmetric nonzero pattern than is
possible with a symmetric ordering, and to exploit parallelism in all phases ofthe algorithm
(including the pivot search itself). In addition, the algorithm should provide as accurate
a solution as an accurate, sequential code, such as MA28 [15]. The algorithm should
also generate LU factors with as little fill-in and memory usage as possible.

3. D2, a nondeterministic parallel algorithm for general unsymmetric sparse ma-
trices. The algorithm D2 is based on a new nondeterministic parallel pivot search heuristic
that finds a compatible pivot set S ofsize m, followed by a parallel rank-m update. These
two steps alternate until switching to dense matrix code or until the matrix is factored.
The algorithm is based on a shared-memory multiprocessing model and takes advantage
of both concurrency and (gather-scatter) vectorization. Between each phase of the al-
gorithm (initializations, pivot search, rank-m update, switch to dense matrix code, update
ofpivot search data structure, garbage collection, and forward and backward substitution)
is a barrier synchronization point, and parallelism is exploited within the phases. The
pivot search heuristic described below finds the first pivot set of size three for the coun-
terexample matrix shown in Fig. 2. The data structures underlying the algorithm are first
described, followed by a description of each phase of the algorithm. The pivot search
phase is also demonstrated with an example.

3.1. Data structures. Three one-dimensional arrays hold the initial matrix as a set
of unordered triples (numerical value of aii, row index of aij, and column index j of
aij) with one triple for each nonzero in the matrix. Additional space is provided at the
end of the three arrays for space to hold Ak, L, and U during factorization, since fill-in
causes the number of nonzeros to increase. The initial matrix is sorted and stored into
two data structures: a row-oriented data structure containing the nonzero numerical
values and pattern on a row-by-row basis, and (2) a column-oriented data structure
representing only the nonzero pattern of the matrix on a column-by-column basis. The
pattern of the matrix is stored in both formats, since the parallel pivot search phase
accesses it by both rows and by columns. Other sparse matrix codes such as MA28 also
maintain the pattern of matrix in both forms during the factorization.

In the row-oriented data structure, each row ofAk is represented as a doubly linked
list of blocks, where each row block holds up to 32 column indices and nonzero values
(equal to the Alliant FX/8 vector register length). A block link list structure was chosen
to simplify memory allocation and garbage collection. As the algorithm progresses, fill-
ins cause the rows to grow in length, increasing the amount of memory required to store
them. A common method (used by MA28) is to store each row in a contiguous region
of memory just large enough to hold it. If a row exceeds its allotment, the entire row is
moved to a new region large enough to hold it. In a parallel algorithm, multiple processors
are competing for access to the memory allocation mechanism, which can become a
serial bottleneck. In addition, garbage collection is a more costly operation in a parallel
algorithm than it is in a sequential algorithm. Rather than copying the entire row, the
block link list structure allows a processor to allocate only a small additional amount of
memory (one block, for example), and link it onto the end of the row. The original
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space used by the row does not become garbage. It is still in use. Reducing the amount
of garbage reduces the amount of garbage collection required by the algorithm. The
column-oriented data structure is similar to the row-oriented structure, except that no
numerical values are stored in the blocks; the data structure holds only the pattern of
the matrix during factorization. The L and U factors are stored in the more conventional
sparse matrix format similar to that used by MA28, with each row of U (or column of
L) residing in a contiguous chunk ofmemory oflength equal to the number ofnonzeros
in the row of U (or column of L).

Vector computers exploit a pipelined architecture to achieve high performance when
computing a sequence of common operations on an entire stream of data (a vector
operation). Many vector computers employ fixed-length vector registers which can be
operated on by a single vector instruction, and vector operations of length greater than
the vector register length are done with multiple vector instructions. The performance
of a vector operation equal to the computer’s vector register length is typically close to
the peak performance of that operation, since it can be handled by a single vector in-
struction. This leads to a natural choice for the size of the block in the block link list
data structure used to hold the rows and columns of Ak. A block size equal to the
computer’s vector register length was selected as a reasonable trade-off between perfor-
mance and the amount of internal fragmentation (memory wasted due to the mismatch
between the row length and the fixed block length). The best block size for a scalar
computer depends on the relative trade-offs between memory and run time. A large block
size (32, for example) results in higher internal fragmentation and fewer links to follow
during the scan of a row or column than a small block size (eight, for example). The
other extreme is a block size of one, which is used in SPICE [33] and results in no
fragmentation but many links to traverse during the scan ofa row or column. A structure
with a small block size also requires more memory to store the links.

Finally, in order to assist the pivot search phase, a data structure of size O(n) is
maintained that records the ordering of the rows, from shortest to longest. Other O(n)
data structures include work spaces for each processor and permutation vectors that hold
the current row and column permutation matrices P and Q.

3.2. Pivot search. The nondeterministic parallel pivot search constructs a com-
patible pivot set S at stage k from the current Ak- for a subsequent sparse rank-rn update
that computes Ak + i. First, a single numerically acceptable pivot with lowest Markowitz
cost (MinCost) in the four shortest rows is found and added as the first pivot in S (a
pivot is numerically acceptable if it meets the row-oriented threshold pivoting criterion
listed in )). All rows with nonzeros in the pivot column and all columns with nonzeros
in the pivot row are then marked. No other pivots can come from marked rows or
columns, since those rows and columns will be updated by the reduction associated with
this pivot. This sequential step is based on the method used in Y12M 42 ]. Once MinCost
is found, the parallel nondeterministic search can begin. Each partially independent task
searches a single unmarked row for the nonzero with lowest cost in the row (among those
nonzeros that are numerically acceptable). Nonzeros in marked columns are ignored.
The task is skipped if the row itself is marked. The search algorithm never backtracks
by removing a pivot from S once it has been added. Therefore, the tasks are executed
roughly in order of increasing row length as an additional heuristic to keep fill-in low by
searching first in rows likely to hold low-cost pivots.

If the nonzero with lowest Markowitz cost in the row (among the numerically
acceptable nonzeros in unmarked columns) has cost =< Factor. MinCost, then this is a
potential pivot, where Factor is a user-selectable parameter (typically two to eight). At



PARALLEL NONDETERMINISTIC SPARSE LU FACTORIZATION 391

this point, however, two (or more) tasks could have found potential pivots that are
compatible with the current set but incompatible with each other. Only one can be added
to S. A sequential search algorithm would add either the first pivot it found, or it would
add the lower cost of the two. The second option would require that all the pivots be
searched in order of increasing cost, an approach taken by Smart and White [36]. Since
finding the single lowest cost pivot can sometimes lead to searching the entire matrix
[41 ], this can be a costly approach. The first option is simpler, and it also implies that
either pivot is acceptable, Since the first one found is the one selected. The first option
also leads naturally to a fast parallel search. Since either pivot is acceptable, the parallel
algorithm should have the freedom to include in S whichever pivot it came across first.
This is a "greedy" approach which emphasizes speed, as opposed to other possible ap-
proaches that could include elaborate schemes to find more optimal pivot sets. Such
elaborate schemes would require additional interaction and synchronization among the
processors taking part in the search. For example, two tasks that simultaneously found
potential pivots that are incompatible with each other would have to coordinate between
themselves in order to select the best pivot according to some higher-level heuristic, such
as selecting from the two the pivot with lower cost.

On a MIMD computer with asynchronous processors, which processor found its
pivot first depends on variables beyond the scope of the algorithm, such as memory-
bank conflict, page faults, cache behavior, etc. Restricting the asynchronous behavior of
a parallel computer requires additional synchronization overhead, while an algorithmic
paradigm that allows for asynchronous behavior can lead to an algorithm with low syn-
chronization overhead. Rather than strictly forcing the parallel algorithm to mimic the
behavior ofa sequential algorithm, the following search algorithm allows for asynchronous
behavior and maps well to the underlying architecture.

Each task that finds a potential pivot attempts to lock the pivot set by entering a
critical section guarded by a single lock implemented with an atomic test-and-set instruc-
tion. While attempting to enter the critical section, the task continually rechecks to see
if the row and column of its potential pivot are still unmarked. If it becomes marked,
the task abandons the attempt at entering the critical section. Once the task gains exclusive
access to the critical section, it rechecks its potential pivot one last time. If the task finds
the row and column of its potential pivot unmarked, it adds the pivot to S, marks all
rows with nonzeros in the pivot column and all columns with nonzeros in the pivot row,
allocates space for the pivot row and column in U and L, and updates the row and
column permutations (P and Q). The pivot set S is then unlocked, and the successful
task stores the pivot row in U, stores the pattern of the pivot column in L, and searches
a new unmarked row. If instead the task finds the row or column of its potential pivot
marked, it abandons its choice and does not add its pivot to S. The work inside the
critical section is O(pivot row length + pivot column length) if the task is successful, or
O( if it is not. If the task was unsuccessful and the row it is searching is marked, it
abandons the row and searches another. Otherwise, if only the column of its previous
potential pivot was marked, another potential pivot might exist in the same (unmarked)
row in a different (unmarked) column. The task rescans the row and tries again. When
the row is exhausted it is abandoned and a new unmarked row is searched (the exhausted
row is either marked by another task, or there are no numerically acceptable nonzeros
in the row that are in unmarked columns and that have acceptable cost).

The pivot search algorithm is demonstrated in Figs. 3 through 6 with an example
highlighting some of the possible interactions between two processors. Two processors
build a pivot set S in a 10-by-10 sparse matrix, and a time-line dialog is shown in Fig.
3. An attempt to access the critical section is shown as a shaded box, and this is sometimes
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Processor p Processor P2

find pivot all [2] wait for parallel search to begin
mark rows 1, 8, 9
mark columns 1, 6
Markowitz cost bound: 2 to 6

parallel search begins (see Figure 4)
get row 2 get row 3
element a26 10] marked a37 [2] lowest cost, but unstable
element a2816] and a2416] ok find potential pivot a33 [4]
find potential pivot a24 [6]

i add a33 [4] to pivot set S
| mark rows 3, 5, 10

.mark columns 3, 4, 7

column 4 is marked! I store row 3 in U
| store column 3 in L

rescan row 2, since it is unmarked
find potential pivot a25 [6] get row 4

!:.:.::::::.:..::.:...:::;:.:}! all elements okL:, ... .:..ii_..:.. find potential pivot a45 [4]

add a28 [6] to pivot set S
mark rows 2, 4, 8, 10

_
I liicheck row 4 and column 5

row 4 marked! abandon attemptmark columns 4, 6, 8
III

store row 2 in U
store column 8 in L
get row 7 (see Figure 5)
element a7219] too costly
all other elements marked
abandon row 7
skip rows 8, 9, 10 (marked)

pivot search complete
(see Figure 6)

abandon row 4
skip row 5 (already marked)

get row 6
find potential pivot a69 [6]

add a69 [6] to pivot set S
mark rows 4, 6, 9, 10
mark columns 6, 9, 10

store row 6 in U
store column 9 in L

FIG. 3. Pivot search example: time-line dialog.

followed by a thick-edged box drawn around the access to the critical section itself. An
arrow represents a conflict (when one processor marks the potential pivot of the other).
There are many conflicts and there is little parallelism evident in this small example; a
larger matrix typically exhibits more parallelism. The rows ofthe matrices shown in Figs.
4 and 5 are ordered by increasing the number of nonzeros from top to bottom.

At time to, processor p finds the first pivot a with a Markowitz cost of two (the
Markowitz cost ofeach nonzero discussed in Fig. 3 is shown in brackets). Because Factor



FIG. 4. Pivot search example: finding thefirst three pivots.
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FIG. 5. Pivot search example: finding the last pivot.

S

FIG. 6. Pivot search example: after the rank-.:ur update.
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is three for this example, nonzeros with cost greater than six are not allowed in the set.
The appropriate rows and columns are marked, and the parallel search begins at time tl
(see the matrix in Fig. 4). Processor p finds a potential pivot a24 with cost six (time t2),
while processor P2 finds a potential pivot a33 with cost four (numerical values are not
shown, but in this example processor P2 cannot select a37, since it does not meet the
threshold pivoting criterion). Both potential pivots are compatible with the current set
but incompatible with each other because a34 is nonzero. Processor P2 happens to get to
the critical section first and marks column four, thereby marking the potential pivot of
the other processor (time t2 to t3). Processor p detects this within its critical section and
must abandon its choice, but it can look for another potential pivot in the same row,
since the row itself is not marked. It finds potential pivot a28 and adds it to the set (time
t3 to t4). Meanwhile, processor P2 has located another potential pivot, a45. Unfortunately
for processor P2, the previous pivot a28 has marked its choice; it detects this while it is
attempting to enter the critical section and abandons a45 before it enters the critical
section.

At time ts, each processor picks up a new row, and the state of the matrix is shown
in Fig. 5. Row five is skipped because it has been marked. Processor p finds only one
unmarked nonzero, ate_, but its Markowitz cost is too high. Processor P2 finds potential
pivot a69 and adds it to the set. The search is complete because rows eight, nine, and ten
have been marked. The final pivot set is permuted to the diagonal and the matrix is now
ready for a sparse rank-four update, as shown in Fig. 6. The rows and columns updated
are ordered according to when they were first marked. A box is drawn around the region
updated by the pivot set, and fill-ins are striped. Any nonzeros in the box in the lower
fight-hand corner are compatible with the current set, but they were disallowed due to
one or both of the other two criteria (threshold pivoting and Markowitz cost).

3.3. Sparse rank-m update. The rank-m update is divided into two major phases,
each consisting of a set of completely independent tasks. The first phase is a symbolic
update of the column-oriented data structure holding only the pattern of Ak / m- on a
column-by-column basis. The second phase is a numerical and symbolic update of the
row-oriented data structure holding both the pattern and the nonzero values of
Ak + m- on a row-by-row basis. In both phases, the algorithm takes advantage ofmedium-
grain parallelism, rather than the large-grained parallelism ofm rank-one updates. Instead,
the update is divided into tasks for each row and column of Ak / m- that is updated by
S. This allows the update to proceed without synchronization, since multiple updates to
the same element are handled in a single task. The rank-m update is divided into two
separate parallel phases so that nonzeros whose absolute values fall below a drop tolerance
[42] can be removed in parallel. However, the use of a drop tolerance does not improve
the speed of the code for most problems, since it complicates the parallelism in the
rank-m update. The experimental results summarized in 4 were taken without using
a drop tolerance. At this point, all rows and columns of Ak / m- are unmarked, stage
k + m is finished, and stage k + m is ready to begin (k -- k + m).

3.4. Switch to dense matrix code. The switch to dense matrix code is controlled by
two user-selectable parameters, SwPiv and SwDen (4 and 20 percent for this paper).
The switch takes place if the size of the latest pivot set is less than or equal to SwPiv, if
the density ofA (number of nonzeros in Ak over (n k)2) is greater than SwDen, and
if there is enough room to convert A into an (n k)-by-(n k) dense array. The pivot
set size is a rough measure of the amount of parallelism due to sparsity the algorithm is
finding during the factorization. As the parallelism drops, the matrix is becoming dense,
and it becomes more economical to factor the rest of the matrix as a dense matrix. If
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the factorization is not yet complete, the algorithm then updates the pivot search data
structure for the next parallel pivot search. The pivot search, rank-m update, and the test
for switch to dense matrix code repeat until the matrix is factored. Garbage collection is
performed as needed at the barrier synchronization points between the phases of the
algorithm.

4. Experimental comparisons with previous methods. A series of experiments are
summarized below to determine ifthe design criteria for the new algorithm, D2, are met.
The algorithm should exploit more parallelism than methods using symmetric orderings
for matrices with highly asymmetric nonzero patterns; it should exploit similar parallelism
for matrices with symmetric patterns. The algorithm should compute an accurate solution
and should generate LU factors with as little fill-in as possible.

4.1. Experimental design. Forty unsymmetric matrices with order between 500
and 5005 were selected from the Harwell/Boeing sparse matrix test collection [14 with
varying degrees of asymmetry. The asymmetry of a matrix is the number of unmatched
off-diagonal nonzeros over the total number of off-diagonal nonzeros. An unmatched
nonzero is one for which a! is nonzero but for which a)i is zero (for :/: j). The matrices
divide into three groups according to their asymmetry: 12 matrices in group one with
symmetric or nearly symmetric patterns (asymmetry < 0.1 ), 17 matrices in group two
with 0.1 =< asymmetry -< 0.5, and 11 matrices in group three with highly asymmetric
patterns (asymmetry > 0.5). Most of the results are from an Alliant FX/8 (running
Xylem) with eight processors, 48 megabytes of main memory, 128 kilobytes of cache
memory, and a peak performance of over 90 megaflops. The Xylem operating system
sets aside 16 megabytes of main memory to simulate Cedar global memory 27 ], so each
program uses only 32 megabytes. Each code was compiled with the Alliant FORTRAN
compiler, FX/FORTRAN (version 3.1.33). A second set of experiments are from an
Alliant VFX/80 (running the standard operating system) with eight processors, 192
megabytes of main memory, 512 kilobytes of cache memory, and a peak performance
of 188 megaflops.

The performance of the D2 algorithm is compared with that of MA28, Y12M,
Sparspak-C, and MA37. The reordering to lower block triangular form is disabled in
MA28 to make a consistent comparison with the other algorithms, although this can
improve the results for reducible matrices. In addition, MA28 uses its original pivot
search method, rather than the faster search originally used in Y12M and later incor-
porated into MA28. The Y12M code has been partially optimized by Zlatev for vector-
ization and concurrency on the Alliant FX/8. Ng provided both a parallel and a sequential
version of Sparspak-C, but because the parallel version runs only on a Sequent multi-
processor, only the sequential version is tested on the Alliant. Rows with 50 or more
nonzeros are removed from A before forming ATA in the ordering phase of Sparspak-C.
The experimental version of MA37 uses the Level 3 BLAS 10] for the computations
within the dense frontal matrices. The threshold for pivoting decisions (u) in MA28,
Y12M, and D2 is 0.1, while the parameter is 0.001 for MA37 because it scales the matrix
before factorization to improve numerical accuracy. First, MC 19 [5] is applied to the
matrix, which attempts to reduce the distance between the smallest and largest nonzero
absolute values. Then the rows and columns are divided by the maximum absolute values
in each row and column, respectively. The Factor parameter used for D2 is four; potential
pivots with Markowitz cost greater than four times the lowest cost pivot in the compatible
pivot set are excluded. D2 uses the same scaling when it is compared with MA37.

4.2. Experimental results. The Y12M algorithm typically finds the most accurate
solution as compared with MA28, Sparspak-C, and D2 (without scaling), but all ofthem



396 T. A. DAVIS AND P.-C. YEW

find an acceptable solution (if more than one potential pivot have the same Markowitz
cost and meet the threshold pivoting requirement, Y12M chooses the nonzero with the
largest absolute value, which leads to better numerical accuracy). However, MA37 (with
scaling) does much better for a few poorly scaled matrices in the test set. The D2 algorithm
gets nearly the same accuracy when it solves the same scaled system as MA37. Codes
such as MA28 and Y12M need not relax the Markowitz constraint as D2 does to find a
parallel set, so they tend to find an LU factorization with fewer nonzeros. MA28 typically
returns 90 percent of the number of nonzeros in L + U as D2 (when D2 does not switch
to dense matrix code); the ratio drops to 60 percent when D2 does switch. For matrices
in group one or two, Sparspak-C and MA37 are comparable to MA28, and typically find
an LU factorization with 40 to 70 percent of the number of nonzeros as D2 (with switch
to dense). However, the comparison reverses for the highly asymmetric matrices in group
three, as shown in Table 1, when D2 computes a factorization with much less fill-in than
Sparspak-C or MA37 (including the nonzeros introduced in the switch to dense matrix
code). The decrease in fill-in is not reflected in a decrease in memory usage. Sparspak-C
typically usually uses half the memory required by D2, which points to internal frag-
mentation in D2’s block link list data structure.

One way of measuring the potential parallelism that the various parallel algorithms
might be able to exploit is to compare the height of the elimination trees built by each
algorithm. The comparison has the advantage of being constant across different archi-
tectures, since the elimination tree height represents a lower bound on the completion
time on a hypothetical parallel machine with an unlimited number ofprocessors, assuming
that each node of the tree requires unit time to execute. Elimination tree height is an
incomplete measure of potential parallelism, because the unit-time assumption is false,
and because the work for a single node can be done in parallel. But in general, a shorter
elimination tree should allow for more parallelism. Reducing the elimination tree height
is the goal of Liu’s elimination tree rotations, for example. Also, D2 does not actually
create an elimination tree, since doing so would require the symmetric-order assumption
made in the analysis phases of the other parallel algorithms under consideration (MA37
and Sparspak-C). However, D2 produces a sequence ofcompatible pivot sets, the number
of which is roughly comparable to the height of an elimination tree and is referred to as
the elimination tree height for the D2 algorithm. This correlation is made only if D2
does not switch to a dense matrix code.

Figures 7, 8, and 9 display the ratio of the tree height for Sparspak-C (with both
minimum degree and nested dissection) and MA37 (with minimum degree and no amal-
gamation) over the tree height found by D2. The relative tree height is plotted versus
matrix asymmetry; each point represents a single matrix. Although the matrices come
from a wide range of problems in science and engineering, a loose correlation can be
seen in each graph between the relative tree height and the asymmetry. The median tree
height ratio is listed for each group of test matrices. As measured by elimination tree
height, D2 displays a comparable amount of potential parallelism for matrices whose
nonzero pattern is symmetric or nearly so, and much more parallelism for matrices with
highly asymmetric nonzero pattern.

TABLE
Relative number ofnonzeros in L + Ufor highly asymmetric matrices.

Number of nonzeros as compared with D2 Minimum Median Maximum

Sparspak-C (with minimum degree)
MA37 (with some node amalgamation)

0.64 1.10 1.66
1.00 2.65 3.15
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FIG. 7. Sparspak-C (nested dissection) relative tree height versus asymmetry.
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FIG. 8. Sparspak-C (minimum degree) relative tree height versus asymmetry.
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FIG. 9. MA37 relative tree height versus asymmetry.
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Table 2 presents a summary of the relative run time on the Alliant FX/8. It lists
the minimum, median, and maximum of the ratio of the run time of MA28, Y12M,
and Sparspak-C over the run time of D2 (the run time includes everything from storing
the matrix into the internal data structure to computing the final solution). The Spars-
pak-C algorithm was written on a multiprocessor without vector hardware, so D2 and
Sparspak-C are compared on a single processor using only the scalar floating-point arith-
metic (the PARALIN dense matrix code [26] normally used in D2 was replaced with
LINPACK [9] compiled with the vector optimizer turned off). The sequential version of
the D2 algorithm is nearly identical to the parallel version, except that all calls to the
low-level synchronization routines are removed. The sequential version still creates a
compatible pivot set S of size rn and then performs a rank-m update. MA28 was actually
compiled with both the vector and concurrency optimizers turned on, since the code
does gain a slight benefit from running on eight processors with automatic detection of
concurrent loops. Codes with dynamic memory allocation are given enough memory so
that garbage collection does not occur (including D2). The first section compares the
performance of each code on a single processor. The second section lists the parallel
performance of Y12M with respect to D2, the overall speedup of D2, and the speedup
of D2’s pivot search. D2 gets a speedup in the pivot search phase that is nearly equal to
the overall speedup of the algorithm. Y12M gets a speedup of about two in its search for
a single pivot and in its rank-one update (the speedup is the run time of the sequential
version of an algorithm over the run time ofthe parallel version of the same algorithm).

The D2 algorithm is not only a good parallel code (with both good potential par-
allelism (elimination tree height) and fast run time on an Alliant FX/8), it is also a
competitive sequential algorithm. Sparspak-C is a faster algorithm for matrices with
symmetric patterns, but D2 is much faster for highly asymmetric matrices. There are
two explanations for the performance ofthe sequential version of D2. First, it is the only
algorithm under comparison which incorporates a switch to dense matrix code. Second,
the structure of the computations in the rank-m update can allow it to outperform a
sequence of rn rank-one updates by reducing gather-scatter indirection.

Finally, Fig. 10 summarizes the experimental results on eight processors of the
Alliant VFX/80. The unsymmetric multifrontal algorithm, MA37, divides into a symbolic
analysis phase followed by a numerical factorization phase. Normally the time for nu-
merical factorization is dominant, but the numerical factorization phase has been highly

TABLE 2
Relative run time on the Alliant FX/8.

Minimum Median Maximum

Comparisons on a single processor:
MA28 (original version) vs. D2 (vec.)
Y 12M (optimized on FX/8) vs. D2 (vec.)
Sparspak-C (min. degree, no vec.) vs. D2 (no vec.)

asymmetry < 0.1
0.1 =< asymmetry _-< 0.5

asymmetry > 0.5

1.2 4.3 13.7
0.52 1.9 8.9

0.32 0.72 3.1
0.25 1.2 3.1
1.3 3.9 21.0

Comparisons on eight processors:
Y12M (vec., 8 proc.) vs. D2 (vec., 8 proc.)
D2 (vec., proc.) vs. D2 (vec., 8 proc.)

overall
pivot search only

0.93 3.6 16.0

1.3 3.9 7.2
1.8 3.5 6.3
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MA37 relative tree height

FIG. 10. MA37 relativefactor time versus MA37 relative tree height.

optimized on a range of parallel vector computers, while the analysis phase has not. As
a result, the run time of the analysis phase of MA37 is about three times that of the
numerical factorization. If the pivot search and the update ofthe pivot search data struc-
tures are considered the "analysis" phase of the D2 algorithm (and the rank-m update
the "numerical factorization" ), then the analysis phase of D2 takes about one third the
time of the numerical factorization. The key contribution of D2 is a fast parallel pivot
search, which makes it difficult to compare it with another code (MA37) whose key
contribution is a fast numerical factorization. However, the ratio ofthe MA37 numerical
factorization time (with node amalgamation) over the D2 factor time (with switch to
dense) is plotted in Fig. 10 as a function of the relative tree height (the tree height found
by MA37 over the tree height found by D2). Elimination tree height gives only an
incomplete measure of the potential parallelism due to sparsity, but the graph shows an
intriguing correlation. D2 is faster when it finds a tree height less than half that ofMA37,
and usually slower otherwise.

5. Summary. The solution of a sparse system of linear equations, Ax b, was
introduced in 1, along with the symmetric and unsymmetric ordering schemes that
underlie the detection of parallelism due to sparsity as discussed in 2. A six-by-six
counterexample matrix highlighted the difficulty that symmetric ordering methods have
for matrices with highly asymmetric nonzero patterns. Previous methods based on un-
symmetric orderings do not take significant advantage of parallelism in the pivot search
phase. The exception is PSolve, which can have numerical accuracy problems for some
matrices and can also experience high fill-in. This was the motivation for the new algo-
rithm, D2, presented in 3. The algorithm is based on a new nondeterministic parallel
pivot search that constructs a large compatible pivot set to allow for parallelism in the
reduction phase. The asynchronous behavior of the pivot search maps well to the un-
derlying shared-memory architecture with multiple, asynchronous processors. The ex-
perimental results presented in 4 confirm the initial hypothesis that the D2 algorithm
should outperform methods using a symmetric ordering when solving matrices with
highly asymmetric nonzero patterns. The algorithm has comparable fill-in and numerical
accuracy with MA28, although its memory usage can be high because of internal frag-
mentation in its block link list data structure. It finds a much shorter tree for highly
asymmetric matrices, as compared with Sparspak-C and MA37, and is often faster for
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these matrices. Further implementation details and experimental results on an Alliant
FX/8, a Cray-2, and a Cray-XMP/48 are presented in [6].

6. Future work. There is much room for improvement in the new approach dis-
cussed in this paper. Currently, the parallel search phase finds the pivot set and completes
before the rank-m update begins. It would also be possible to pipeline the pivot search
and update phase. The algorithm would create a dynamic sequence of parallel pivots
which would be compatible only with those pivots which are also currently being processed.
Also, the first pivot in the pivot set S is found with a sequential search, but it is also
possible to use parallelism in this search, as was done by Zlatev and his parallel version
ofY 12M. Rather than creating a diagonal pivot set, another easily invertible pivot matrix
could also be used (such as a triangular matrix).

Can some of the ideas of the clique tree and clique graph methods be used in the
unsymmetric case, without resorting to forcing a symmetric pattern on the matrix during
the analysis phase? When the reductions associated with a pivot are performed on a
symmetric matrix, the result is a clique between all former neighbors ofthat node in the
undirected elimination graph. For an unsymmetric matrix, the result is a small dense
submatrix in the reduced Ak. As the factorization progresses, such dense submatrices are
formed for each previous pivot, and the dense submatrices for some pivots would subsume
those of other pivots; the corresponding effect in symmetric matrices is the maximal
clique. It might be possible to take advantage of this structure in order to reduce the
parallel pivot search, and to take better advantage of the architecture of typical vector
computers with the use of dense matrix kernels.

The nondeterministic parallel pivot search requires a single critical section to add
the individual pivots in the pivot set S, which will be a problem with higher numbers of
processors. The single critical section could be replaced with a software combining tree,
in which each processor is associated with a leaf of the tree. A potential pivot would be
entered on a leaf of the tree, and would combine with other potential pivots at internal
nodes to form compatible pivot subsets. The root node would represent the final com-
patible pivot set S. The combining tree scheme could result in more effective parallelism
in the pivot search and maps to a message-passing or distributed-memory multiprocessor.
For more details, see [6].
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Abstract. A class of preconditioners for elliptic problems built on ideas borrowed from the digital filtering
theory and implemented on a multilevel grid structure is presented. These preconditioners are designed to be
both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows for the use of filter
design techniques for constructing elliptic preconditioners and also provides an alternative framework for un-
derstanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess
the convergence behavior of the new methods and to compare them with other preconditioners of multilevel
type, including the usual multigrid method as preconditioner, the hierarchical basis method, and a recent
method proposed by Bramble-Pasciak-Xu.

Key words, filtering, multigrid, multilevel, parallel computation, preconditioned conjugate gradient, pre-
conditioners
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1. Introduction. Preconditioned conjugate gradient (PCG) methods have been a
very popular and successful class ofmethods for solving large systems ofequations arising
from discretizations of elliptic partial differential equations. With the advent of parallel
computers in recent years, there has been increased research into effectively implementing
these methods on various parallel architectures. In this paper, we present a class of pre-
conditioners for elliptic problems built on ideas from the digital filtering theory and
implemented on a multilevel grid structure. Our goal is to work towards preconditioners
that are both highly parellelizable and rapidly convergent.

The idea of preconditioning is a simple one, but it is now recognized as critical to
the effectiveness ofPCG methods. Suppose we would like to solve the symmetric positive
definite linear system Ax b, where A arises from discretizing a second-order self-adjoint
elliptic partial differential operator. A good preconditioner for A is a matrix M that
approximates A well (in the sense that the spectrum for the preconditioned matrix M-A
is clustered around and has a small condition number), and for which the matrix
vector product M-Iv can be computed efficiently for a given vector v. With such a
preconditioner, one then solves in principle the preconditioned system .3Y , where, M-I/2AM-1/2, . ml/2x and M-/2b, by the conjugate gradient method.

Since an effective preconditioner plays a critical role in PCG methods, many classical
preconditioners have been proposed and studied, especially for second-order elliptic
problems. Among these are the Jacobi preconditioner (diagonal scaling), the symmetric
successive overrelaxation (SSOR) preconditioner [3], and the incomplete factorization
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preconditioners (ILU [25] and MILU [15]). These preconditioners have been very suc-
cessful, especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often the
parallelization ofthe preconditioner, since the rest ofthe PCG methods can be parallelized
in a straightforward way (the only potential bottleneck is the need for innerproducts,
but many parallel computers do support fast inner-product evaluations). Unfortunately,
previous works [12], [16] have shown that for many of the classical preconditioners,
there is a fundamental trade-off in the ease ofparallelization and the rate ofconvergence.
A principal obstacle to parallelization is the sequential manner in which many precon-
ditioners traverse the computational gridthe data dependence implicitly prescribed by
the method fundamentally limits the amount of parallelism available. Reordering the
grid traversal (e.g., from natural to red-black ordering) or inventing new methods (e.g.,
polynomial preconditioners 2 ], 19 to improve parallelization usually has an adverse
effect on the rate of convergence 12 ], 23 ].

The fundamental difficulty can be traced to the global dependence of elliptic prob-
lems. An effective preconditioner must account for the global coupling inherent in the
original elliptic problem. Preconditioners that use purely local information (such as red-
black orderings and polynomial preconditioners) are fundamentally limited in their ability
to improve the convergence rate. On the other hand, global coupling through a natural
ordering grid traversal is not highly parallelizable. The fundamental challenge is therefore
to construct preconditioners that maintain global coupling and are highly parallelizable.
Ideas along this line have ofcourse been explored in the development ofmultigrid methods
as solution 10 ], 17 as well as preconditioning techniques 20 ], 21 ], and the more
recently proposed hierarchical basis preconditioner 8 ], 29 ].

We are thus led to the consideration of preconditioners that share global information
through a multilevel grid structure (ensuring a good convergence rate) but perform only
local operations on each grid level (and hence highly parallelizable). Compared with a
purely multigrid iteration, we have more flexibility in terms of the choice of inter- and
intragrid level operators (such as interpolation, projection, and smoothing), since we are
using the multilevel iteration within an outer conjugate gradient iteration. One precon-
ditioner of this type has been proposed recently by Bramble, Pasciak, and Xu [9] and
Xu 28]. The methods that we propose in this paper are quite similar to their precon-
ditioner, and our digital filtering framework can be looked at as providing an alternative
view oftheir method. It also allows the flexibility in deriving several variants. The approach
taken in this paper and that of Bramble, Pasciak, and Xu differs from that of multigrid
methods in that the smoothing operation in multigrid methods is replaced by a simple
scaling operation. Other types of multilevel preconditioners have been studied by Vas-
silevski 27 ], Axelsson and Vassilevski 6 ], 7 ], Kuznetsov 24 and Axelsson 4 ].

The outline ofthe paper is as follows. In 2, we describe our framework for deriving
multilevel filtering preconditioners for a model problem on a single discretization grid.
The basic framework is then extended to the multigrid discretization case in 3. In 4,
we briefly survey several other preconditioners of the multilevel type. Numerical results
for (model, variable coefficient, and discontinuous coefficient) problems in two and three
dimensions are presented in 5, comparing the performance of several multilevel pre-
conditioners, including the usual multigrid method as a preconditioner, the hierarchical
basis preconditioner, and the method of Bramble-Pasciak-Xu. Some brief concluding
remarks are given in 6.

We note that the main emphasis ofthe present paper is on the convergence behavior
ofthese multilevel preconditionersno attempt is made to assess their parallel efficiency.
That will be the subject of a forthcoming paper.
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2. Multilevel filtering preconditioners: Fundamentals.
2.1. Motivation. Consider the one-dimensional discrete Poisson equation on

[0, 1] with zero boundary conditions on a uniform grid fh,

(2.1) 1-E- un=f, n =1,...,N-I,

where N h- 2 L, with integer L > 1, and E is the shift operator on 2h. We denote
the above system by

Au =f,

where A, u, and f correspond, respectively, to the discrete Laplacian, solution, and
forcing functions. Clearly, A is a tridiagonal matrix with diagonal elements -1/2, and-. It is well known that the matrix A can be diagonalized as

(2.2) A WTAAW,
where AA is a diagonal matrix

diag (X, , Xu- ), cos (kh),

and W is an order (N- )2 ohogonal matrix whose kth row is

(2.3) w= (sin (kh), sin (knh), sin (k(N- 1)h)).

The diagonalization of the matrix A can be intereted as the decomposition of the
driving and solution functions into their Fourier components, i.e.,

a u sin (knh), sin (knh),
n=l n=l

k= 1,2, ,N-1.

One can easily verify that and are related via

A(I=, = ,, ,- ,
where

(2.4) (k)= Xk cos (krh),

is known as the spectrum of the discrete Laplacian.
In order to invert A, we can make use of (2.2) and obtain a fast Poisson solver:

(2.5) A-l WrAS W.

The above procedure also serves as the general framework for fast Poisson solvers in
cases of higher dimension. However, fast Poisson solvers are not generally applicable for
nonseparable elliptic operators and irregular domains. Instead, we want to find good
approximations to this solution procedure that are extensible to more general problems
and then use them as preconditioners. The fundamental idea is to avoid the use of fast
Fourier transform (FFT) and to use instead a sequence of filtering operations to ap-
proximate the desired spectral decomposition. This explains the motivation and the name
of the multilevel filtering (MF) preconditioner proposed in this paper.

Our main idea for deriving the MF preconditioner for A is to divide all admissible
wavenumbers into bands and to approximate the spectrum 4(k) at each band with some
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constant. To be more precise, consider the following piecewise constant function in the
wavenumber domain

where

P(k)=Cl, k-Bl, <=I<=L,

BI ={k:2/-<=k<2 and krI},
is the/th wavenumber band. Let Ae be the diagonal matrix with P(k) as the kth diagonal
element, i.e.,

Ae diag (P(1),P(2), ,P(N- )),

and P WTAeW. Then, the P-preconditioned Laplacian becomes

P-A WTAp-A W,
where

Ap_,A=(Ap)_IAA= diag(Xl 2 k3 21-1 21-1 kN-I)Cl C2 C2 Cl Cl CL

The question is how to choose appropriate Cl’S to reduce the condition number K(P-I A).
Suppose that we can find Cl’S so that

C1 k__ C2, ke Bt, L,
Cl

where CI and C2 are positive constants independent of h. Then, P and A are spectrally
equivalent. There are many ways to achieve this goal. For example, we can choose any
eigenvalue X within band Bl to be the constant ct. For the following discussion, let us
consider the choice,

(2.6) c/=4-- )

The ratio ofA(k) and (k) is then bounded by

4z- [1 cos (2-z+t-w)]-(k)A(k)<4z-t[1 cos (2-z+tr)],
for k Bl. The largest and smallest values of-(k)A(k) for k B are bounded. They
are, respectively,

2

Xmax (P-A)=maxfi-(k)A(k)< max 4-[1-cos(2-z+tr)]<,k llL

and

kmi (p-lA)=minP-(k)A(k)>= min 4L-/[1--COS(2-L+/-17r)]>_-- 1.
k I_I-<L

Note that the last inequalities in the equations above hold independent of L, or equiv-
alently, the grid size h. Thus, the condition number K of the preconditioned operator
P-A is bounded by a constant

r 2

r(p-IA) <-, 4.93.

We plot the spectra A(k), P-(k), and P-l(k)A(k) in Fig. 2.1 for N h- 256 with
cl defined in (2.6).
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FIG. 2.1. Spectra ofA, P- and P-A.

2.2. Decomposition and synthesis based on filtering. The preconditioning procedure

(2.7) p-lr= WTA,1Wr,
consists ofthree building blocks: decomposition, scaling, and synthesis. The construction
of these building blocks with ideal digital filters will be discussed in this section.

Let us rewrite (2.7) as

(2.8) P-r= WW r,
l= cl

where Wt, <= l <- L, are (N- )2 square matrices which have the same 2 t-1 to 2 t-

rows as Wand zero vectors for remaining rows. Ifwe implement l/Vt and Wr in decom-
position and synthesis respectively, FFT and inverse FFT are needed. This is due to the
fact that Wt is a mapping from the space domain to the wavenumber domain, whereas
Wf is a mapping from the wavenumber domain to the space domain. By perform-
ing P-r according to (2.8), we are led to an algorithm similar to the fast Poisson
solver (2.5).

Let Ft WfWt. Then, Ft is a mapping from the space domain to the space domain.
In addition, we have

F WrAF,W,
where AFt is a diagonal matrix whose kth element is

1, kBt
(k)=

O, otherwise.
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The spectral property of FI is characterized by l(k). A digital filter is a mapping from
the space domain to the space domain satisfying a certain spectral property. Since FI
passes Fourier components in band Bl and blocks components in other bands, it is called
a bandpass filter. We might perform the preconditioning (2.8) by implementing Fl’S
with digital filters in decomposition and a simple addition operation in synthesis. However,
the resulting scheme loses a certain symmetrical property in decomposition and synthesis.
This turns out to be important in the multigrid context (see 3).

This motivates us to write (2.7) in another form as

/=1

where bandpass filters F (= F]) are implemented in both decomposition and synthesis
building blocks. In the context of multirate signal processing [13 ], the separation of a
function into several components, each of which is confined to a narrow wavenumber
band, is known as the filter bank analyzer and the reverse process is the filter bank
synthesizer. Although there exist many ways to implement the filter bank analyzer and
synthesizer, a simple design illustrated by the block diagram of Fig. 2.2 will be sufficient
for our purpose. This design, called the single-grid multilevel filtering (SGMF) precon-
ditioner, is based on the cascade of a sequence of elementary filters H, H_ 1, H,
where the function ofH is to preserve Fourier components contained in bands Bl,
Bl- and to eliminate Fourier components contained in band B. In terms ofmathematics,
we define

(2.10a) Hi Wrikt,W,
where Am is a diagonal matrix with the kth element

1, k6B1U tO BI_
(2.10b) (k)=

0, kBl.

FIG. 2.2. Block diagram ofthe MF preconditioner with a single discretization grid SGMF).
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From Fig. 2.2, we see that the filters Ft are related to the filters Ht via

(2.1 la) FI=I-HI,

(2.11b) F=(I-H) 1-I H, 2<-_l<-L 1,
p=/+l

L

1-I

It is easy to verify that F’s satisfy the desired bandpass characteristics by pre- and post-
multiplying (2.11 with Wand Wr, respectively. Note also that the values of t(k) for
k e B+ U U B do not influence the bandpass feature of F’s. This observation
simplifies the design of H’s (see 2.3).

To save computational work, we can further simplify the SGMF preconditioner in
Fig. 2.2 by deleting the paths and the associated work corresponding to I- H. As given
in Fig. 2.3, we have the modified SGMF preconditioner

(2.12) Q-lr= -5-GGt r,
/=1

where

Gt I-i Hp, for <=I<=L 1.
p=l+l

Note that bandpass filters Ft in the preconditioner P have been replaced by lowpass filters
Gl in the preconditioner Q. By choosing dt’s appropriately, we can make Q behave the
same as P. With the preconditioner Q, Fourier components of band B exist in the first
L + levels and these components are multiplied by dZ l, ..., d7 l, respectively.
Therefore, the scaling constants dt’s are implicitly defined via

L

(2.13) Z di c!

Solving (2.13 for dt gives

(2.14) dL=cz and dl=c?l--c-tl I=L-1,’",I.

However, we observe from numerical experiments that the parameter sets { ct } and { dt}

r HL

FIG. 2.3. Block diagram ofthe modified SGMF preconditioner.
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used in Fig. 2.3 give about the same convergence rate. This can be explained by the
observation that, for small l, dl cl, since c- > c-+ .

2.3. Design of elementary filters. Consider the design of the filter H. appearing at
the first stage. The HE have the following ideal lowpass characteristic,

.(k)-{l’ 0_-<k<2-(2.15)
t 0, 2E-_-<k_-<2 E.

From (2.10), we find that HE is an (N- )2 full matrix. Thus, the operation HEY for
an arbitrary vector v has a complexity proportional to O(N:). This is too expensive to
perform. Therefore, we seek the approximation of the ideal lowpass filter HE with a
nonideal lowpass filter^HE,2, which is a symmetric band matrix ofbandwidth O(J)with
the spectral property HE,2(k) .(k) for =< k =< N- 1. Consequently, the operation
HE,2V only has a complexity proportional to O(JN).

Let us write the nonideal lowpass filter of the form
J

(2.16) HE,2=a0+ a2(E+E-2),
j=l

where the coefficients a0 and aj’s are to be determined. In order to define the operation

J

HE,jV, ao + , a(v + + 1)n -j)
j=l

for any vector Vn appropriately, the odd-periodic extension of v, is assumed,

v_, -v and v, + 2pU-- l)n, for integer p.

This implies that HE,j corresponds to a circulant matrix. The above odd-periodic as-
sumption is used only for analyzing and designing Hl,s’s in this section. The actual
implementation of the MF preconditioner with a multigrid discretization described in
3 does not rely on this assumption.

There are numerous ways to determine the coefficients a0 and a’s depending on
what approximation criteria are to be used. The operator HE,j has the eigenfunction
sin (kTrnh) with the eigenvalue

J

E,J(k) a0 + 2 aj. cos (krjh).
j=l

Here we consider a class of lowpass filters based on the following two criteria:

/E, and E,(k) E,(N- k)

(2) HE,(0) and the first jth derivatives _-<j_-< J) of E,(0) are all zero.
The first criterion implies that the function /E,(k) 1/2 is odd symmetric with respect
to k N2. A direct consequence of this criterion is that

a0 and a 0, j positive even.

The second criterion, called the maximallyflat criterion 18 ], requires the approximation
at the origin to be as accurate as possible. It is used to determine aj with odd j. In Table
2.1, we list coefficients a for J 1, 3, 5 obtained according to criteria and (2) and
plot their spectra in Fig. 2.4 with N 28 256. The larger J becomes, the better the
approximation is.
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TABLE 2.1
Coefficients ofa class ofnonideal lowpass filters.

J ao a a3 as

0 0

-1
3 3" 3"" 0

50 -25
5 -- --

As illustrated in Figs. 2.2 and 2.3, the low wavenumber band of the function r is
used as the input to the filter HL- at the next stage. The filter H,_ can be constructed
with the same set of coefficients used by Hz, i.e.,

J

(2.17) Hz__,j=ao+ aj(E2J+E-2J).
j=l

Comparing (2.16) and (2.17), we see that the only difference between HL,j and
HL_ ,j is the position of grid points used for averaging. For the first-stage filter Hz,j,

local averaging is used. For the second-stage filter Hz_ ,j, we consider averaging between
points separated by 2h. This design is due to the following reason. From (2.17 ), we see
that the filter H,_ l,J has the spectrum

J

/L_ ,j(k) ao + 2 aj cos (krj2h ),
j=l
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FIG. 2.4. Spectra ofmaximallyfiat lowpass filters HL,j with J 1, 3, 5.
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and that L-,J(k) is related to L,j(k) via

L ,J(k) L,J(2k).
Consequently, for functions consisting only of components in low wavenumber region

-< k < 2- z_ behaves like a lowpass filter, which preserves components in the
region -< k < 2 2 and filters out components in the region 2 2 _< k < 2L- 1. However,
note that Ht, < L is not a lowpass filter with respect to the entire wavenumber band.

By applying the same procedure recursively, we can approximate the general ele-
mentary filter Ht on a uniform infinite grid as

J

(2.18) H,s=ao+ aj(E2"-9+E-2L-9), 2<=l<=L,
j=l

where the coefficients aj’s are listed in Table 2.1. The spectrum of Hl,s is

J

(2.19) I,j(k)=ao+2 acos(krj2-h), 2<=l<=L.
j=l

According to (2.11 ), we can construct nonideal bandpass filters Ft,s with nonideal ele-
mentary filters Hz,j,

(2.20a) F,j I- H,,

(.Ob f,=(I-g,l I-[ /-/, =<l=<;-1,
p=/+l

0.5
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0
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FIG. 2.5. Spectra ofilL, s, I HI-,j and F_,s with J 1.
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L

(2.20c) F,j I-[ Hp,j.

p=2

To give an example, the construction of FL- ,j with J is illustrated in Fig. 2.5. Note
that the elementary filter H,j given by (2.18) is symmetric. So is the bandpass filter
Ft,j. Finally, we obtain the nonideal MF-preconditioner

(2.21 P2 r F,F, r,
l= cl

which approximates the ideal MF-preconditioner P given by (2.9).
It is worthwhile to summarize the similarities and differences between the fast Poisson

solver (2.5) and the SGMF preconditioning (2.21). They are both based on spectral
decomposition. The fast Poisson solver decomposes a function into its Fourier components
through the FFT, whereas the MF preconditioner approximately decomposes it into a
certain number ofbands through filtering. The filtering operations, which correspond to
local averaging processes, can be easily adapted to irregular grids and domains and variable
coefficients. In contrast, the FFT is primarily applicable to constant coefficient problems
with regular grids and domains. Besides, for the fast Poisson solver we usually require
detailed knowledge of the spectrum. But for the MF preconditioner we have only to
estimate how the spectrum varies from one band to another.

2.4. Fourier analysis and higher-dimensional cases. Since the MF preconditioner
Pj and the Laplacian A share the same eigenvectors, i.e., Fourier sine functions, the
spectrum and condition number of the MF-preconditioned Laplacian can be analyzed
conveniently by Fourier analysis. From (2.20), we have the following spectral relationship

(2.22a) PL,j(k) z,j(k),

(.b ,(cl=(l-,(c 1-I B,(I S-l,
p=/+l

L

(.c PI,( ,(,
=2

where ,(k), N N L, are given by (2.19). Using (2.4), (2.6), and (2.22), we can
determine the eigenvalues of p21A,

f,(,(lA(l.
=c

The eigenvalues X(P2A)are plotted as a function ofk with J 1, 3, 5 and h -1 256
in Fig. 2.6. We should compare these spectra with that in Fig. 2.1 based on the ideal
filtering assumption. All of them have one common feature. That is, eigenvalues are
redistributed in such a way that there exist many local maxima and minima. The condition
numbers for J 1, 3, 5 are 2.50, 1.88, and 1.93, respectively. Note that these numbers
are in fact smaller than the condition number 4.93 obtained with ideal filtering. The
precise reason for this phenomenon is still not clear to us. It might be related to the
smoothness of the eigenvalue distribution curves. The eigenvalue distribution for P-A
in Fig. 2.1 has many keen edges. However, these edges are smoothed by nonideal digital
filters as shown in Fig. 2.6.

The generalization ofthe MF preconditioner to two- or three-dimensional problems
on square or cube domains can be done straightfoardly. For example, we may construct
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FIG. 2.6. Eigenvalues ofP-jA with J 1, 3, 5.

the two-dimensional elementary filter by the tensor product of one-dimensional elemen-
tary filters along the x- and y-directions,

2L-lj L-
Ht,j ao + aj(Ex- + E-2 z.- tj X ao + ., a(Ey + E_2 lj

j=l j=l

which can be further simplified by using operator algebra [14 ]. For example, the coef-
ficients for H, can be written in stencil form as

21

Hz,’-7 2 4 2.(2.23)
I0 2

Similarly, the three-dimensional elementary filter can be obtained by the tensor product
of three one-dimensional filters along the x-, y- and z-directions.

The condition numbers of one-, two-, and three-dimensional MF-preconditioned
Laplacians with two types of nonideal filters (J and J 3 are computed and plotted
as functions of the grid size h in Figs. 2.7 (a) and (b). These figures show that Pj and A
are spectrally equivalent.

The discussion in 2.3 is based on the odd-periodic property of the sequence V.
However, this may not be easily implementable for general multidimensional problems
with nonrectangular domains. The difficulty arises when the size of Ht,j is so large that
it operates on points outside the domain. There are two possible solutions. It may be
preferable to construct filters of larger size by the repeated application of filters of smaller
size. For example, we can apply the filter HI,j (2.16 with J twice. This is equivalent
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FIG. 2.7. Condition numbers ofthe MF-preconditioned Laplacian with (a) J and (b) J 3.

to a filter of size 5,

H2,1=(1 11 )2 1E_2E-I++E =- 3 E2+-E-1-F- +-E+-
Another possibility is to apply smaller filters at points close to boundaries and larger
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filters at points far away from boundaries. Note also that, for fixed J, the size of the
elementary filter H,j increases as decreases. However, this problem can be resolved by
incorporating the multigrid discretization structure into the above multilevel filtering
framework as described in 3.

3. Multigrid multilevel filtering (MGMF) preconditioners. In 2, we discussed
the construction of the MF preconditioner for the model Poisson problem based on a
single discretization grid. This section will discuss the generalization ofthis preconditioning
technique so that it can be implemented more efficiently and applied to more general
self-adjoint elliptic partial differential equation (PDE) problems.

The filtering operation described above is performed at every grid point at all levels
2 =< _-< L. Since there are O(log N) levels and O(JN) operations per level, where N and
J denote, respectively, the order of unknowns and the filter size, the total number of
operations required is proportional to O(JN log N). However, since waveforms consisting
only of low wavenumber components can be well represented on coarser grids, we can
use the multigrid philosophy [10], [17] and incorporate the multigrid discretization
structure into the filtering framework described in 2. That is, we construct a sequence
of grids f/of sizes h/= O(2-), =< =< L, to represent the decomposed components.
Then, the total number of unknowns is O(N) and consequently the total number of
operations per MF preconditioning step is O(JN). Note that J is a constant independent
of N.

The block diagram of the multigrid multilevel filtering (MGMF) preconditioner is
depicted in Fig. 3.1. It is obtained by inserting down-sampling (I-1) and up-sampling
(I_ ) operators into the SGMF preconditioner. With the notation commonly used in
the multigrid literatures, the down-sampling and up-sampling operators for grids ft/
(h 2L-h) and

_
(h_ 2L-+ lh) can be defined as

0 0 0[l-I 0 0 0l

0 0 0 0 0 0/_

It is easy to verify that a lowpass filter followed by a down-sampling operator is the same
as the restriction operator in MG methods, whereas an up-sampling operator followed
by a lowpass filter is equivalent to the interpolation operator [22 ].

Given a sequence of grids 2, =< l =< L, down-sampling (I+1) and up-sampling
(I+ operators between grids ft and ftl + 1, and appropriate elementary filters Hi defined
on fl, the algorithm corresponding to the block diagram given by Fig. 3.1 can be sum-
marized as in Table 3.1.

TABLE 3.1
Computation ofM-r.

Decomposition:
1)L r,
for/-L- 1,...,
Ol :"- I+Ht+tvt+,

Scaling:
for/=L,...
wt := vdi

Synthesis:
S :: W
forl=2,...,L
st := wt + HI_ s_
M-r :=

This is the MGMF algorithm implemented in 5.
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FIG. 3.1. Block diagram ofthe modified MGMF preconditioner.

The preconditioning M-r can be viewed as a degenerate multigrid method, for
which we have a sequence of restriction and interpolation operations but where the error
smoothing at each grid level is replaced by an appropriate scaling. This observation leads
us to generalize the MF preconditioner to the case of nonuniform grids commonly ob-
tained from the finite-element discretization. That is, one can view projection as decom-
position and interpolation as synthesis and any multigrid method can be used as an
MGMF preconditioner if we replace the potentially more expensive error smoothing by
a simple scaling. It is well known that the eigenvalue ),k in band Bt (see 2.1 behaves
like O(h-2), where ht describes approximately the grid spacing for level l[9 ]. Therefore,
a general rule for selecting the scaling constant ct at grid level is

Cl O( h-i-2 ).

This generalized version is closely related to the preconditioner by Bramble, Pasciak,
and Xu [9 ]. They derived their preconditioner in the finite-element context discretized
with the nested triangular elements. From our filtering framework, the corresponding
elementary filter HL takes the form

0
(3.1) Hi,sex" - 2

O 0

which is different from H, given by (2.23). We can derive other filters from (3.1) by
applying it more than once. For example, by applying it twice, we get

(3.2) Hi,rBex’-;--;
04

0 0 2
0 2 6 6 2

6 10 6
2 6 6 2 0

2 0 0

In order to eliminate the directional preference, we can apply (3.1) in alternating directions
to give a symmetric filter:

(3.3) HI,Aoex" 7-;

0 2 0
4 6 4

2 6 8 6 2
4 6 4

0 2 0

The MF preconditioner is designed to capture the spectral property (or h-depen-
dency) of a discretized elliptic operator but not the variation of its coefficients. This is



418 C.-C. J. KUO, T. F. CHAN, AND C. TONG

also true for the hierarchical basis and BPX preconditioners. In order to take badly scaled
variable coefficients into account, we use the MF preconditioner in association with
diagonal scaling in our experiments [16 ]. The diagonal scaling is often used for cases
where the diagonal elements of the coefficient matrix A vary for a wide range. Suppose
that the coefficient matrix can be written as

A=D1/2D1/2

where we choose D to be a diagonal matrix with positive elements in such a way that
the diagonal elements of are of the same order, say, O(1). Then, in order to solve
Au f, we can solve an equivalent problem A f, where D1/Zu andf D-I/zf,
with the MF preconditioner. There exist other ways to incorporate the coefficient infor-
mation into preconditioners ofthe multilevel type, say, to use the Gauss-Seidel smoothing
suggested by Bank, Dupont, and Yserentant [8 ].

4. Brief survey of multilevel preconditioners. In this section, we very briefly survey
other multilevel preconditioners that have been proposed in the literature and their re-
lationships to one another.

4.1. Multigrid preconditioner (MG). A natural choice for a multilevel precondi-
tioner is to use a fixed number ofcycles ofa conventional multigrid method. This approach
was explored early on in the development of multigrid methods [20 ], [21]. The basic
operations on each grid are interpolation, projection, and smoothing operations, each of
which can be easily designed to be highly parallelizable. For example, in the V-cycle
strategy, each grid is visited exactly twice in each preconditioning step, once going from
fine to coarse grids and once coming back from coarse to fine. However, for highly
irregular problems, such as singularities in the solutions due to reentrant corners and
highly discontinuous coefficients, it is not clear how to choose the smoothing operations
and the performance can deteriorate.

4.2. Hierarchical basis preconditioner (HB). Another preconditioning technique
of multilevel type is the hierarchical basis method [8 ], [29 ]. The name refers to the
space of hierarchical basis functions defined on the grid hierarchy. The usual nodal basis
functions are used except that those defined at grid points on a given level which also
belong to coarser levels are omitted. Let the hierarchical basis functions be denoted by
/. where l denotes the grid level andj the index ofthe basis function on that level. Then,J,

the action of the inverse of the hierarchical basis preconditioner M on a function v can
be written as,

j

which takes the discretized form SSTv, and can be computed by a V-cycle with the matrix
ST corresponding to a fine-to-coarse grid traversal and S to a coarse-to-fine traversal. On
each level, only local operations are performed. In two dimensions, the condition number
ofthe preconditioned system can be shown to grow like O(log2 h -1 ), which is very slow.
Unfortunately, this nice property is lost in three dimensions, where the growth is O(h -1

[26], [29]. However, these theoretical results are proven under much weaker regularity
assumptions than for the multigrid methods. Moreover, the computational work per step
is O(h -1 even for highly nonuniform and refined meshes. For numerical experiments
on parallel computers, see [1], [16].

4.3. Method by Bramble-Pasciak-Xu (BPX). Very recently, Bramble-Pasciak-
Xu [9], [28] proposed the following preconditioner for second-order elliptic problems
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in Ra:

E E (v,
j

where 4 are the nodal basis functions and ht is the measure of the mesh size at grid level
l. Since the form of their preconditioner is similar to that for the hierarchical basis
preconditioner, the computations can be arranged in a similar way via a V-cycle. They
proved that the condition number of the preconditioned operator can be bounded by
O(log h -l for problems with smooth solutions, by O(log- h- for problems with crack
type singularities, and by O(log h -1 for problems with discontinuous coefficients. In
3D, this is a significant improvement over the hierarchical basis preconditioner.

4.4. Algebraic multilevel preconditioners (AMP). Vassilevski [27] proposed a dif-
ferent approach to derive multilevel preconditioners. He used the standard nodal basis
functions and a multilevel ordering of the nodes of the discretization, in which nodes at
a given level belonging to a coarser grid are ordered after the other nodes. He then
considered an approximate block factorization of the stiffness matrix in this ordering, in
which the Schur complement at a given grid level is approximated by iteration with the
preconditioner of the stiffness matrix recursively defined at the current level. He showed
that, with one iteration at each level, the condition number ofthe preconditioned system
can be bounded by O(log h -1 ). A similar method has been proposed by Kuznetsov 24 ].
Later, Axelsson-Vassilevski [6], [7] improved this bound to O(1) by carrying out re-
cursively more (Chebyshev) iterations with the preconditioner at each level. Axelsson
4 also showed that the same technique can be applied when hierarchical basis functions
are used instead ofthe nodal basis. Note that when the number of iterations at each level
exceeds 1, the grid traversal differs from all the previously mentioned V-cycle based
methods. At this time, we have not included non-V-cycle type preconditioners in our
numerical comparisons but plan to do so in the future.

4.5. Relationship among multilevel preconditioners. As can be seen from the dis-
cussion above, there are similarities among various multilevel preconditioners. Most of
the multilevel preconditioners are in the form of a multigrid V-cycle (MG, HB, BPX,
and MF, but not AMP). The MF preconditioner is very similar to the BPX method.
The MF method allows some flexibility in the choice of filters (basically any multigrid
residual averaging operator can be used) and does not depend on the use of a finite-
element discretization with nested nodal basis functions. It also allows a single grid (i.e.,
nonmultigrid) version which may better suit massively parallel architecture computers.
On the other hand, the finite-element framework allows an elegant proofofthe asymptotic
convergence behavior for rather general problems as is done in [9], [28], whereas the
filtering framework is rigorously provable for constant coefficient model problems only
(although much more detailed information can be obtained for them).

Finally, it is interesting to compare these preconditioners with the conventional
multigrid method. Several of the preconditioners have the same form of a conventional
multigrid cycle, except that the smoothing operations are omitted. For less regular prob-
lems where a good smoothing operator is hard to derive and could be quite expensive,
one step ofthese preconditioners can be substantially less expensive than a corresponding
step ofthe multigrid iteration. In a sense, one can view these preconditioners as efficiently
capturing mesh size-dependent part of the ill-conditioning of the elliptic operator and
leaves the other sources of ill-conditioning (e.g., discontinuous coefficients) to the con-
jugate gradient iteration. The combination ofmultigrid and conjugate gradient holds the
promise of being both robust and efficient. However, to get a spectrally equivalent pre-
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conditioner, it seems that one must go beyond the V-cycle and perform more iterations
on each grid as in the AMP method.

5. Numerical experiments. In this section, we present numerical results for two-
and three-dimensional test problems to compare the convergence behavior and the
amount of work needed for various preconditioners. The preconditioners imple-
mented are:

HB:

MG(i, i)"

BPXI"
BPX2"

BPX3"

MGMFI"

MGMF2:

MGMF3:

RIC:

hierarchical basis preconditioner using linear elements for two-dimensional
and trilinear elements for three-dimensional problems,
multigrid preconditioner with one V-cycle, where is the number of pre-
and post-smoothings,
the BPX preconditioner for two-dimensional problems (HL given by 3.1 )),
a modified version of BPX preconditioner by filtering twice for two-dimen-
sional problems (HL given by (3.2)),
another modified version ofBPX preconditioner by filtering twice but using
linear elements of different orientations for two-dimensional problems (HL
given by (3.3)),
the MGMF preconditioner with the 9-point (2.23) or 27-point filter for two-
and three-dimensional problems, respectively,
a modified version of MGMF preconditioner in which the 9-point (or 27-
point) filter is applied twice,
another modified version of MGMF preconditioner in which the 9-point
(or 27-point) filter is applied once at the finest grid level (to have a smaller
amount of work compared to MGMF2) and twice at other grid levels (to
achieve a faster convergence rate compared to MGMF1 ),
the relaxed incomplete Cholesky preconditioner 5 is included for the pur-
pose of comparison. For the relaxation factor, we use the optimal value
w 8 sin 2 (.h/2) from [11]. The number of iterations required for RIC
can be bounded by O(nl/2).

The preconditioning operation counts for each method, for two- and three-dimen-
sional problems are given in Tables 5.1 and 5.2, respectively. These operation counts
include addition, multiplication, and division (each is counted as one operation), but
exclude overhead such as condition checking and data copying. The non-preconditioning
operation counts required per PCG step for two-dimensional problems are 21N, which
include 6N for three inner products (one more inner product than the basic CG step,
since we use the relative residual norm for convergence check), 6N for three SAXPY

TABLE 5.1
Work per iteration for preconditioners (2D).

Preconditioner Operation count per iteration

RIC 9 N
HB 7 N
MG(I. 1) 38 N
BPX 8 N
BPX2 26 N
BPX3 26 N
MGMFI 9 N
MGMF2 27 N
MGMF3 15 N
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TABLE 5.2
Work per iteration for preconditioners (3D).

Preconditioner Operation count per iteration

RIC 13 N
HB 8 N
MGMFI (BPXI) 9 N
MGMF2 (BPX2) 32 N
MGMF3 12 N

operations, and 9N for one matrix vector product. Similarly, the non-preconditioning
operation counts per PCG step for three-dimensional problems are 25N.

From Table 5.1, we observe that the operation counts per iteration for BPX and
MGMF1 are much less than that of the MG( 1, preconditioners, because the former
preconditioners do not need smoothing, which is expensive. In general, for two-dimen-
sional problems, MG(i, i) preconditioner takes (38 + 32 (i ))N operations. For
example, MG(3, 3) preconditioning requires 102N operations. Also note that the ap-
plication of filtering twice requires about three times the work of filtering once. This is
because by filtering twice the filter stencil is extended from 9-point to 25-point (about
three times as many points).

For three-dimensional problems, the operation count for BPX1 (BPX2) precon-
ditioning using trilinear elements is the same as for the MGMF1 (MGMF2) precondi-
tioning as shown in Table 5.2. The MG preconditioner has not yet been implemented
for three-dimensional problems.

For all test problems, we use the standard 5- (or 7-) point stencil on a square (or
cubic) uniform mesh with h n- and N (n )2 (or N (n )3), zero boundary
conditions and zero initial guesses. Experimental results are given for different values of
h and the stopping criterion is rll ! rll --< 10-6. Diagonal scaling is always used except
for RIC. The six test problems are:

the two-dimensional model problem with solution u x(x- )y(y )exy,

(5.1) Au=f, f=(0,1) 9-,

(2) a two-dimensional variable coefficient problem with solution u xexy sin 7rx

sin ry,

(5.2) 0-- e- -x ] +-fffy eXyfffy =f’ f=(0, 1) 2,

(3) a two-dimensional problem with discontinuous coefficients with f=
2x(1 x) + 2y(1 y),

(5.3) 0- P(x Y -x + -y p(x, y -y =f, 2=(0,1)2,

where

10 4 X>0.5 y< 0.5,

p(X,y) 10 -4 X=<0.5 y>0.5,

elsewhere.
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FIG. 5.1. (a) Iteration and (b) operation counts for Test Problem 1.

(4) the three-dimensional model problem with solution

u=x( l-x)y(1-y)z(1-z)exyz,

(5.4) Au=f, fl-(O, 1) 3,



MULTILEVEL FILTERING PRECONDITIONERS 423

70

60

50

40

30

20

10
10

BPX1

MGMF1

MGMF3
BPX2
BPX3
MGMF2

...... MG(I,I)

102

n=l/h

2500

2000

1500-

1000-

500-

0
10 102 10

n=I/h

(b)

FIG. 5.2. (a) Iteration and b operation counts for Test Problem 2.

5 a three-dimensional variable coefficient problem with solution u exyz sin 7rx

sin ry sin rz,

(5.5) e- +:/e +=/e- :f, a:(0, 1) 3,
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FIG. 5.3. (a) Iteration and b operation counts for Test Problem 3.

(6) a three-dimensional problem with discontinuous coefficients with f
2x(1 x) + 2y(1 y) + 2z(1 z),

(5.6) -x p(x,y,z) +-y p(x,y,z) +-z p(x,y,z) =f, ft=(O, 1) 3,
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FIG. 5.4. (a) Iteration and (b) operation counts for Test Problem 4.

where
10 -4

p(X,y,Z) 10 4

x>0.5 with y_-< 0.5, z=< 0.5 or y> 0.5, z> 0.5,

x-<0.5 with y> 0.5, z_-< 0.5 or y=< 0.5, z> 0.5,

elsewhere.
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FIG. 5.5. (a) Iteration and b operation counts for Test Problem 5.

The number of iterations and operation counts per grid point are plotted in Figs. 5.1-
5.6 (a) and (b), respectively. We can make the following observations from these figures.

The BPX and MGMF preconditioners have better convergence behavior than
the HB preconditioner, especially for three-dimensional problems. The HB method is
competitive with the other multilevel methods only for the discontinuous coefficient
problem in two dimensions.
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FIG. 5.6. (a) Iteration and (b) operation counts for Test Problem 6.

2 The O(log" n convergence rate for all the multilevel methods is evident, except
for the three-dimensional HB method. The three-dimensional HB method behaves like
O(h -’59) and O(h-’7) for problems (5.4) and (5.5), which are close to the predicted
theoretical result O(h-5). However, for the discontinuous coefficient problem 5.6 ), it
converges more slowly, like O(h-126).
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(3) In general, the MGMF methods perform slightly better than the corresponding
BPX methods. Recall that the only difference between the two methods is the choice of
the elementary filters.

(4) Filtering twice (BPX2, BPX3, and MGMF2) does improve the convergence
rates for the model Poisson problem in either two or three dimensions (the MGMF2
and BPX3 preconditioners appear to be spectrally equivalent.) For variable and discon-
tinuous coefficient problems, filtering twice does not seem to improve the convergence
rates enough to compensate for the extra work involved.

(5) The MGMF3 method is designed to incorporate the desired features ofMGMF
and MGMF2, i.e., the good convergence property due to filtering twice and the smaller
amount of work due to filtering once at the finest grid level. It turns out that it works
very well. MGMF3 behaves better than MGMF but worse than MGMF2 in the number
of iterations required. However, in terms of amount of work, MGMF3 is better than
MGMF1 and MGMF2.

(6) For small n (<100), the RIC method is competitive with all the multilevel
methods. In fact, for the discontinuous coefficient problems, none of the multilevel pre-
conditioners gives a better convergence rate than the RIC preconditioner. It appears that
the RIC preconditioner captures the variation of the coefficients especially well. Its per-
formance deteriorates as n gets large, as predicted by its inferior asymptotic conver-
gence rate.

(7) The MG preconditioner is among the most efficient methods for problems with
smooth coefficients. However, it has some difficulties with problems with discontinuous
coefficients. In fact, for Problem (5.3), MG( 1, requires too many iterations to fit on
the plot. Instead we show the results for the MG(3, 3) method, which converges in a
reasonable number of iterations but still requires the most work of all the methods. We
have noticed that the performance of the multigrid methods are somewhat sensitive to
the initial guess. In experiments with random initial guesses, we have observed that the
performance of the multigrid methods is significantly improved. This may be due to the
extra smoothing operations in the multigrid methods which are more adept at annihilating
the high frequency errors inherent in the random initial guess.

6. Conelnsions. The experimental results show that the class of multilevel filtering
preconditioners compares favorably with the hierarchical basis and the RIC precondi-
tioners, at least for problems with smooth coefficients and quasi-uniform grids such as
used in our experiments. For these types of problems, the multilevel filtering and the
BPX methods behave quite similarly to the multigrid preconditioner. What these new
methods offer is the saving of smoothing operations which are difficult to make effective
for irregular problems, while preserving the nice asymptotic convergence rates of multigrid
preconditioners. The relative performance ofthe hierarchical basis method should improve
for irregular problems on highly nonuniform and refined meshes. Even though the RIC
preconditioner shows better convergence rates for strongly discontinuous coefficient
problems, it has a low degree of parallelism. The multilevel filtering preconditioners are
also similar to the BPX method. What the filtering framework provides is the flexibility
of filter design, which can lead to more efficient methods.

Acknowledgment. The authors thank the referees for their help in improving the
presentation of this paper.
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PARTITIONING SPARSE MATRICES
WITH EIGENVECTORS OF GRAPHS*
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Abstract. The problem ofcomputing a small vertex separator in a graph arises in the context ofcomputing
a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing
vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained
in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid
graphs can be computed from Kronecker products involving the eigenvectors ofpath graphs, and these eigenvectors
can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex
separator in a general graph by first computing an edge separator in the graph from an eigenvector of the
Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results
on the quality of the separators computed by the spectral algorithm are presented, and these are compared with
separators obtained from other algorithms for computing separators. Finally, the time required to compute the
Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain
good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-
size multiprocessor in a straightforward manner.

Key words, graph partitioning, graph spectra, Laplacian matrix, ordering algorithms, parallel orderings,
sparse matrix, vertex separator

AMS(MOS) subject classifications. 65F50, 65F05, 65F15, 68R10

1. Introduction. In the solution oflarge, sparse, positive definite systems on parallel
computers, it is necessary to compute an ordering of the matrix such that it can be
factored efficiently in parallel. Several algorithms have been developed recently for com-
puting good parallel orderings: for instance [39 ], [40]. For large problems, the storage
required for the structure of the matrix may exceed the storage capacities of a single
processor, and the ordering itself will need to be computed in parallel. One strategy to
compute a good parallel ordering is to employ the divide-and-conquer paradigm: Find
a set of vertices in the adjacency graph of the matrix, whose removal disconnects the
graph into two nearly equal parts. Number the vertices in the separator last, and recursively
number the vertices in the two parts by the same strategy. This strategy is employed in
several algorithms which order sparse matrices for factorization; e.g., the Sparspak nested
dissection algorithm 27 ].

In computing an ordering by the above approach, at each step, the following par-
titioning problem needs to be solved: Given an adjacency graph G of a sparse matrix,
find a vertex separator S such that S has few vertices and S disconnects G\S into two
parts A, B with nearly equal numbers of vertices. In the context ofthe ordering problem,
since a separator S becomes a clique in the factor matrix (filled matrix), a small S
controls the fill incurred by the ordering. The requirement that the parts A and B be
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roughly equal is a simple way of maintaining load balance in parallel computation, since
the submatrix represented by each part will be mapped to a subset of half the processors..

In this paper, we consider a spectral algorithm for solving the partitioning problem.
We associate with the given sparse, symmetric matrix (and its adjacency graph ), a matrix
called the Laplacian matrix. We compute a particular eigenvector of the Laplacian matrix
and use its components to initially partition the vertices into two sets A’, B’. The set of
edges joining A’ and B’ is an edge separator in the graph G. A vertex separator S is
computed from the edge separator by a matching technique.

The use ofspectral methods to compute edge separators in graphs was first considered
by Donath and Hoffman [16], [17], and since then spectral methods for computing
various graph parameters have been considered by several others. A discussion of some
of this work is included in 2.

The spectral algorithm for computing vertex separators considered in this paper has
three features that distinguish it from previous algorithms that are worthy of comment.

First, previous algorithms for computing separators, such as the level-structure sep-
arator algorithm in Sparspak or the Kernighan-Lin algorithm make use of local infor-
mation in the graph, viz. information about the neighbors of a vertex, to compute sep-
arators. The spectral method employs global information about the graph, since it com-
putes a separator from eigenvector components. Thus the spectral method has the potential
of finding separators in the graph that are qualitatively different from the separators
obtained by previous approaches.

Second, we can view the spectral method as an approach in which a vertex in the
graph makes a continuous choice, with a weight between + and -1, about which part
in the initial partition it is going to belong to. All vertices with weights below the median
weight form one part, and the rest, the other part. In the Kernighan-Lin method, each
vertex makes a discrete choice (zero or one) to belong to one set. The weights in the
spectral method can be used to move a few vertices from one part to the other, if a
slightly different partition is desired in the course of the separator algorithm.

Third, the dominant computation in the spectral method is an eigenvector com-
putation by a Lanczos or similar algorithm. This distinguishes the new algorithm from
standard graph-theoretical algorithms computationally. Most of the computation is based
on standard vector operations on floating point numbers. Because of its algebraic nature,
the algorithm is parallelizable in a fairly straightforward manner on medium-grain mul-
tiprocessors used in scientific computing. Furthermore, since most of the computations
are also vector floating point operations, this algorithm is well suited for vector super-
computers used for large scale scientific computing.

This paper is organized as foiiows. We include background material on the spectral
properties of Laplacian matrices and their relevance to graph partitioning in 2. We also
review earlier work on computing edge separators from the eigenvectors ofthe adjacency
matrix in this section. In 3, we obtain lower bounds on the size of the smallest vertex
separators of a graph in terms of the eigenvalues of the Laplacian matrix. Two different
techniques for proving lower bounds are illustrated: One uses the Courant-Fischer-
Poincar6 minimax criterion, and the second employs an inequality from the proof ofthe
Wielandt-Hoffman theorem. We then show that the spectra of rectangular and square
grid graphs can be computed explicitly from the spectra of path graphs by employing
suitable graph products and Kronecker products in 4. We proceed show how good
edge and vertex separators in the grid graphs can be computed from the spectral infor-
mation. In 5, we describe our heuristic spectral algorithm to compute vertex separators
in general graphs. The algorithm initially computes an edge separator, and then uses a
maximum matching in a subgraph to compute the vertex separator. Results about the
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quality of the separators computed by the algorithm are presented in 6. In this section,
we also compare the spectral separators with separators computed in the first step of the
Sparspak nested dissection ordering algorithm and the Kernighan-Lin algorithm, as well
as with results obtained recently by Liu [42 and Leiserson and Lewis [38 ]. The time
required to compute the Laplacian eigenvectors with the Lanczos algorithm and the
accuracy needed in the eigenvector to obtain good separators are addressed in 7. The
final contains our conclusions and some directions for future work.

2. Background. Let G (V, E) be an undirected graph on vI n vertices. The
n n adjacency matrix A A(G) has element av, equal to one if(v, w) E, and zero
otherwise. By convention, av,v is zero for all v e V. The rows and columns ofthe matrices
associated with a graph are indexed by the vertices ofthe graph, their order being arbitrary.
Let d(v) denote the degree of a matrix, and define D to be the n n diagonal matrix
with dv,o d(v). The matrix Q Q(G) D A is the Laplacian matrix of G.

Let the edges of the graph G be directed arbitrarily, and let C denote the vertex-
edge incidence matrix of the directed graph. The V EI matrix C has elements

+ ifv is the head of e,
Cv,e= -1 if v is the tail of e,

0 otherwise.

It is easy to verify that Q(G) CCt, and that Q is independent of the direction of the
edges in C. Biggs [11] contains a good discussion of the techniques from algebraic graph
theory that are used here.

The spectral properties of Q have been studied by several authors [4], [23]. Since

xtQx=stCCtx=(Ctx)t(Ctx) , (Xv-Xw) 2,
(v,w)eE

Q is positive semidefinite. Let the eigenvalues of Q be ordered
An eigenvector corresponding to , is __e, the vector of all ones. The multiplicity of the
zero eigenvalue is equal to the number of connected components of the graph. If G is
connected, then the second smallest eigenvalue 2 is positive. We call an eigenvector y
corresponding to 2 a second eigenvector.

Fiedler [23 ], [24] has studied the properties of the second eigenvalue X2 and a
corresponding eigenvector y. He calls ,2 the algebraic connectivity, and relates it to the
vertex and edge connectivities of a graph. He has also investigated the partitions of G
generated by the components of the eigenvector y. One of his results of interest in this
paper can be rephrased as follows.

THEOREM 2.1. Let G be a connectedgraph, and let y be an eigenvector corresponding
to k2. For a real number r >= O, define V( r) v V" y >= -r }. Then the subgraph
induced by V r) is connected. Similarly, for a real number r <- O, the subgraph induced
by the set Vz(r) v V" yo =< r] } is also connected.

In both sets V and V2, it is necessary to include all vertices with zero components
for the theorem to hold. The role played by these latter vertices in the connectedness of
the two subgraphs has been investigated at greater length by Powers [54], [55 ].

A corollary to this result is that if Yv 4:0 for all v V, then each of the sub-
graphs induced by P { v V" yo > 0 } and N v V" Yv < 0 } is a connected sub-
graph of G.

The eigenvectors of the adjacency matrix corresponding to its algebraically largest
eigenvalues have also been used to partition graphs. It is of interest to ask if a similar
theorem holds for an eigenvector corresponding to the second largest eigenvalue of the
adjacency matrix.
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Let x, y denote eigenvectors corresponding to the algebraically largest and second
largest eigenvalues, respectively, of the adjacency matrix of G. By the Perron-Frobenius
theory, it is known that all components of x are positive. Fiedler’s theorem states that
if a is a nonnegative number, then the subgraph induced by

V v V: yo + axo >= O }

is connected. Similarly, if a is a nonpositive number, then the subgraph induced by
v2 v v: y Ilx --< 0 is also connected.

Alon [1] and Mohar [44] have studied the relationship of the second Laplacian
eigenvalue to the isoperimetric number, i(G). If U is a subset ofthe vertices ofthe graph
G, and 6U denotes the set of edges with one endpoint in U and the other in V\ U, then

IUI
i(G) min

I1-/ UI
Clearly i(G) is related to the problem of computing good edge separators.

Alon, Galil, and Milman [2], [3] have related the second Laplacian eigenvalue to
the expansion properties ofgraphs. The relationship ofthe Laplacian spectrum to several
other graph properties has been considered by several authors; two recent survey articles
are by Mohar [45] and Bien [10].

Spectral methods for computing edge separators have been considered by several
researchers: Donath and Hoffman 16 ], 17 ], Barnes 7 ], 8 ], Barnes and Hoffman 9 ],
Boppana 12]. An algorithm for coloring a graph by employing the eigenvectors of the
adjacency matrix has been considered by Aspvall and Gilbert [6 and a spectral algorithm
for finding a pseudoperipheral node has been described by Grimes, Pierce, and Simon
[33]. A spectral algorithm for envelope reduction is considered in [53].

Algorithms that make use of flows in networks to compute separators have been
designed by Bui et al. 13 ], and Leighton and Rao 37 ]. The former describes a bisection
algorithm with good average-case behavior for degree-regular random graphs, and the
latter describes an approximation algorithm for minimum quotient edge separators.

3. Lower bounds. We obtain lower bounds on the sizes ofvertex separators in terms
of the eigenvalues of the Laplacian matrix Q(G) in this section. The lower bounds hold
for any vertex separator in the graph; in particular, these bounds apply to a smallest
separator in the graph. We assume that the graph G is connected.

Let G (V, E) denote a graph on VI n vertices, and let A be a subset of its
vertices. Denote by 19(v, A the distance of a vertex v from A, i.e., the fewest number of
edges in a shortest path from v to a vertex in A. Let S denote the set of vertices which
are at a distance of less than 19 >_- 2 from A, and not belonging to A. Hence

Define B V\(A (.J S); if B 4: , then the distance between A and B, 19(A, B) t9. If
19 > 2, the set S is a wide separator that separates A from B. If 19 2, we get the commonly
used notion of separators. Wide separators were first used in sparse matrix algorithms
by Gilbert and Schreiber [28].

Let EA denote the set of edges with both endpoints in A, and EAS denote the set of
edges with one endpoint in A, and the other in S. The sets E, Es, and Es are defined
similarly. In the following, it will be convenient to work with the fractional sizes a
A l n, b B I/n, and s SI/n. The degree of a vertex v will be denoted by d(v),
and A will denote the maximum degree of vertices in G.
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The first result is a lower bound on the size of a wide separator separating any pair
ofvertex disjoint sets A and B that are at a distance o from each other. As will be described
later, it generalizes a result of Alon, Galil, and Milman [2].

THEOREM 3.1. Let A, B be disjoint subsets of vertices ofG that are at a distance
o > 2 from each other. Let S denote the set of vertices not belonging to A that are at a
distance less than o from A. Then

sZqt-s--pZa(1--a)>=O, where=(A/)z)+pZa 1.

Proof. Let e, 0 be the vector of all ones and all zeros, respectively. The Courant-
Fischer-Poincar6 minimax principle states that

tQs Ei,j),(xi-x) 2

:z= min min ,,,_ 2
x4:0 xtx x_4:O lXi
etx 0 etx 0

Using the Lagrange identity in the above equation, Fiedler [24] derived the following
inequality, which is valid for all real n-vectors.

n (Xi--Xj)2)k2 Z (Xi--Xj) 2"
(i,j) E i,j V

i<j

We prove the result by making an appropriate choice of x in the above inequality.
Choose the vth component of_x to be x (2/p) min p, p(v, A) }. If v e A,

thenx= 1;ifveB, then x -l; and if v e S, then-1 +(2/p)=<x_-< 1-(2/p).
Also, if v, w are adjacent vertices, then [x Xw --< 2/p.

The left-hand side of has nonzero contributions from three terms, and it can be
bounded from above as follows:

(2)

Z (x-x2)2=( + + )(x-x)2

(i,j) E (i,j) E (i,j) E (i,j) E
ieA,jeS ieB,jS iS,je S

4
( EAsl + EBsl + Esl)
p

4< nsA.2p

Similarly, nonzero contributions to the right-hand side of also come from three
terms, and we obtain a lower bound as shown:

X Xj
2 ( Z ’]-Z -Jr --- Z ) X Xj

2

V ieA,jeS ieA,jeB ieB,jeS iS,jeS
i<j i<j

ieA,jeS ieA,jeB ieB,jeS

(3) >_- nas+(1 -(-1))nab+ -1 -1

4n

o ((a+b)s+oa(1 a s))

4n

o ((1-s)s+oa(1-a-s)).

2))2+- n2bs
p
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Using inequalities (2) and (3) in Fiedler’s inequality ), and canceling common
terms, we obtain

SA k2( --S)s+pZa( -a-s)).

This last inequality yields the desired result after some rearrangement.
Fiedler 23 showed that X2 =< (n / (n )) min { d(v)" v V }. Mohar 44 proved

that for all graphs except the complete graphs Kn, A >= X2. Thus for all graphs except the
complete graphs, the ratio A/X2 >= 1, and/3 is a positive number. Indeed, the ratio A/
2, and hence/3, is much larger than one, for all the adjacency graphs of sparse matrices
that we have computed partitions.

COROLLARY 3.2. If3 >= O, then

o2a(1-a) 02a(1-a)
S >

13 (A/Xz)+pga 1"

Proof. Let Sl, s)_ be the roots ofthe quadratic equation corresponding to the inequality
in Theorem 3.1, with s -_< s.. Then s >-_ s2, and

s2 (-+ (/32 + 4o2a( a))l/2).

If/3 >= 2o(a(1 a)) 1/2, then expanding the right-hand side in power series yields the
result.

It remains to verify the condition of the corollary. Since (a( a)) / has its max-
imum value 1/2 when 0 _-< a =< 1, the power series expansion is valid when

The corollary exhibits the dependence of vertex separator sizes on X: the smaller
the second eigenvalue, the larger the ratio A/X2, and the smaller the lower bound on the
vertex separator size. The corollary also shows the dependence of the lower bound on
the distance 0 and the fractional size of the set A.

The common situation ofa separator corresponds to o 2. In this case, the quadratic
inequality becomes s2 + /s 4a(1 a) _>- 0, with/3 (zX/X2) + 4a 1. After some
simplification, it can be seen that the inequality in Theorem 2.1 of Alon, Galil, and
Milman 2 is equivalent to the above inequality. In this case, when/3 >= 2, we obtain
the lower bound

4a(l-a)
S >

(A/X2) +4a-

Mohar [43, Lem. 2.4] has obtained a lower bound on vertex separators in terms of
Xn and X. Lower bounds on edge separators can also be obtained by this technique.

A second lower bound. We now obtain a lower bound that exhibits another factor
influencing the size ofvertex separators. The technique used is derived from the Wielandt-
Hoffma theorem, and has been previously used by Donath and Hoffman 17 to obtain
lower bounds on edge separators.

Let S be a vertex separator that separates the graph G into two sets A and B, with
AI >-- BI >= SI. Let d(v) denote the degree of a vertex v, and let i(v) denote the

"internal" degree of v, i.e., the number of edges incident on v with the other endpoint
in the same set as v.

Recall that the eigenvalues of Q are ordered as Xl 0 < X _-< X3 =< X,. Let the
n n matrix J diag (Ja, J6, Jc), where Ja is the n a n a matrix of all ones, and J6,
J are similarly defined. The eigenvalues of J are #l na >= t nb >= #3 ns > ld4

#n=0.
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THEOREM 3.3. Let S be a vertex separator that divides a graph G into two parts,
A, B, with I/I >--IBI >- ISI. Then

a)X2s>=
2A ()‘3--)‘2)

Proof. From the proof of the Wielandt-Hoffman theorem 34 (see also 17 ),

(4) trace QJ) >-
i=1

We now compute both sides of the above inequality.
The fight-hand side is

Xi#i=na’O+nb’Xz+ns’X3=n(1-a-s)X2+nsX3.
i=1

to J:
To evaluate the left-hand side, we partition the symmetric matrix Q to conform

Qaa 0 Qas tQ= o Qbb Qbs
Qtas Qtb, Qss

trace QJ) trace (Q,J,) + trace (Q,bJ,) + trace (QssJs)

(5) --2(IEI-IEAI--IEl-IEsl)

2(I gl gl gl)

<=2nsA.

Substituting the inequalities (3) and (5) in (4), we obtain

2nsA >= n( 1--a--s)X2+ns)‘3.

This yields the final result after some rearrangement, rq

This last lower bound on a vertex separator size shows as before that the magnitude
of )‘2 influences the lower bound; it also shows that the "gap" between ),3 and )‘2 has an
effect.

A word of caution is in order about these lower bounds. These bounds should be
considered the same way one treats an upper bound on the error in an a priori roundoff
error analysis [58 ]. The lower bounds obtained are not likely to be tight, except for
particular classes of graphs. They do illustrate, however, that a large )‘2, with an accom-
panying small A/)‘2, will result in large sizes for the best separators in a graph.

4. Partitions of grid graphs. In this section we show that the second eigenvector of
the Laplacian matrix can be used to find good vertex separators in grid graphs, which
are model problems in sparse matrix computations. The separators obtained are identical
to the separators used by George [26] at the first step in a nested dissection ordering of
grid graphs.

To compute separators by this technique, we need to first compute the eigenvectors
of grids. The Laplacian spectra of grid graphs can be explicitly computed in terms of the
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Laplacian spectra of path graphs. Some of this material is well known in spectral graph
theory [15], but such treatments consider only eigenvalues and not eigenvectors. Further,
the nine-point grid needs to be modified before its spectrum can be explicitly computed.
The techniques used are quite general, and can be used to compute the spectra of several
other classes of graphs which can be expressed in terms of graph products of simpler
graphs.

The path graph. Let Pn denote the path graph on n vertices. We assume in the
following discussion that n >= 2 is even. We number the vertices of the path from to n
in the natural order from left to fight.

The Laplacian matrix ofPn is tridiagonal, and hence its spectrum is easily computed.
Let ff)n 7l’/n. We denote the elements of a vector s by writing its th component
as (xi).

LEMMA 4.1. The Laplacian spectrum ofPn is

(1Xk,n =4sin 2 (k-1)4n
xk,,=(cos((i -1/2)(k-1)4)), fork= l, ,n, l, ,n. V1

As k ranges from to n, the angle 1/2 (k )4, varies from zero to r/2; hence the
< )t2 n

< n Note that X l, ,neigenvalues are ordered as Xl, 0, X 1, and X2,n
4 sin2((hn/2), and _x,. (cos((/- 1/2 )qS)). The components of_x2,, plotted against the
vertices of P30 decrease monotonically from left to right.

Let Xl denote the median n / 2th largest) component ofthe second eigenvector, and
partition the vertices of the path into two sets, one set consisting of all vertices with
components less than or equal to the median component, and the other consisting of all
vertices with components larger than the median component. This partitions the path
into subsets ofvertices ofequal size, one consisting ofthe vertices with positive eigenvector
components, and the other consisting of vertices with negative components.

Graph products. We can compute the spectra ofgrid graphs from the spectra ofthe
path graph. We require the concepts of graph products and the Kronecker products of
matrices. One notation for graph products is from Cvetkovic, Doob, and Sachs [15 ],
and a good discussion of Kronecker products may be found in Fiedler [25].

For 1, 2, let Gi (Vi, Ei) be graphs. The Cartesian sum G1 nt- G2 is the graph
(V1 V2, E), where vertices il, jl and i2, j.) are joined by an edge if either i i2 and
{ j, j2 is an edge in G2, orj j2 and { i, i2 is an edge in G1. The Cartesian product
Gl" G2 is the graph (V1 V2, F), where vertices (il, j and i2, j2) are joined by an edge
if { il, i2 is an edge in G and { j, j2 is an edge in G. The strong sum G (R) G2 is the
graph (V1 V2, E U F); thus it contains the edges in both the Cartesian sum and the
Cartesian product.

It is easy to verify that the Cartesian sum P + Pm is the five-point m n grid graph,
and that the strong sum P Pm is the nine-point m n grid graph.

Since the grid graphs can be obtained from appropriate graph products of the path
graph, the Laplacian matrices ofthe grid graphs can be obtained from Kronecker products
involving the Laplacian matrices of the path graph. If C is a p q matrix, and D is
r s, recall that the Kronecker product C (R) D is the pr qs matrix with each element
do ofD replaced by the submatrix (Cdij).

The five-point grid. We consider the m n five-point grid, and without loss of
generality consider m _-< n. Initially we consider the case when n is even, and m < n. At
the end of this section, we discuss how the results are modified when n is odd, or m n.
We draw the m n grid with n vertices in each row and m vertices in each column.



438 A. POTHEN, H. D. SIMON, AND K.-P. LIOU

Let Q denote the Laplacian matrix of the five-point m n grid graph, Rn denote
the Laplacian matrix of the path graph on n vertices, and In be the identity matrix of
order n. Recall that k,n, Xk, denotes the kth eigenpair (when eigenvalues are listed in
increasing order) of the path graph with n vertices. The following result is well-known;
we include a proof for completeness, and because we wish to indicate how a similar result
is obtained for the Laplacian spectrum of a modified nine-point grid.

THEOREM 4.2. The Laplacian spectrum ofthe m n five-point grid is

Idk, kk,n d- kl,m,

y__k,l=Xk,n( Xl,m, k-- 1, ,n, 1, ,m.

Proof. It is easy to verify that the Laplacian matrix of the five-point grid can be
expressed in terms of the Laplacian matrix ofthe path graph as Q Rn (R) Im + In (R) Rm.
The first term in the sum creates m copies ofthe path on n vertices, and the second term
adds the "vertical" edges, which join neighboring vertices in each column of the grid.

We show that zk,t, Y,t is an eigenpair of Q.

QXk,n () Xl, Rn (R) Im Xk,n () Xl, 41- (In ()Rm Xk,n( Xl,

(RnXk,n)()(ImXl,m) -1- (InXk,n)((RmXl,m)

k,n__k,n () Xl,m d- Xk,n () ,l,mXl,m

Ik, "l- 11,m X__k,n () Sl,

The transformation from the first line to the second line uses the associativity of the
Kronecker product. D

The smallest eigenvalue tl, l,n + X,m is zero. The next smallest eigenvalue is

/2, 4 sin 2 (n/2), and the corresponding eigenvector is

___.Y2,1 X2,n (Xl,m COS i- qn (R) I.

The components of Y2, are constant along each column of m vertices, and the
components decrease from left to fight across a row. Columns numbered to n/2 have
positive components, and the rest of the columns have negative components. The com-
ponents of this eigenvector of the m n five-point grid are plotted in Fig. 1.

These results show that the second eigenvector of the grid can be used to compute
good edge separators and vertex separators. Let y denote this eigenvector in the following
discussion, and let y denote the median component ((mn/2)th largest component out
of mn). Let Yo denote the eigenvector component corresponding to vertex v.

COROLLARY 4.3. Let V denote the set of vertices of the five-point m n grid
m < n, n even), and let V be partitioned by its second eigenvector as follows"

A’={v’y<=y}, B’=V\A.

IfE’ denotes the set ofedgesjoiningA to B’, then E’ is an edge separator ofsize rn which
separates the grid into two parts each with mn/ 2 vertices. Further, ifS denotes the set

ofendpoints ofE’ which belong to B’, then S is a vertex separator ofsize rn which separates
the grid into two parts of(mn/2) and m((n/2) vertices.

The corollary follows from noting that A’ consists of vertices in the columns to
n/2 of the grid, and B’ is the remaining set of columns. The edge separator E’ consists
of the rn edges of the grid which join vertices in column n/2 to column (n/2) + 1.
Finally, the vertex separator S consists of vertices in column (n/2) + 1. Note that the
vertex separator is the same as the separator at the first step ofa nested dissection ordering
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FIG. 1. The second Laplacian eigenvector ofthefive-point grid.

described by George [26 ]. Buser [14] has shown that the edge separator E’ yields the
optimal isoperimetric number for grid graphs.

We now consider the case when n is odd or m n. When n is odd, the only difference
is that vertices in the middle column ((n + )/2th column) have eigenvector components
equal to zero. Columns numbered less than the middle column have positive components,
and columns numbered higher have negative components. The middle column can be
chosen as a vertex separator. The second case corresponds to a square grid, m n. Then
/2,1 /1,2, and the second smallest eigenvalue of Q has geometric multiplicity two. The
two linearly independent eigenvectors obtained by the graph product approach are
y2,1 __XE,n () Sl,n, and y 1,2 _xl,n (R) _XE,n. The eigenvector Y2,1 has components as described
earlier for the rectangular case. The eigenvector Y1,2 has components constant across
each row, and decreasing from bottom to top along each column. From these two in-
dependent eigenvectors, we obtain a middle column and a middle row as the vertex
separators.

Note that when the Lanczos algorithm is used to compute an eigenvector corre-
sponding to the second eigenvalue of the square grid, the eigenvector obtained will be
some linear combination of the two eigenvectors y 1,2 and y2,1. This will lead to a larger
vertex separator than the ones above. We report computational results on separators of
square grids obtained from the Lanczos algorithm in 6.

The nine-point grid. Let Q’ denote the Laplacian matrix ofthe nine-point grid, and
let Dn be the n n diagonal degree matrix of the n-vertex path. As before, let Rn denote
the Laplacian matrix of the n-vertex path, and In the identity matrix of order n. It is
again not difficult to verify that Q’ Rn (R) Im + In (R) Rm + Rn (R) Dm + Dn (R) Rm
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Rn (R) Rm. Unfortunately, the spectrum of Q’ cannot be expressed in terms ofthe spectra
of the path graphs, as for the five-point grid.

However, we can first embed the nine-point grid graph in a modified grid, whose
Laplacian spectrum is computable in terms of the spectra of the path graphs, and then
partition the modified grid. We use the partition of the modified grid to partition the
nine-point grid.

The necessary modification to the nine-point grid is as follows. Replace each bound-
ary edge of the rn n grid by two edges joining the same endpoints. Let Q denote the
Laplacian of the resulting multigraph.

THEOREM 4.4. The spectrum ofQ is

l,,z 3 X,,n + Xl, kk, )kl,

Y___k,l-- Xk,n@ Xl,m, for k 1, n, 1, m.

Proof. It is easy to show that Q 3(Rn () Im + In @ Rm) Rn Rm. A direct
computation, as in Theorem 4.2, shows that k,,Yk, is an eigenpair of Q.

Note that the eigenvectors of the modified nine-point grid are the same as the ei-
genvectors ofthe five-point grid, and hence the partitions ofthe modified nine-point grid
are exactly the same as those of the five-point grid.

Finally, we remark that the adjacency spectra of the grids can also be explicitly
computed in terms of the adjacency spectra of the path graphs.

5. A spectral partitioning algorithm. In this section we describe an algorithm for
finding a vertex separator of a graph by means of its Laplacian matrix. Recall that we
require the separator to partition the graph into two parts with nearly equal numbers of
vertices in each part, and also that the size of the vertex separator be small.

The algorithm uses a second eigenvector of the Laplacian matrix to compute the
partition. We compute xt, the median value of the components of the eigenvector. Let
A’ be the set of vertices whose components are less than or equal to x1, and let B’ be the
remaining set of vertices. If there is a single vertex with the component corresponding
to x, then A’ and B’ differ in size by at most one. If there are several vertices with
components equal to xl, arbitrarily assign such vertices to A’ or B’ to make these sets
differ in size by at most one.

This initial partition of G gives an edge separator in the graph. Let A1 denote the
vertices in A’ that are adjacent to some vertex in B’, and similarly let B1 be the set of
vertices in B’ that are adjacent to some vertex in A’. Let E be the set of edges of G with
one endpoint in A and the other in B. Then E is an edge separator of G. Note that
the subgraph H (A1, B, El is bipartite.

We require a vertex separator of G, which can be obtained from the edge separator
E1 by several methods. The simplest method is to choose the smaller ofthe two endpoint
sets At and B. Gilbert and Zmijewski 29 have computed vertex separators from edge
separators in this manner in the context ofa parallel Kernighan-Lin algorithm. However,
there is a way to choose a smallest vertex separator, which can be computed from the
given edge separator E’.

The idea is to choose a set S consisting of some vertices from both sets of endpoints
A and B, such that every edge in E is incident on at least one of the vertices in S. The
set S is a vertex separator in the graph G, since the removal of these vertices causes the
deletion of all edges incident on them, and this latter set of edges contains the edge
separator El. The set S is a vertex cover (cover) of the bipartite graph H.

A cover of smallest cardinality is a minimum cover. A minimum cover S of the
graph H is a smallest vertex separator of G corresponding to the edge separator El. It is
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well known [36], [47] that a minimum cover of a bipartite graph H can be computed
by finding a maximum matching, since these are dual concepts.

In general, S will consist of vertices from both A and B. Let As and Bs denote the
vertices ofS that belong to A and B, respectively. Then S separates G into two subgraphs
with vertex sets A A’\As, B B’\Bs. Usually the structure ofH permits some freedom
in the choice of the sets At and Bs; only the sum ]AI + BI is invariant. This freedom
can be used to make the two sets A and B less unequal in size. The sets As and B may
be computed from a canonical decomposition of bipartite graphs called the Dulmage-
Mendelsohn decomposition, which is induced by a maximum matching. An implemen-
tation of this decomposition is described in [52].

The Spectral Partitioning Algorithm is summarized in Fig. 2.

Complexity of the algorithm. In finite precision arithmetic, how accurately must
the components of a Laplacian eigenvector be computed to ensure that the vertices are
correctly partitioned with respect to the median component? Since the eigenvector com-
ponents are algebraic numbers, it follows from a discussion in Aspvall and Gilbert 6
that only a polynomial number of bits are needed to order the components of a second
eigenvector correctly. In theory, this can be computed in polynomial time by any algorithm
that is at least linearly convergent.

In practice, we will have to be content with eigenvector components that are accurate
to a fixed number of digits. Since the Lanczos algorithm is an iterative algorithm, the
number of Lanczos steps required to approximately compute a second eigenvector will
depend on the accuracy desired in the eigenvector. In exact arithmetic, the distribution
of the eigenvalues of the Laplacian matrix Q is the primary factor which influences the
number of steps required to approximate a second eigenvector ( 12.4, Parlett [48,

2.4 ]. We will assume that the number of iterations of the Lanczos algorithm required
to compute a second eigenvector to a small number of digits (say, four) is bounded by
a constant. Our experiments in 7 indicate that this is a reasonable assumption. Each
iteration of the Lanczos algorithm costs O(e) flops, and by our assumption, a second
eigenvector can also be approximated to a few digits in O(e) flops.

The median component of the eigenvector can be obtained by an algorithm that
selects the kth element out of n. This can be done in O(n) time in the worst case by a
well-known algorithm of Blum, Floyd, Pratt, Rivest, and Tarjan. This algorithm finds
the desired element by repeatedly partitioning a subarray with respect to a pivot element,
without sorting the array.

1. Compute the eigenvector x2 and the median value xt of its components;
2. Partition the vertices of G into two sets:

A’ {vertices with Xv <= xt};
B’= V\A;

If IA’I B’I > 1, move enough vertices with components equal to x from A’ to B’ to make this
difference at most one;

3. Let A1 be the set of vertices in A’ adjacent to some vertex in B’;
Let B1 be the set of vertices in B’ adjacent to some vertex in A’;
Compute H (A1, B1, El), the bipartite subgraph induced by the vertex sets A1, B;

4. Find a minimum vertex cover S of H by a maximum matching;
Let S As LJ Bs, where As

_
A Bs

_
B

S is the desired vertex separator, and separates G into subgraphs with vertex sets A A’\ As,
B B’\Bs.

FIG. 2. The Spectral Partitioning Algorithm.
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The partition into the sets A and B can be done in O(n) time. The bipartite graph
H can be generated in O(e) time, by examining the adjacency list of each vertex at most
once. Let m be the smaller of A’I and B’I, and let e’ E’I. A maximum matching
and a minimum cover S can be obtained in O(Ve’) o(Ve) time by an algorithm
of Hopcroft and Karp. Thus the worst-case time complexity of the Spectral Partitioning
Algorithm is O(Vne).

Some comment is necessary about the above analysis. In practice, the matching is
obtained quite fast. Several matching algorithms have been efficiently implemented in
[18 ], [20], [52], and these algorithms exhibit O(n + e) time complexity in practice.
Also, we used a less sophisticated median-finding algorithm, which is O(n) in the average-
case, and O(n 2) in the worst-case. In practice, the dominant step in the Spectral Parti-
tioning Algorithm is the computation of a second eigenvector by the Lanczos algorithm.

6. Results. In this section, we report computational results obtained from the Spec-
tral Partitioning Algorithm and provide comparisons with several other separator algo-
rithms: a modified level-structure separator algorithm implemented in Sparspak, the
Kernighan-Lin algorithm, the Fiduccia-Mattheyses algorithm as implemented by Leis-
erson and Lewis [38 ], and the separator algorithm of Liu [42] based on the Multiple
Minimum Degree algorithm. We implemented the spectral algorithm, the modified
Sparspak separator algorithm, and the Kernighan-Lin algorithm; results for the last two
algorithms were obtained from Lewis (personal communication) and Liu’s paper [42].
Several sparse matrices from the Boeing-Harwell collection 19 and five- and nine-point
grids are partitioned using these algorithms.

Our primary goal in this paper is to establish that the spectral algorithm computes
separators that compare favorably with separators computed by previous algorithms.
Thus in this section, we report statistics about the quality of the separators computed by
the various algorithms. In the next 7, we report the time required to compute the second
Laplacian eigenvector (the dominant computation in the spectral algorithm) for a few
representative problems.

In current work, we are implementing a parallel Lanczos algorithm for computing
the second eigenvector in parallel. This algorithm will be used to compute the separators
in parallel. The parallel separator algorithm will then be used to recursively find separators
and thereby to compute, in parallel, orderings appropriate for parallel factorizations.

Arioli and Duff [5] have reported results on generating bordered block triangular
forms of unsymmetric matrices by finding separators in a directed graph associated with
the matrix. Their goal was to use the bordered block triangular form for the parallel
solution of large, sparse systems of equations.

The spectral algorithm. We computed vertex and edge separators using the Spectral
Partitioning Algorithm from the second Laplacian eigenvector. The Lanczos algorithm
was terminated either when the approximate eigenvector satisfied the eigenvalue equation
to a residual of 10-6 or when 300 Lanczos steps were performed. The partitions obtained
with the Spectral Partitioning Algorithm are tabulated in Table 1. In this table, we list
the edge separator first and the vertex separator next, since the former is computed first,
and the latter is computed from the former. The edge separator E separates the graph
into two parts A’ and B’. The sizes of these sets are shown in the first group of three
columns in the table. We show two vertex separators obtained from El: the first vertex
separator is chosen to be the smaller endpoint set of El; in the table, this set is denoted
A. The second vertex separator S includes subsets of vertices from both endpoint sets,
and is computed by means of a maximum matching to be a minimum vertex cover of
the bipartite graph induced by E.
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TABLE
Partitions using median component ofthe second Laplacian eigenvector.

Vertex separators

Edge separator Endpoint set Matching

Key IE, IA’] IB’I IA, IA’I- IAI IB’I ISI IAI Inl

BCSPWR09 34 862 861 22 840 861 20 857 846
BCSPWR10 44 2,650 2,650 35 2,615 2,650 31 2,623 2,646
BCSSTK13 3,585 1,002 1,001 295 707 1,001 236 862 905
CAN 1072 165 536 536 53 483 536 33 525 514
DWT 2680 85 1,340 1,340 29 1,311 1,340 28 1,313 1,339
JAGMESH 50 468 468 26 442 468 26 442 468
LSHP3466 121 1,733 1,733 61 1,672 1,733 61 1,672 1,733
NASA1824 740 912 912 103 809 912 102 839 883
NASA2146 934 1,073 1,073 96 977 1,073 74 1,036 1,036
NASA4704 1,324 2,352 2,352 185 2,167 2,352 172 2,266 2,266

GRD61.101.5 61 3,111 3,050 61 3,050 3,050 61 3,050 3,050
GRD61.101.9 181 3,111 3,050 61 3,050 3,050 61 3,050 3,050
GRD80.80.5 80 3,200 3,200 80 3,120 3,200 80. 3,120 3,200
GRD80.80.9 238 3,200 3,200 80 3,120 3,200 80 3,120 3,200

For six of the Boeing-Harwell problems, the matching method computes vertex
separators that are almost the same size as the smaller endpoint set. However, on the
CAN 1072 problem, the separator from the matching method is almost 40 percent smaller.
On the average problem in this test set, matching finds a separator that is about 11 percent
smaller than the separator obtained from the endpoint set. Further, since there are two
choices for the minimum cover, a good choice also makes the two part sizes less different.
Thus the use of matching techniques seems to be recommended in this context.

The edge separators obtained are small relative to the total number of edges in each
graph, except for the BCSSTK13 problem, which has a high average degree. For all
problems, except two, the vertex separators obtained are also relatively small (fractional
separator size s < 0.04) in comparison to the parts generated by the separators. The
exceptions are BCSSTK13 and NASA1824. Both these problems have large second ei-
genvalue X2. For BCSSTK13, ),_ 0.65; in contrast, for the 80 80 nine-point grid,
which has good separators, X2 4.6 10 -3.

For the grid graphs, good vertex separators can be computed by explicitly computing
the second eigenvector by the methods in 4. Here, we investigate the partitions obtained
by the spectral algorithm with the eigenvector computed by the Lanczos algorithm. We
partitioned the 61 101 grids initially into two sets with 3050 (50 columns) and 3111
(51 columns) vertices. The edge separator obtained joins vertices in the fiftieth column
to vertices in the fifty-first column. The vertex separator computed is the middle (fifty-
first) column.

In the square grids, the second eigenvalue has geometric multiplicity two, and there
are two linearly independent eigenvectors. The eigenvectors in 4, Y2,1 and y 1,2, obtained
by the Kronecker products of the Laplacian eigenvectors of the path, can be used to
compute two sets of edge separators. One edge separator joins vertices in the fortieth
column to vertices in the forty-first column, and the other joins vertices in the fortieth
row to the forty-first row. In general, the Lanczos algorithm will compute a linear com-
bination of the two eigenvectors described above, leading to a different (and large) edge
separator. However, for the starting vector we used, the Lanczos algorithm converged to
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the eigenvector y 1,2, and the latter edge separator was computed. (The choice ofthe start
vector is described in 7.)

We now compare the quality of the separators computed by the spectral algorithm
with separators computed from several other algorithms.

The modified level-structure separator algorithm. The separator routine in Sparspak,
FNDSEP, finds a pseudoperipheral vertex in the graph, and generates a level structure
from it. It then chooses the median level in the level structure as the vertex separator.
However, this choice may separate the graph into widely disparate parts. We modified
this routine such that the vertex separator is chosen to be the smallest level k such that
the first k levels together contain more than halfthe vertices. A vertex separator is obtained
by removing from the vertices in level k those vertices that are not adjacent to any vertex
in level k + 1. By the construction ofthe level structure, the removed vertices are adjacent
to vertices in level k 1, and hence these are added to the part containing vertices in
the first k levels. The other part has vertices in levels k + and higher. We can also
obtain two edge separators using the level structure from the set of edges joining the
vertex separator to the two parts A and B.

Statistics about the edge and vertex separators computed by this technique are shown
in Table 2. In this table, the vertex separator is listed first and then the edge separator
since the former is computed first and the latter is obtained from the former.

The Spectral Partitioning Algorithm computes smaller vertex separators than the
Sparspak separator algorithm; on the average problem in the Boeing-Harwell test set,
the spectral vertex separator is about half the size of the Sparspak vertex separator. The
spectral algorithm also succeeds in keeping the part sizes less disparate than the latter
algorithm. The average difference in the part sizes is about 7 percent for the Sparspak
separator, but there are problems for which this difference is greater than 20 percent.

For most problems, the spectral algorithm also finds smaller edge separators in the
graph than the Sparspak level-structure separator algorithm. There are a few problems
where the best edge separator obtained by the latter algorithm is smaller than that obtained
by the spectral algorithm, but the former edge separators separate the graph into parts
with widely differing sizes. In the spectral algorithm, equal part sizes can be obtained by

TABIF 2
Partitionsfrom automated nested dissection.

Vertex separator Edge separators

Key IS[ [A[ [B[ [EI[ [A[ IBtA SI [E2[ [A tA SI [B[

BCSPWR09 68 762 893 80 762 961 130 830 893
BCSPWR10 169 2,421 2,710 209 2,421 2,879 317 2,590 2,710
BCSSTKI3 302 764 937 3,035 764 1,239 4,792 1,066 937
CAN 1072 64 478 530 108 478 594 342 542 530
DWT 2680 28 1,327 1,325 84 1,327 1,353 84 1,355 1,325
JAGMESH 26 455 455 50 455 481 50 481 455
LSHP3466 59 1,711 1,696 118 1,711 1,755 116 1,770 1,696
NASA1824 137 839 848 910 839 985 1,347 976 848
NASA2146 131 1,008 1,007 1,473 1,008 1,138 1,569 1,139 1,007
NASA4704 296 2,245 2,163 2,134 2,245 2,459 2,424 2,541 2,163

GRD61.101.5 61 3,050 3,050 121 3,050 3,111 121 3,111 3,050
GRD61.101.9 111 3,025 3,025 327 3,025 3,131 333 3,131 3,025
GRD80.80.5 80 3,160 3,160 158 3,160 3,240 158 3,240 3,160
GRD80.80.9 113 3,136 3,151 333 3,136 3,264 339 3,249 3,151
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partitioning with respect to the median eigenvector component; any other choice of part
sizes can also be obtained by partitioning with respect to the appropriate component.
Since edge separators are computed in the Sparspak algorithm by means of a level struc-
ture, part sizes cannot be controlled as effectively.

The Kernighan-Lin algorithm. The Kernighan-Lin algorithm is a heuristic algorithm
for computing small edge separators. We investigated the use ofthis algorithm separately
and in conjunction with the Spectral PartitioningAlgorithm, to compute edge and vertex
separators.

The Kernighan-Lin algorithm begins with an initial partition of the graph into two
subsets A’, B’, which differ in their sizes by at most one. At each iteration, the algorithm
chooses two subsets ofequal size to swap between A and B, thereby reducing the number
of edges that join A to B. We refer the reader to Kernighan and Lin 35 ], or Gilbert and
Zmijewski 29 for a detailed description of how the algorithm chooses the subsets to be
swapped. The algorithm terminates when it is no longer possible to decrease the size of
the edge separator by swapping subsets. In our implementation, each iteration could
require O(n 3) time, though in practice, often the running time is O(n 2 log n), the time
required for n sorts.

One initial partition we could use is the edge partition obtained from the Spectral
Partitioning Algorithm, and a second choice is to use a randomly computed initial par-
tition. We consider the four graphs with the largest edge separators from Table 1, and
report the sizes of the edge and vertex separators obtained with the Kernighan-Lin al-
gorithm in Table 3. An edge separator was computed first, and then a vertex separator
was obtained as before by matching methods. The column labeled "SP" corresponds to
the output of the spectral algorithm, "SP, KL" corresponds to the Kernighan-Lin al-
gorithm with initial partition from the spectral algorithm, and "KL" corresponds to the
Kernighan-Lin algorithm with a random initial partition.

The application ofthe Kernighan-Lin algorithm with the spectral partition as input
succeeds in reducing the sizes of the edge separator considerably for two of the four
problems. Thus if one is primarily concerned with small edge separators, applying the
Kernighan-Lin algorithm to the partition produced by spectral algorithm could be

TABLE 3
Partitions from the Kernighan-Lin algorithm. The first table describes the edge separators, and the second,

vertex separators.

Key A’I B’I SP SP, KL KL

BCSSTK13 1,002 1,001 3,585 2,880 3,550
NASA1824 912 912 740 739 739
NASA2146 1,073 1,073 934 870 870
NASA4704 2,352 2,352 1,324 1,313 1,525

SP SP, KL KL

Key ISI IAI Inl ISI IAI Inl ISI IAI Inl

BCSSTK13 236 862 905 250 870 883 284 772 947
NASA1824 103 839 883 102 830 892 102 830 892
NASA2146 74 1,036 1,036 74 1,036 1,036 74 1,036 1,036
NASA4704 172 2,266 2,266 172 2,266 2,266 204 2,163 2,337
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worthwhile. However, the size of the vertex separator is not improved. For two of the
problems, the size remains the same; for a third, it decreases by one, and the size increases
for a fourth problem. Also, for two of the four problems, the spectral algorithm by itself
finds better vertex separators than those obtained by the Kernighan-Lin algorithm alone.

Gilbert and Zmijewski [29] have observed that the quality of the partition found
by the Kernighan-Lin algorithm strongly depends on the quality of the initial partition.
They show for a grid graph that it is possible to choose a bad initial partition for the
Kernighan-Lin algorithm such that the algorithm will not find a minimum edge separator.

Edge separators obtained from the Kernighan-Lin algorithm with initial spectral
partition are better than those obtained from the application of the Kernighan-Lin al-
gorithm with random initial partitions for two of the four problems. Use of the initial
partition from spectral algorithm also helps the Kernighan-Lin algorithm to converge
faster. On these four problems, the Kernighan-Lin algorithm ran on the average about
3.2 times faster when the spectral partition was used. Thus the spectral algorithm could
be used to generate initial partitions of high quality for the Kernighan-Lin algorithm.

The Leiserson-Lewis and Liu algorithms. In [38] Leiserson and Lewis have used
the Fiduccia-Mattheyses algorithm 22 to compute vertex separators and then to order
sparse matrices. Liu [42] uses the Multiple Minimum Degree ordering algorithm to
compute vertex separators, and then improves the separator (by decreasing its size and
making the parts less unequal) by a matching technique. He uses his separator algorithm
in [41 to compute a good ordering for parallel factorization. In both implementations
sparse matrices from the Boeing-Harwell collection are used, so we are able to give a
direct comparison of the first level vertex separator. The data in Table 4 are obtained
directly from Liu’s report 42 and from Lewis (personal communication). In both cases
we have added small disconnected components, which were created by the vertex sepa-
rators, to the smaller of the two sets AI or BI.

The results in Table 4 show that the Leiserson-Lewis implementation and Liu’s
algorithm find separators which are smaller than the spectral separators for the two power
network problems. The reason for this seems to be that for these problems, the spectral
algorithm computes a partition from an eigenvector that has converged to fewer than
two correct digits. The accuracy of the computed eigenvectors is discussed in greater
detail in 7. For the other four problems, the Leiserson-Lewis and the spectral separators
are almost the same size. Liu’s algorithm finds a larger separator than the spectral algorithm
for the BCSSTK13 problem. The Leiserson-Lewis algorithm does a good job of keeping
the part size roughly equal. There is greater difference between the part sizes in Liu’s
algorithm. However, neither the Leiserson-Lewis algorithm nor Liu’s algorithm offers
any easy prospect for a parallel implementation. A factor which cannot be evaluated in

TABLF, 4
Vertex separatorsfrom the Leiserson-Lewis and the Liu algorithms.

Leiserson-Lewis Liu

Key ISI IAI Inl ISl

BCSPWR09 7 858 854 8 1,026 689
BCSPWR10 18 2,641 2,634 19 2,661 2,620
BCSSTKI 3 242 892 869 298 941 764
CAN1072 34 522 516 38 665 368
DWT2680 28 1,339 1,313 26 1,369 1,283
LSHP3466 57 1,708 1,701 61 1,727 1,678
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this comparison is the relative execution time of the algorithms, since these algorithms
were implemented on different computers.

7. Convergence. The dominant computation in the Spectral Partitioning Algorithm
is the computation of the second eigenvector of the Laplacian matrix by the Lanczos
algorithm. Since the Lanczos algorithm is an iterative algorithm, the number ofiterations
and the time required to compute this eigenvector is dependent on the number ofcorrect
digits needed in the eigenvector components. In this section, we describe the details of
an implementation of the Lanczos algorithm for computing this eigenvector, and study
how the quality ofcomputed separators depends on the accuracy in the second eigenvector.

The Lanczos algorithm. The most efficient algorithm for computing a few eigen-
values and eigenvectors of large, sparse symmetric matrices is the Lanczos algorithm.
Since the Lanczos algorithm is discussed extensively in the textbook literature 30 ], 48 ],
we do not include a detailed description ofthe standard algorithm here. The convergence
of the Lanczos algorithm depends critically on the distribution of the eigenvalues of the
underlying matrix. Usually the extreme eigenpairs, i.e., the largest and smallest, are found
first. However it is also known that for operators such as the discrete Laplacian for a grid
problem, or more generally for positive definite finite element matrices which are ap-
proximations to elliptic operators, the Lanczos algorithm converges in most cases to the
extreme fight, i.e., the very large eigenvalues, before delivering good approximations to
the eigenvalues close to zero. This behavior can be explained with the so-called Kaniel-
Paige-Saad theory (see [48]). When computing the smallest positive eigenvalue of the
Laplacian matrix Q, one faces exactly the same situation: the Lanczos algorithm delivers
very good approximations to the large eigenvalues before converging to the desired second
smallest eigenvalue. Thus the Lanczos algorithm potentially requires long runs before it
computes an approximation to the second eigenpair.

A potential modification which can be incorporated in the Lanczos algorithm for
faster computation of the second eigenvector would be to apply the shifted and inverted
operator, i.e., to consider the eigenvalue problem

(Q- rI)-lu #__u.

This is a standard technique in finite element applications [31], and it has been used
very successfully in a variety of implementations of the Lanczos algorithm [21 ], [32 ],
[49 ], [56 ]. In the situation here, a shift r chosen near zero would result in rapid con-
vergence to the eigenvalue 2. This approach cannot be taken here, since it requires the
factorization of the matrix Q ri, which is a large sparse symmetric matrix with the
same sparsity structure as M. Our original goal, however, is to find an efficient reordering
of M, so to be able to factor it efficiently. Hence the "shift and invert" approach would
require us to factor a matrix closely related to M, and thus cannot be considered in this
application.

Reorthogonalization has also been used in the Lanczos algorithm to improve both
its reliability and computational efficiency 49 ], 50 ], 57 ]. However, in this application
we do not require reorthogonalization techniques in their full generality. Only a limited
amount of reorthogonalization is necessary for the computation ofthe second eigenpair.
No reorthogonalizations are performed at the fight end of the spectrum, with respect to
the large eigenvalues, since there is no interest in the accurate computation ofeigenvalues
at this end. Also it is unlikely that preserving orthogonality at the fight end will have any
impact on the convergence of the Lanczos algorithm towards the second smallest eigen-
value, which is at the left end of the spectrum. The first eigenvector xl of Q is e, the
vector of all ones, and this vector can be used for reorthogonalization at the left end of
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the spectrum. At each step we explicitly orthogonalize the current Lanczos vector against
e. This is effectively a deflation of the problem and now the eigenpair ),2, x2 will be
computed as the first eigenpair at the left end of the spectrum.

Another important consideration for the Lanczos algorithm is the choice ofa starting
vector. In the absence of any other information, a random starting vector is appropriate.
However, many practical matrix problems are presented already.in an ordering relevant
to the formulation of the problem, sometimes even in an ordering which is close to a
good band or envelope ordering. In this case it is desirable to transmit this ordering
information to the Lanczos algorithm. This was accomplished by setting the starting
vector in the Lanczos algorithm to r, with r; (n + )/2. This choice also makes
the starting vector orthogonal to e. In most cases this resulted in faster convergence to
the second eigenvector.

Finally, another point needs to be mentioned. Considering the simple structure of
the Laplacian matrix Q, and the seeming simplicity of the task of computing just one
eigenpair at the left end ofthe spectrum, one might be inclined to avoid the complexities
of the Lanczos algorithm and attempt to solve this problem with a simple shifted power
method with a deflation procedure analogous to the one described above. This was tried
as a first attempt at the computation of a second eigenvector, but with very poor results.
The power method converged exceedingly slowly, in many cases exhibiting the phenom-
enon of misconvergence [51]. This meant that the power method settled down at an
eigenvalue ofQ, which was not the Fiedler value, and whose eigenvector correspondingly
delivered a very poor reordering. The results here support the claims of[51 that even
in the simplest cases the Lanczos algorithm is the method of choice, when computing
eigenvalues of large, sparse, symmetric matrices.

Figure 3 contains a description of the specialized Lanczos algorithm for computing
the second Laplacian eigenvector. In this algorithm, we have assumed that the Laplacian
Q(G) is irreducible, or equivalently that the graph G is connected. Many of the sparse
matrices from the Boeing-Harwell collection have disconnected adjacency graphs. If a
graph has k connected components, the first k eigenvectors correspond to the multiple
eigenvalue zero, and the k + th eigenvector is used to partition the graph. A simple
modification to the above algorithm can be used to compute this eigenvector.

Convergence and quality of separators. We now present our results on the number
of iterations and the time required by the Lanczos algorithm as the second eigenvector
is computed to a set of different tolerances. The tolerance criterion, tol, is the 2-norm of
the residual vector Qu Xu, where X, u are the computed quantities at the current step
in the algorithm. We also study the quality of the vertex separators obtained from these
approximate eigenvectors.

We report results for a few representative problems from the Boeing-Harwell col-
lection and for two grid problems in Table 5. The iteration numbers reported are multiples
oftwelve, since we checked for convergence in the Lanczos algorithm by an eigendecom-
position ofthe tridiagonal matrix only after every twelve iterations. Times are in seconds

1. Given the sparsity structure of a matrix M, form the Laplacian matrix O.
2. Pick a starting vector r, with h (n + 1)/2.
3. Carry out a Lanczos iteration with the matrix Q and starting vector r. At each step orthogonalize the

Lanczos vector against the vector e. Stop when a second eigenvector has been determined to
sufficient accuracy.

FIG. 3. The Lanczos algorithm for computing the second Laplacian eigenvector.
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TABLE 5
Convergence results. Times are in seconds on a Cray Y-MP. A blank entry in the separator column indicates

that the separator is unchangedfrom the row above it.

Key tol Items Time IS A B

NASA4704 10- 24 0.27 172 2,266 2,266
10-2 60 0.65
10-3 72 0.80
10-4 96 1.10
l0-5 108 1.30
l0-6 120 1.50

BCSSTKI3 10- 36 0.23 236 905 862
10-2 36 0.23
10-3 48 0.30
10-4 60 0.39
10-5 72 0.49
10-6 84 0.60

BCSPWR10 10- 24 0.24 171 2,619 2,510
10-2 84 0.92 72 2,642 2,586
I0-3 252 7.20 34 2,643 2,623
10-4 300 11.90 31 2,646 2,623

GRD61.101.5 10-2 12 0.15 101 3,050 3,010
10-3 36 0.42 61 3,050 3,050
10-4 96 1.26
10-5 108 1.47
10-6 120 1.67

GRD61.101.9 10- 12 0.16 101 3,030 3,030
10-2 24 0.30 61 3,050 3,050
10-3 108 1.53
10-4 120 1.76
10-5 144 2.38
10-6 156 2.70

on a Cray Y-MP, using our vectorized Lanczos code. For each value of tol, we report
the size ofthe vertex separator and the corresponding part sizes computed by the Spectral
Partitioning Algorithm. Blank entries in the separator columns mean that the separator
computed is the same as the one obtained with the previous tolerance.

For most of the problems that we have computational results, it is only necessary
to compute the second eigenvector to a tolerance ofabout 10-2, to obtain the best separator
obtained by the spectral algorithm. This accuracy requires only a modest number of
Lanczos iterations, and can be obtained reasonably fast. One class of notable exceptions
is the power network problems, illustrated by BCSPWR10 in the table. For these problems,
the average degree of a vertex is small (about 1.5 for BCSPWR10), and the diameter of
the graph is large; hence computing eigenvector components (which represent global
information about the graph) is relatively slow. A large number of iterations are thus
necessary to compute the second eigenvector accurately. In the BCSPWR10 problem,
after 300 iterations, the norm ofthe residual in the eigenvalue equation was about 10 -4.
In this problem, the vertex separator decreases in size as the eigenvector becomes more
accurate.

8. Conclusions. We have considered an algebraic approach for computing vertex
separators and have shown that the eigenvalues of the Laplacian matrix can be used to
obtain lower bounds on the sizes ofthe separators. We have described a heuristic algorithm
for computing vertex separators from the second eigenvector of the Laplacian. Thus the
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spectral algorithm uses global information about the graph to compute separators. It is
enough to compute the eigenvector to low accuracy to obtain good separators for most
problems. Our results show that the spectral separators compare quite favorably with
separators computed by previous algorithms. The spectral algorithm has an advantage
over these algorithms in that its dominant computation is an eigenvector computation
(which involves mainly dense and sparse vector operations), and is fairly straightforward
to compute efficiently on medium-size multiprocessors used in scientific computing. For
previous algorithms, it is either not clear how to implement them in parallel or the
amount of parallelism is not high. Since the spectral algorithm involves mainly floating
point computations, we expect it to be attractive over primarily combinatorial algorithms
on machines like the Cray Y-MP, where floating point arithmetic is considerably faster
than integer arithmetic.

The computation of good separators is useful in many divide-and-conquer algo-
rithms. Several of the new parallel algorithms that have been reported to date make use
of divide and conquer, and hence the spectral separator algorithm will have applications
in parallel algorithm design. The spectral algorithm may also be useful in VLSI layout
problems, since good edge separators are needed in this context.

But our immediate intent was to use the spectral separator algorithm to compute
good orderings for parallel sparse factorizations. More work remains to be done in order
to accomplish this goal. First, we intend to compute and study the quality of orderings
obtained by the recursive application of the spectral algorithm. Second, we are working
on the fast sequential and parallel computation ofthe second Laplacian eigenvector. The
latter algorithm will enable us to compute the separators (and thereby orderings for
parallel factorizations) in parallel. We are investigating the Lanczos algorithm and the
generalized Davidson’s algorithm of Morgan and Scott [46] in this regard.

Finally, much remains to be understood about the theoretical underpinnings ofthe
spectral separator algorithm. It will be useful to obtain results on the quality of the
partitions computed by the Laplacian eigenvector components. It will also be helpful to
identify classes of graphs that are partitioned well by the spectral algorithm.
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Abstract. In this article the orthogonal decomposition of large sparse matrices on a hyper-
cube multiprocessor is considered. The proposed algorithm offers a parallel implementation of the
general row merging scheme for sparse Givens transformations recently developed by Joseph Liu.
The proposed parallel algorithm is novel in several aspects. First, a new mapping strategy whose
goal is to reduce the communication cost and balance the work load during the entire computing
process is proposed. Second, a new sequential algorithm for merging two upper trapezoidal matrices
(possibly of different dimensions) is described, wherein the order of computation is different from the
standard Givens scheme, and is more suitable for parallel implementation. Third, it is shown that
the hypercube network can be employed as a multi-loop multiprocessor. The performance of the
parallel algorithm applied to a model problem is analyzed and computation/communication com-
plexity results are presented. Finally it is shown that the parallel submatrix merging algorithm can
be viewed as a special case of a more general scheme and it is indicated how the generalized scheme
may further reduce the communication cost.
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row/submatrix merging, hypercube multiprocessors
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1. Introduction. Let A be a large sparse m n (m > n) matrix with full col-
umn rank. We consider the problem of reducing A to upper triangular form using
orthogonal Givens transformations on a hypercube multiprocessor. The decomposi-
tion process is commonly expressed as

where Q is an m m orthogonal matrix defined by the sequence of Givens rotations,
and R denotes the derived n n upper triangular matrix. When A is sparse, some
zero entries in A may become nonzero during the computing process and therefore
appear in the final structure of R [2], [4], [12], [18]. Because these nonzero elements
do not exist in A, they are commonly referred to as fill.

It is also known that two kinds of fill may be distinguished when Givens rotations
are applied to a sparse matrix A. They are the fill in the final structure of R, and
the intermediate fill which occurs in an initially zero position during the computation
but is subsequently annihilated at a later step. Although intermediate fill does not
occupy storage in R, it causes higher arithmetic cost. Therefore, serial sparse Givens
algorithms usually aim at reducing both kinds of fill. In order to obtain a sparse R,
George and Heath [5] make use of the following connection between the factor R and
the Cholesky factor of ATA. First, they note that the factor R is mathematically
equal to the Cholesky factor of the symmetric positive definite matrix ATA. Second,
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they observe that if Pr and Pc are permutation matrices, then

(1) (P AP )r(P AP ) P[Ar(P rP )(AP ) (AP )r(AP ) P[(ArA)P 

With these observations, they suggest that a symmetric ordering which produces a
sparse Cholesky factor for ATA also yields an equally sparse R if the permuted matrix
APc is reduced by orthogonal transformations. Although finding an optimal ordering
for a symmetric and positive definite matrix is NP-complete [22], there exist a number
of good heuristic ordering algorithms which perform well in practice and have efficient
implementations [7]. Therefore, it is common practice in sparse matrix computation to
subject a given matrix to such an ordering algorithm before determining the structure
of R.

Although it is apparent from (1) that the row ordering of A does not have any
effect on the sparsity structure of R, it is important in reducing the amount of inter-
mediate fill. In [15] Liu generalizes the row rotations in the George-Heath method [5]
to submatrix merging in his general row merging scheme for sparse Givens transfor-
mations. The row ordering implicitly imposed by the submatrix merging sequence
appears to introduce significantly less intermediate fill in the process of computing R
compared to other known row-ordering schemes [9], [10], [11], [19]. It was also shown
in [8], [15] that the trade-off for the lower computational cost is only a very modest
increase in working storage. Working storage is an important consideration for par-
allel implementation on local-memory machines, because there is relatively much less
memory available on each node processor compared to a sequential machine.

The parallel general row merging scheme we propose is designed for efficient im-
plementation on hypercube multiprocessor architectures, assuming that the columns
of the matrix A have been appropriately ordered for a sparse R. An outline of this
paper follows. In 2 we briefly review the concept of row merge tree and its use in
the general row merging scheme. Interested readers may refer to [5] and [15] for more
details about the sequential algorithms. In 3 we describe a new parallel row merging
scheme featured by employing the hypercube as a multi-loop multiprocessor. In 4
complexity analysis results are presented for a regular grid model problem. Although
we analyze the performance of the proposed algorithm only for the model problem, ex-
perience in other contexts suggests that the results are representative of the behaviour
expected from more general sparse matrices arising from two-dimensional finite ele-
ment analysis of structural and fluid flow problems. In 5 we show that the parallel
submatrix merging algorithm can be generalized to further reduce the communication
cost.

2. Row merge tree and the general row merging scheme. For an easy
explanation of the concept of row merge tree and its role in guiding the computation
in the general row merging scheme, we make use of a k-by-k grid model problem in
presenting the definitions of several very closely related tree structures. They are
referred to as elimination tree, row merge tree, binary row merge tree, and reduced
row merge tree. Our definitions follow Liu [15], except that Liu’s definition of row
merge tree is equivalent to the binary row merge tree defined here.

2.1. Elimination tree and the k-by-k grid problem. The coefficient matrix
A of the overdetermined system corresponding to a k-by-k grid has m s(k- 1)2
rows and n k2 columns, resulting from associating a variable xi with each of the
k2 grid vertices, and s equations (involving the four variables at the corners of the
square) with each of the (k- 1)2 small squares. There is an intimate relationship
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between the ordering of the grid vertices and the structure of the elimination tree
associated with ATA, because the former amounts to permuting the columns of the
coefficient matrix A and thus determines the sparsity structure of R, which in turn
determines the structure of the elimination tree as defined below.

DEFINITION 2.1 (ELIMINATION TREE OF ATA). Given an m n matrix A and
assuming that ATA is irreducible, the elimination tree of ATA is a tree consisting of
n vertices each being uniqtely labelled by an integer in (1, 2,..., n}. Let R denote
the upper triangular factor from the orthogonal decomposition of A or the Cholesky
decomposition of ATA. If ri,j (i < j) is the leading off-diagonal nonzero in the ith
row of R, then vertex j is the parent of vertex in the elimination tree.

The elimination tree [21] of a square sparse matrix M has been used to set up
efficient data structures and to guide serial and parallel computation in factoring M
via Gaussian elimination [17]. For general sparse systems, the ordering schemes which
generate an elimination tree with minimum or near-minimum height were examined
in [13], [14], [16]. For regular grid problems, it is well known that George’s nested
dissection ordering minimizes the fill in R and yields a balanced elimination tree. We
show in Fig. 1 how to generate a nested dissection ordering by recursively defining
separators on a 7-by-7 grid. The elimination tree corresponding to the grid in Fig. 1 is
displayed in Fig. 2. In Fig. 1, vertices 43 to 49 form the separator S, which partitions
the 7-by-7 grid into two 7-by-3 subgrids. Note that the superscript j in our separator
notation S indicates that there are 2j separators at this level of recursive partitioning
and the subscript in (1, 2,..., 2J} enumerates them. The vertices 37 to 39 form the
separator S, and the vertices 40 to 42 form the separator S. S and S partition
the two 7-by-3 subgrids into four 3-by-3 subgrids. Observe that each separator S
corresponds to a chain of length ISI in the elimination tree.

To obtain the row merge tree of an m n matrix A, we add m leaves to the
elimination tree of ATA in the following manner. If A has mi rows with leading
nonzeros in the ith column, mi leaves are attached to vertex in the corresponding
elimination tree.

FIG. 1. Nested dissection ordering of a 7-by-7 grid and separators.

If the resulting row merge tree is not binary, it can be transformed into a binary
tree by removing those parent vertices that have only one child, and by introducing
additional interior vertices (binary splitting) if a vertex has more than two children.
The transformed binary tree is A’s binary row merge tree. For a given mn matrix, its
binary row merge tree is thus a strictly binary tree with m leaves, each corresponding
to a row in the matrix. There are different ways to perform binary splitting of the row
merge tree; to find the best possible splitting in the context of sparse QR factorization
is a research problem in its own right. More on the splitting criterion and strategies
can be found in [2], [15], [23].
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FIG. 2. The elimination tree associated with a nested dissection ordering on a 7-by-7 grid.

Lastly, the reduced row merge tree is the tree induced by the interior vertices of
the binary row merge tree. The "reduced row merge tree" associated with a nested
dissection ordering on a 7-by-7 grid is shown in Fig. 3. Note that each separator S is
represented by its lowest numbered vertex in the reduced row merge tree. Since the
leaves of the binary row merge tree are simply data vertices and the interior vertices
are readily interpreted as task vertices, the reduced row merge tree is particularly
suitable for investigating various task scheduling strategies.

FIG. 3. The reduced row merge tree associated with a nested dissection ordering on a 7-by-7 grid.

The name "row merge tree" is based on the following observation. By the defi-
nition of the binary row merge tree, the leaves of each subtree rooted at an interior
vertex represent a subset of rows from the coefficient matrix A. Since every interior
vertex defines a subtree rooted at itself, one can associate with each interior vertex an
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upper triangular matrix obtained by the orthogonal reduction of the corresponding
rows in its subtree. Clearly the matrix associated with the root of the binary row
merge tree is the triangular factor R.

The general row merging scheme assigns to each interior vertex the task of merging
two submatrices associated with its two children after they are formed. It is desirable
to find an ordering to perform these tasks so that the submatrices are always formed
before they are needed and they are conveniently accessible whenever they are needed.
The postorder traversal of the reduced row merge tree generates such a sequence,
because it ensures that the children are always visited before their parent is visited
in the traversal.

To generate the row merge tree we note that the nonzero structure of the factor
R is available after symbolic factorization of ATA. Alternatively, the structure of
R can be generated directly from A using a symbolic submatrix merging algorithm
described in [15], where more details about the properties of the row merge tree and
other related work can be found. For our purpose, it is essential to understand how the
row merge tree induces a computational sequence for performing Givens rotations in
the serial row merging scheme, and what role the row merge tree can play to identify
and exploit parallelism in the parallel row merging scheme we propose in this article.

3. Parallel row merging scheme. We now consider implementing the numeric
factorization step of the general row merging scheme on a hypercube multiprocessor.
The proposed parallel algorithm is designed to perform the numeric factorization on a
hypercube machine with p 2d processors, where d is the dimension of the hypercube
network. We assume that ATA is irreducible and that the permuted matrix PrAPc,
and the structure of the triangular factor R are all available in the host.

3.1. Basic mapping considerations. Since there is no globally shared memory
among the p processing nodes, or between the host and a node processor, the data
must be distributed among the processors in some way, and the mapping strategy
should be devised to maintain high parallelism throughout the computation. We
exploit the following observations in mapping data and computing tasks to processors.

Observation 1. If all of the rows associated with the leaves of a subtree are assigned
to a single processor, no communication is needed for the designated processor to
execute the sequential row merging scheme on its local data. The computation is
guided by the postorder traversal of the subtree.

Observation 2. The computation associated with each of the p disjoint subtrees
can be completed by p processors independently and simultaneously. The p disjoint
subtrees which represent approximately equal amounts of work are easily identified if
the row merge tree is a balanced binary tree, and there exist heuristic algorithms to
balance [13], [14], [16] and partition [3] an unbalanced binary tree.

Observation 3. Since the tasks corresponding to the subtrees are performed by
different processors on local data independently, as far as the parallel algorithm is
concerned, the p subtrees (except for the root vertices) may be simply pruned from
the row merge tree after they are appropriately identified. By doing so, we obtain a
much shorter and smaller tree with p leaves. Associated with the p leaves are the p
submatrices res.ulting from the independent merging operations by the p processors.
The design of our parallel algorithm will focus on how the p processors cooperate to
complete the factorization process from this stage on.

Since the computation is now guided by a row merge tree of p leaves, and the
task associated with each interior vertex merges the two submatrices associated with
its two children vertices, clearly the number of tasks becomes steadily less than the



458 ELEANOR CHU AND ALAN GEORGE

number of processors as we traverse the tree to the root. With the dimension and
the fill of the submatrices increasing, the merging tasks increase in cost, eventually
reaching the same complexity as that of the sequential algorithm. Thus, multiple
processors must now be employed to complete each submatrix merging task in order
to achieve acceptable parallelism.

3.2. A parallel submatrix merging algorithm. There are two crucial deci-
sions to be made with respect to the implementation of the "one task divided among
q processors" strategy, namely, how to map data among the q processors and how
to embed an efficient communication topology in the hypercube connection network
provided for this subset of q processors. The fundamental step in the general row
merging scheme is the merging of QR factorizations of subtrees. Corresponding to
each interior vertex of the binary row merge tree is a task that "merges" the two
submatrices associated with the two children of that vertex. More specifically, the
task computes the QR factorization of the matrix consisting of those nonzero rows
from either child’s factor R that contain nonzeros only in columns corresponding to
the parent vertex and its ancestors in the elimination tree. Barring accidental cancel-
lation, these rows as drawn from either child, with identically zero columns removed,
form a dense upper trapezoidal submatrix in the corresponding child’s QR factor. In
Liu’s terminology these submatrices are "essentially full" and dense matrix operations
can be used to obtain the required QR factorization. Thus, the general row merging
task for vertex c is to compute the dense QR factorization of two dense upper trape-
zoidal submatrices. The data to be divided among the q processors comprise the two
upper trapezoidal submatrices. Each task computes either one row of the final upper
triangular matrix R or ISI rows of R in the case that the task vertex represents a

chain of IS[ vertices in the elimination tree.
We shall first propose a variant of the sequential Givens algorithm, which is more

suitable for parallel implementation.

Pairwise Givens rotations. Without loss of generality, we shall present the
method by applying it to the merging of two full n n upper triangular matrices R
and/. In this method, we pair the ith row of R and the ith row of R for 1 <_ i <_ n.
We then apply the algorithm below to each pair of rows, resulting in annihilating the
first nonzero value in row i,..

if > Ir,l then

s *-- l/v/1 + t2

cst
else

t
c 1/1 + t2

s ct
for j i,i + 1,...,n do

V ri,j
W ri,j
ri,j cv + sw, --sv + cw

We now have n updated rows in R and (n- 1) updated rows in/. (The nth row of/
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has been eliminated.) The rows with their first nonzero elements in identical positions
are again paired together, and we again apply the algorithm above to each pair of
rows, where 2 _< <_ n. This is repeated (n-2) more times to eliminate the remaining
(n- 2) rows from R. The arithmetic cost (in terms of multiplicative operations) is
the same as the standard Givens method, namely, (2/3)n3 + 2n2 + (4/3)n.

In the proposed method, the q row merging operations corresponding to the q
pairs of rows can be done simultaneously by q available processors. By distributing
the rows of the two submatrices over a loop of q processors in a wraparound fashion,
and requiring each processor to send the reduced row to its right neighbour after
each row merging operation, we obtain a parallel algorithm to perform the submatrix
merging operation on a loop of q processors. In [1], it is shown that the basic scheme
can be easily adapted to accommodate the case when the two submatrices are of
different dimensions.

3.3. Hypercube partitioning. In the previous section we proposed a parallel
algorithm to divide a submatrix merging task among a number of processors which
form a loop. When the precedence relationship induced by the row merge tree al-
lows us to process several tasks in parallel, it is desirable to partition the available
processors into several loops one for each task. Furthermore, if these tasks have
different computational demand, it is also desirable to assign more processors to a
bigger task and fewer processors to a smaller task so that the work can be divided
evenly among all processors. Therefore, before we can lay out the overall strategy, an
important question is "Given an arbitrary number q, does there always exist a subset
of q processors in the hypercube machine so that a loop can be embedded?" Although
the answer to this question is negative, we have an affirmative answer if q is an even
number. With this very mild restriction, we can actually obtain much stronger re-
sults which turn out to be very important for the performance of the proposed parallel
algorithm. We establish these results in the following theorem.

THEOREM 3.1. Suppose we are given a hypercube connection network with p 2d

processors. If it is desirable to partition the set ofp processors into k disjoint subsets
$1, $2, and Sk such that

k

and

where is a positive integer, then there exists a (possibly different) partition which
maintains the cardinality of each subset, and permits the embedding of k disjoint
loops, one .for each subset. For each 1 1 we have a degenerate loop consisting of
two processors.

Proof. There is a unique mapping from the d-bit reflected binary Gray code [20] to
the 2d processor id’s of the given hypercube machine, and it is known that the former
coding embeds a loop on the hypercube network. Furthermore, any two processors
whose id’s are different in one bit, regardless of the bit position, are connected by a
direct link in a hypercube network. By the definition of the reflected binary Gray
code, if we represent the 2d-1 (d- 1)-bit Gray code by the array

G(d 1) {Go, G, G,..., G-,_},
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then the 2d d-bit Gray code can be defined recursively by the following equation.

G(d) (OGo, OG1, 0G2,..., 0G2d-l_l, 1G2d-l_,..., 1G2, 1G, 1G0}.

Thus any two Gray codes in symmetric positions from the left end and the right
end of the array G(d) also differ in one bit only. Therefore, the processors from
the left end of the array and the/1 processors from the right end of the array form a
loop of 2ll processors. The 2t2 processors for $2 can be chosen from the remaining
processors in exactly the same manner, and so on for the 2i processors for the subsets
Si, 3 _< _< k. This proves the theorem. [:]

The implication of Theorem 3.1 is in essence that it is not only possible to assign
processor loops of different sizes to handle independent tasks which demand different
amounts of computation, but it is also feasible to have all of the processor loops
operating simultaneously. Using a hypercube of dimension 4, we illustrate three such
partitionings in Fig. 4.

0000 0001 0011 0010 0110 0111 0101 0100

1000 1001 1011 1010 1110 1111 1101 1100

FIG. 4. Embedding loop(s) in a hypercube o.f dimension 4.

4. A mapping example and complexity analysis. Using the reduced row
merge tree in Fig. 3 as an example, we show how the ideas presented in the previous
sections can be used to divide the computing tasks among the processors in a hyper-
cube network. Suppose we are given a hypercube of dimension 3, i.e., there are eight
processors available. Our discussion so far suggests the following mapping. Each of
the eight independent subtrees rooted at vertices 5, 6, 23, 24, 14, 15, 32, and 33 will
be assigned to one processor. The four tasks associated with vertices 7, 25, 16, and
34 will each be handled by two processors. In the next level, the two tasks associated
with vertices 37 and 40 will each be handled by a loop of four processors. Finally
the merging of two 7-by-7 full upper triangular matrices, which is the task associated
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with the root vertex 43, will be handled by a loop of eight processors. Since the loops
assigned to the task vertices at the same level of the row merge tree form a partition
of the hypercube network, there is no competition for communication channels among
the loops.

We next present analytical complexity results for a k-by-k grid model problem on
a hypercube multiprocessor of dimension d. The analysis of the model problem can
be greatly simplified by examining the work associated with a branch of the reduced
row merge tree, which corresponds to the critical path of the parallel algorithm.
For convenience, we shall assume k 2 1, where I > 0. Letting p denote the
total number of node processors on the machine, we have p 24. Since all of the
p processors cooperate to perform the last task of merging two full k-by-k upper
triangular matrices, we shall assume k >> p, that is, that k is sufficiently large that
we can effectively use p processors in the final step(s).

Recall that each separator is represented by its lowest numbered vertex in the
reduced row merge tree. Now, with p 24 processors available, the subtrees rooted
at separators S/d, 1 _< _< 2d, will each be assigned to one processor, and the separators
one level above will each be assigned to a loop of two processors, and so on. The last
separator, S, which is the root of the reduced row merge tree, will be assigned a loop
of p processors. Therefore, if we let T(S,p/2J) denote the time (computation and
conmunication) required by the parallel submatrix merging operation associated with
one task vertex, and let Ts(S) denote the time for processing the subtree rooted at
separator S by the serial row merging scheme, the total time required by the parallel
row merging scheme to factor the coefficient matrix associated with the k-by-k grid
can be expressed as

d-1

(2) Tkk(k,p) T8 (sd ) + T S{, -j=O

where each S refers to one particular jth level separator which is located on a highest-
cost path of the reduced row merge tree. (There may be several.) Thus the values
of i’s may not be the same for all S. To determine a highest-cost path, note that
the subgrids produced by the separators may have one more grid line along one or
more sides. Such y-by-r/subgrids are termed bordered subgrids in [7]. Now if we let
p(y, i, q) be the cost (computation and communication) of factoring on q processors
the coefficient matrix associated with an -by-r] subgrid which is bordered along
sides, then we have

(3) p(r], j, q) > p(y, i, q), for every j > i.

Therefore, a highest-cost path (which is not unique here) can be defined by the sepa-
rators in Fig. 5. Applying this to the 7-by-7 grid in Fig. 1, the corresponding branch
on its row merge tree is identified by the path labelled in Fig. 6. We can then derive
the total cost of the parallel algorithm by setting up the recurrence equations for the
subproblems along the highest-cost path.

Since the derivation of the individual cost functions is straightforward but quite
tedious, and the complete details of the cost functions as well as the recurrence equa-
tions are available in the report [1], we shall present only the solution p(k, O,p) here
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FIG. 5. Separators along a highest-cost path of a 15-by-15 grid ordered by nested dissection
method.

FIG. 6. A highest-cost branch on a reduced row merge tree associated with a nested dissection
ordering o] a 7-by-7 grid.

in Theorem 4.1, which gives the upper bound of the sum of total computational cost
and communication cost. Included in the communication cost are the start-up time,
the time for passing data during each submatrix merging operation, the time for data
relocation when combining loops, as well as the time for data distribution within
each loop before each submatrix operation. In deriving the upper bound, we have
made the following assumptions. First, we assume that all processors in a loop send a
reduced row to their neighbours simultaneously during the pairwise Givens reduction
process, and the communication time is determined by the row with most nonzero
elements. Second, we assume the maximum communication path, log2p, where p is
the total number of processors in the hypercube network, in computing the time for
relocating one submatrix when combining two loops of processors for the next merging
operation. Third, we observe that each loop of processors form a subcube and that
messages can be pipelined in the data distribution phase. The proof of Theorem 4.1
can be found in [1] and is omitted.

THEOREM 4.1. An upper bound of the total cost for applying the parallel row
merging scheme to a k-by-k grid model problem on a hypercube having p processors is
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given by

(16 146 371 /k3 k2 log2 k 521k2p(k, 0,p) < + --c 12vffic --p +31p + -- (log2p)c

24
c 155 (c + )

p p 2 p
2O
2---kp + O(k log2 p),

where is the start-up time .for sending a message and is the ratio of the time .for
transmitting one floating-point number across one link to the time for one floating-
point multiplicative operation.

Comparing with the serial cost given by
155 569 k2 488 176

(5) 9(k O) 829k3 + k21og2 k / k

we see that the coefficient of the O(k3/p) term for the parallel arithmetic cost in
p(k,O,p) is (146/3), which is slightly larger than the coefficient of (829/21) of the
O(k3) term of the serial arithmetic cost O(k, 0). They are not exactly the same because
the tasks associated with the critical path are bigger than the tasks associated with
other branches of the row merging tree. The upper bound we obtained in Theorem 4.1
for p(k, O, p) indicates that the O(k3/p) communication cost of the proposed algorithm
is of the same order of magnitude as the arithmetic cost. This is undesirable on a
machine where the communication cost is not negligible compared to the arithmetic
cost. In the next section we examine a generalized version of the parallel submatrix
merging algorithm and indicate how it may reduce the communication cost.

5. Generalizing the algorithm. The analysis detailed in [1] indicates that the
O(k3/p) term in the total communication cost has sole contribution from the pairwise
Givens reduction process. We first recall that the parallel implementation we proposed
in 3.2 requires that the consecutive rows of both matrices be assigned to consecutive
processors of the loop, with assignment "wrapping around" to processor 1 after a
pair of rows is assigned to processor q. This mapping strategy can be viewed as a
special case of a more general block wrap-mapping scheme, where each submatrix
is divided into blocks of b consecutive rows, and the consecutive blocks are wrap-
mapped to the processors in the loop. When the block size b 1 we obtain the
parallel pairwise Givens reduction scheme. When the block size b > 1, more nonzeros
may be annihilated in merging the two blocks before data transmission is needed. The
results presented in Theorem 5.1 below show that by choosing a particular block size
the communication cost for merging two n x n full upper triangular matrices using
a loop of q processors can be reduced from O(n3/q) to O(qn2), and that the leading
term of the arithmetic cost remains unchanged. The proof of Theorem 5.1 may be
found in [1].

THEOREM 5.1. Consider merging two n x n full upper triangular matrices on
a loop of q processors using the parallel pairwise block Givens scheme. By choosing
the block size b n/q2, the arithmetic cost Cb(n, b,q) and the communication cost
Cb(n, b, q) are given by

2 n3 n2 2 n3 n3

+ 2 6
3 q q 3q3

n3 n2 n2 n2

/ 4- 2--- -+- 8- 4q-

n3

10q5
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and

(7) __( n2
2qn2-6n2+3qn+7n2

+3q--12 q

n2 n2 n n
-30-v / 24-7 3n / 12- 12-)qo q q

Comparing Cb(n, n/q2, q) with Cb(n, n/q2, q), we see that the arithmetic cost dom-
inates the communication cost when n >> q. More specifically, the O (n3/q) arithmetic
cost and O (qn2) communication cost imply that q should be chosen to be less than
v in order to have the arithmetic cost dominate the communication cost. This im-
plication is important because for the k-by-k grid model problem we have analyzed
in this section, the last task on the critical path involves merging two k k full upper
triangular matrices using a loop of p processors.

In [1] it is also shown that the communication cost Cb (n, b, q) is b times smaller
than that of the parallel pairwise Givens scheme. Since the results in this section
are obtained without pipelining the b rows in data transmission, more savings can be
expected when data are also pipelined. All of these suggest that the communication
cost of the parallel row merging scheme can be reduced by applying the generalized
submatrix merging algorithm with appropriate block size to each task. The develop-
ment of an enhanced parallel row merging scheme by incorporating this idea merits
further research.
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ROBUST REGRESSION COMPUTATION USING ITERATIVELY
REWEIGHTED LEAST SQUARES*
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Abstract. Several variants of Newton’s method are used to obtain estimates of solution vectors
and residual vectors for the linear model Ax b / e btrue using an iteratively reweighted least
squares criterion, which tends to diminish the influence of outliers compared with the standard least
squares criterion. Algorithms appropriate for dense and sparse matrices are presented. Solving
Newton’s linear system using updated matrix factorizations or the (unpreconditioned) conjugate
gradient iteration gives the most effective algorithms. Four weighting functions are compared, and
results are given for sparse well-conditioned and ill-conditioned problems.

Key words, iteratively reweighted least squares, robust regression
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1. Introduction. Consider the linear model

Ax b + e btrue,

where A, the model matrix, has dimension m n; b is the vector of observations;
btrue is the unknown vector of true values; e is the unknown vector of observation
errors; and x is the unknown vector of parameters. For a given vector x, we define
the residual vector r(x) b- Ax.

We discuss in this paper various algorithms for obtaining estimates of the solution
vector &, the residual vector r(&), and the norm of the residual vector using the
iteratively reweighted least squares criterion: i.e., we wish to solve the problem

m

(1) mnZ p(r,(x)),
i--1

where p is a given function. For a discussion of the statistical properties of this type
of regression, see, for example [19]. Taking p(z) z2/2 gives the ordinary linear least
squares problem. In order to reduce the influence of outliers, other functions have been
proposed, and we consider in this paper four such functions, each twice continuously
differentiable almost everywhere, with nonnegative second derivative wherever it is
defined. Huber [lS] used

z:/2,
2/2,

where is a problem-dependent parameter. Dutter [11] gives a safeguarded algorithm
that overcomes degenerate cases. Minimizing Huber’s function leads to a quadratic
programming problem, and it is possible to develop finitely terminating algorithms as
in the work of Clark and Osborne [3]. The logistic function [4] is

p(z) ;32 log(cosh(z/f)).
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FIG. 1. The weighting functions (solid lines) with the standard least squares function (dotted
lines) as reference. The constant fl is set to 1.

Fair [14] proposed the function

p(z)   (Izl/Z- +
Huber [18] also proposed the function

p(z) { z2/2’ Izl -< ’2/2, Izl >,
which is given the name Talwar [16] in [4]. Graphs of these functions are given in Fig.
1. There have been other proposals to use other convex and nonconvex weighting
functions, but the methods we discuss may have stability problems for noapositive
second derivatives.

The subject of this paper is the comparison of some algorithms for solving the
iteratively reweighted least squares problem, a comparison of the performance of var-
ious weighting functions, and a discussion of the interaction between the weighting
and the conditioning in the matrix A.

Robust regression through the use of functions related to least squares has been
the subject of intense research, and we note only selected references here. Dempster,
Laird, and Rubin [6] discuss statistical properties of the estimates under the assump-
tion that the observation errors are independent normal. Coleman et al. [4] developed
a high quality set of routines to compute robust estimators for eight weight functions,
including the four discussed in this paper.
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We take the viewpoint that the variance of the observation errors is known, at
least approximately, and thus the scale is fixed. This is appropriate in some but not
all applications, and it is possible to obtain simultaneous estimates of the scale factors
and the solution; see, for example, Shanno and aocke [25] and Ekblom [13].

The algorithms are presented in 2, and results are discussed in 3 and summarized
in 4.

A similar computational problem (see (2)) arises in the core step in algorithms like
that of Karmarkar for solving linear programming problems [20], and the algorithms
in this paper have application there as well.

2. The algorithms. We will use Newton-like methods to solve our problem.
Our first observation is that although we are minimizing over x-space, it is easier to
work in the appropriate subspace of r-space. To establish some notation, we express
(i)

m

mn :(x) =_ mn f(r(x)) =_ mn p(r(x)).
i--i

Let y be the gradient vector for f(r):

yi p’(ri),

and let D(r) be a diagonal matrix with entries

dii p"(ri).

Now, the function ](x) has a gradient t) and Hessian matrix of second derivatives/7/
defined by

-ATy, [-I ATDA,

and/:/is positive semidefinite if p" is nonnegative.
The step direction for Newton’s method for minimizing ](x) is _/2/-1, and

a change of in the x variables will create a change in the residual of s -A, or

(2) s -A(ATDA)-IATy.

Since we need to assess the progress of Newton’s method by evaluating the function
p at each element of the residual, the computation is more conveniently done without
the x variables. Further, determining the search direction for the x variables involves
a computation whose conditioning is related to that of A, but, as we demonstrate
below (see Algorithm 2), the conditioning for the problem of determining the search
direction in r depends on QTDQ, where the columns of Q form an orthonormal basis
for the range of A.

The general method is as follows:
Given an initial x, compute an initial r b- Ax.
Repeat until convergence:

1. Compute the search direction s -A(ATD(r)A)-ATy.
2. Perform a linesearch to determine a value a for which
f(r + as) is sufficiently less than f(r).

Upon convergence to a residual vector ropt, compute the correspond-
ing Xopt by solving the consistent linear system Ax b- ropt.
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Due to round-off errors, the system Ax b- ropt may fail to be consistent, and
the norm of the residual from this system is a good diagnostic.

If fewer than n residuals are below the cut-off value/ for the function p, then
the Hessian matrix may be rank deficient. To prevent this from occurring at initial
stages of the iteration, where we may be far from the optimal solution, we gradually
decrease the cut-off value from a very large number to the desired value over the first
four steps of the iteration. This has the effect of starting the iteration from the least
squares solution.

Developing efficient and reliable linesearch algorithms is not an easy task, but
one such algorithm, due to Jorge J. Mord and David J. Thuente, is CVSRCH in the
MINPACK collection of routines. It uses function and gradient values. Since the value
a 1 is almost always a good choice, we use that for the initial guess and use coarse
tolerances (.1) for convergence in x, the function value, and the gradient value.

We now focus attention on the strategies for computing the search direction. Our
basic tool is the QR factorization of an m n matrix into the product of an m n
matrix Q with orthogonal columns, and an n n upper triangular matrix R (see, for
example, [7]).

Algorithm 1. If p" is nonnegative, then the matrix D has nonnegative elements,
and we may factor the matrix D1/2A as (/. The definition (2) of s then becomes

s --D-I/20(TOTO)-[TOTD-/2y -D-/2OOTD-/2y.

Dutter [10] uses this formulation in his "HV algorithm" for the Huber function.

Algorithm 2 (QR Newton). The first algorithm requires a QR factorization
of an m n matrix at each iteration. To avoid this, we could factor A QR, which
yields

s -QR(RTQTDQR)- RTQTy _Q(QTDQ)-1QTy.

Each iteration is accomplished using the Cholesky factors of the symmetric n n
matrix B QTDQ.

Algorithm 3 (/ Newton). We can express the matrix B as

m

B QTDQ d -T
iiqiqi

i=1

where cT is the ith row of Q. Only the elements dii change from iteration to iteration,
and as the algorithm converges, we can expect many terms in the summation to
remain relatively constant. Thus a reasonable way to reduce the computational work
is to monitor B and perform rank-one updates to the Cholesky factors only when
the change in some component diiTi is large compared to the size of B. One
way to measure this is to test whether Ti times the change in dii is greater than
sone tolerance times the norm of the matrix that we have factored. If so, a rank-one
update (or downdate) to the factorization can be performed using standard algorithms
implemented, for example, in LINPACK [7]. Ekblom [13] also used the update idea,
but worked with ATDA rather than with QTDQ.

Since B is not necessarily fully updated, the computed search direction is not
necessarily the true Newton direction but is some approximation to it.
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TABLE 1
Costs per iteration of the various algorithms. Not included in the table are costs common to

all algorithms: the function evaluations in the line search (mp evaluations each) and the Hessian
evaluation (m p evaluations). "Qmult." means multiplication ofQ (or QT) times a vector. "Solve"
means solution o.f a linear system using Cholesky factors.

Algorithm Work per iteration Operations counts (full matrix)

1. First Newton

2. QR Newton

3. B Newton

4. PCG Newton

5. CG Newton

QR fact. and 2 Qmults.

Form and factor QTDQ,
1 solve, and 2 Qmults.

k updates to B factors,
1 solve, and 2 Qmults.

k updates to B factors,
pcg itns., and 2 Qmults.

2 Qmults. and cg itns.

mn2 1/3n3 + 2mn + O(n2)

m(n2 + n)/2 + n3/6 + 2mn + n2

(1.75k + 1)n2 + 2mn

1.75kn2 + 2(/+ 1)mn + In2 + 5nl

2(1 + 1)mn + 5nl

Algorithm 4 (PCG Newton). In Algorithm 3, we established a distinction
between a matrix/ for which we have Cholesky factors and the current true matrix
B, and we settled for an approximation to the Newton search direction rather than
fully updating/. We can, however, compute the Newton direction quite efficiently
by using the preconditioned conjugate gradient algorithm to solve the linear system
Bw QTy with/ as the preconditioner. Decreasing the number of matrix updates
increases the number of conjugate gradient iterations.

This algorithm is related to the truncated Newton method [5], [22].

Algorithm 5 (CG Newton). For the particular weighting functions we are
using, the matrix D has a very special form. For the Huber and the Talwar functions,
each diagonal entry is 1 for residuals with magnitude less than /, and 0 for the
outlying residuals. The logistic and Fair functions have diagonal entries that fall
quickly from 1 to 0 as the residual increases from 0. We notice that B is a multiple
of the identity matrix whenever D is, and thus for practical problems B may differ
from the identity by a matrix of small rank, where the rank is equal to the number
of outliers, plus a matrix of small norm (for the logistic and Fair functions). Thus we
also consider computing the Newton direction using the conjugate gradient algorithm
with no preconditioning. This algorithm is particularly well suited for large sparse
problems, since only the matrix Q and the diagonal matrix D are required. Conjugate
gradients have been used by Scales, Gersztenkorn, and Treitel [24] with p(z) -[zip (p
less than one), but they solved linear systems involving ATDA rather than QTDQ.

Table 1 presents the costs associated with an iteration of each of the five algo-
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rithms. The number of floating point additions and multiplications are tabulated,
assuming that the matrix is dense and that updates to Cholesky factors result from
increases in diagonal elements (at a cost of 1.5n2 operations) as often as decreases
(2n2 operations). From these numbers we see that function and Hessian evaluations
have a negligible cost compared to the linear algebra overhead of an iteration.

For sparse matrices, working with the original matrix A rather than the factor Q
would better preserve sparsity but, as we will see later, the linear system expressed in
terms of Q requires no preconditioning in the conjugate gradient algorithm, and this
is a substantial savings. There has been some work in reorderings of A that produce
a sparse representation of Q (see, for example, Tewarson [27], Chen and Tewarson [2],
and Duff [8]), but most of this work has been directed toward maintaining sparsity
in Q and R simultaneously. The sparsity of R is not essential to the algorithms
considered here.

A compromise between sparsity and ease of solution of systems QTDQ can be
achieved by performing an LU factorization of A rather than a QR. Peters and
Wilkinson suggested the use of this factorization for standard least squares problems,
and BjSrck and Duff [1] studied its implementation for sparse matrices. All of the
algorithms above can be rewritten for this factorization, substituting L for Q, and
U for R. Since it has been observed that L is usually well conditioned, even for
ill-conditioned A, there is hope that solving systems involving LTDL will be substan-
tially easier than solving those involving the original matrix ATDA. Computational
experience is reported in 3.3.

3. Results.
3.1. A note on perturbations. The solution x* of an iteratively reweighted

least squares problem is characterized by the gradient of ](x*) being zero. The weight
functions p are designed to diminish the effects on x* of outliers in the observations b,
but how is x* affected by small perturbations in b? A simple first-order perturbation
analysis will yield insight.

The gradient of .f(x*) is -ATp’(b Ax*) O. If b is changed to b+ Ab, then the
solution will be changed to x* / Ax, where

-ATp’ (b + Ab- A(x* + Ax)) O.

We expand this to first-order terms as

ATp’(b+Ab-A(x*+Ax)) . AT(p’(b-Ax*)+p"(b-Ax*)(Ab-AAx)) ATD(Ab-AAx),

and Ax is a vector that makes this equal to zero. Thus,

ATDAAx . ATDAb,
or, Ax is defined by Ax ,, AiDAb, where A?D (ATDA)-IATD is a weighted pseudo-
inverse of A. We now have the conclusion that

(3) II xll2 IIAVDII211 blI2,
Unfortunately, the D in this expression is evaluated at the unknown solution r*, but
results in [26] and [21] guarantee that if D is positive semidefinite and if Q is a matrix
whose columns form an orthonormal basis for the range of A, and if _< 1 is the
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smallest of the nonzero singular values of all matrices formed from nonempty subsets
of rows of Q, then

Thus the change (3) in x can be bounded by the change in b magnified by a factor
dependent only on the matrix A.

These expressions suggest that for ill-conditioned matrices A the weighting func-
tions will not overcome the sensitivity of the solution to small perturbations in the
observations, and this will be illustrated by the numerical results.

3.2. The test problems. There is a large number of small least squares test
problems in the literature (see, for example, the previously cited references) but a very
small number of large ones in the Harwell-Boeing test set [9]. This makes parametric
studies difficult. Shanno and Rocke [25] and others use randomly generated problems,
but such problems tend to be very well conditioned [12].

The following procedure was used to generate test problems with varying condi-
tioning and varying number of outliers.

The m x n matrix A was constructed as the product of three matrices C, E, and
F. The matrix C had the same dimensions as A and had #m/2 nonzeros in each
column, each sampled from a normal probability distribution N(0, 1). The positions
for the nonzeros were chosen randomly from a uniform distribution. F was a square
matrix with diagonal entries chosen to be two times N(0, 1) samples and with one
off-diagonal N(0, 1) entry (except in row n) in a random position. E was a diagonal
matrix with entries between 1 and 1/a (equally spaced on log scale). The product
A CEF has approximately #m nonzeros per column (i.e., "density" #) and its
singular values usually have separations proportional to those of E.

The true solution vector was taken to be z, the vector of all ones, and the right-
hand side was chosen to be b Az + aN(O, 1), except that outliers were generated by
adding 100aN(0, 1) to nout randomly chosen elements of b. In all cases, a was taken
to be .01.

Thus, the test problems have five parameters: m, n, #, a, and not.
Computations used double precision arithmetic on a Sun-3 machine. Convergence

was declared when the change in the function value was less than 10-5 This test is not
suitable in general, but because of the uniform scaling of our problems it is sufficient
for our purposes. See [4] for a better termination criterion.

The termination test for the conjugate gradient iterations was that the residual
norm be less than 10-8 times the norm of the right-hand side, forcing a rather accurate
solution to the linear systems.

We investigated several questions, some related to the algorithms and some related
to the performance of the various weighting functions. Since Algorithm 1 is not as
stable as Algorithm 2 and failed to find a full-rank Hessian matrix quite often in the
experiments, we do not present data on its performance.

3.3. How well do the algorithms perform? How does the convergence
rate depend on the test problem parameters? As shown in Tables 2 and 3,
there seems to be no trend to increased work as the condition number of the problem
increases or as the number of outliers increases. As the number of outliers increases,
however, there is an increased tendency for the algorithms to fail to find a full rank
Hessian matrix. Updating/} less frequently usually increased the number of function
and Hessian evaluations. But a factor of 10 fewer updates, costing O(n2) each, at worst
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TABLE 2
Results of varying condition number. 500 100 matrix, density ]z .1, nout 10 outliers,

constant 2.5a. Table entries: number o] ]unction evaluations, number of Hessian evaluations,
number of cg iterations, number of Cholesky updates for algorithms with .few or frequent updates to
the ]actors.

Fair, few updt.
Fair, freq. updt.
Talwar, few updt.
Talwar, freq. updt.

175

Fair, few updt.
Fair, freq. updt.
Talwar, few updt.
Talwar, freq. updt.

a 14576

Fair, few updt.
Fair, freq. updt.
Talwar, few updt.
Talwar, freq. updt.

QR [ PCG CG CG-LU

16, 9

19, 9

16, 9

67,10

17, 9

29,11

39,20,0, 100
20,10,0,1184
39,20,0, 100
26,11,0, 788

39,20,0, 100
20,10,0,1184
75,20,0, 100
62,11,0, 788

40,20,0, 100
21,10,0,1184
16, 5,0, 100
31,11,0, 786

16, 9, 76, 100
16, 9, 32,1071
24,11,186, 100
18, 9, 50, 707

16, 9, 76, 100
16, 9, 32,1071
23,11,186, 100
18,10, 53, 709

16, 9, 76, 100
16, 9, 32,1071
60,10,179, 100
56,10, 55, 711

16, 9, 76116, 9,362

24,11,186125,10,520

16, 9, 76116, 9,414

23,11,186 19,10,553

16, 9, 76116, 9,432

60,10,179123,10,568
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TABLE 3
Results of varying number of outliers. 100 x 20 matrices, density # .1, well-conditioned

problems (E =identity matrix), constant 2.5a. Table gives number of function evaluations,
number of Hessian evaluations, number of cg iterations, and number of Cholesky updates.

Outliers
True Est. QR B PCG CG

0 0 Huber
0 0 Logistic
0 0 Fair
0 0 Talwar

10 Huber
10 10 Logistic
10 13 Fair
10 10 Talwar

20 Huber
20 Logistic
20 28 Fair
20 10 Talwar

30 Huber
30 Logistic
30 48 Fair
30 88-90 Talwar

9,5
9,5
8,5
9,5

fail
19,9
16,8
21,9

fail
fail
15,8
fail

fail
fail
18,9
fail

9,5,0, 20
9,5,0, 58
8,5,0,106
9,5,0, 20

fail
17,9,0,295
16,8,0,314
22,9,0,170

fail
fail

16,8,0,330
40,9,0,120

fail
fail

18,9,0,347
13,6,0,114

13, 5, 0, 20
9, 5, 2, 58

13, 5, 3,106
13, 5, 0, 20

fail
19, 9, 14,291
16, 8, 12,309
42, 9, 5,170

fail
fail

15, 8, 11,335
47,20,110,190

fail
fail

18, 9, 15,348
28, 7, 9,118

13, 5, 0
9, 5, 3

13, 5, 5
13, 5, 0

fail
19, 9, 54
16, 8, 39
46,13,111

fail
fail

15, 8, 45
25,11,104

fail
fail

18, 9, 62
22, 7, 27
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TABLE 4
Results o] varying update parameter for factors. 100 20 well-conditioned matrix, density

I .5, nout= 10 outliers. Table entries: number of ]unction evaluations, number of Hessian
evaluations, number o. cg iterations, and number of Cholesky updates.

Update
tolerance /} PCG

0.001

0.010

0.100

Huber
Logistic
Fair
Talwar

Huber
Logistic
Fair
Talwar

Huber
Logistic
Fair
Talwar

10, 5,0, 63
23,10,0,222
16, 8,0,227
10, 5,0, 63

10, 5,0, 41
22, 9,0, 64
18, 9,0, 81
10, 5,0, 41

10, 5,0, 20
26,13,0, 20
33,17,0, 20
10, 5,0, 20

fail
22,10,59,215
15, 8,16,231
35, 8, 5, 92

fail
22,10,43, 66
15, 8,37, 72
34, 8,23, 56

fail
22,10,59, 20
15, 8,48, 20
33, 8,38, 20

TABLE 5
Variability of results over a set of 10 well-conditioned problems. 100 20, density # .25,

nout 10 outliers. / 10a, update param --.001. Table entries: range and average number of
]unction evaluations, number of Hessian evaluations, and number of Cholesky updates ]or Algorithm
3, the Newton method. (Results ]or Huber exclude one problem that produced failure.)

Huber
Logistic
Fair
Talwar

Function evaluations Hessian evaluations Updates

7-39 ave. 22
12-16 ave. 14
12-16 ave. 13
4-39 ave. 20

5-8 ave. 7
7-9 ave. 8
7-8 ave. 8
5-8 ave. 7

21- 45
54-170
128-222
21- 83

ave. 35
ave. 92

ave. 171
ave. 40
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doubled the number of function and Hessian evaluations, that cost O(m), resulting in
a faster algorithm.

The last two columns of Table 2 show the results of using the conjugate gradient
algorithms with no preconditioning. The "CG" data results from use of the QR
factors, while the "CG-LU" data involved the LU factors. The use of the LU factors
required between 2.8 and 5.6 times as many conjugate gradient iterations, but there
was no trend to increased work as the condition number of A was increased. Use of
the original matrix A would have shown an increase in the number of iterations as
the condition number grew. Each use of conjugate gradients for the LU factors took
on average 40-50 iterations, while the theoretical maximum is n 100. Using the LU
factors with conjugate gradients, with or without a preconditioning matrix, seems to
be a good approach for sparse matrices if the resulting Q would be too dense.

Table 4 shows further results of performing fewer updates to the approximate
Hessian. On this problem of size 100 x 20, the matrix was never updated if the
update tolerance was set greater than or equal to 0.100, and there was very little
penalty in the number of function or gradient evaluations for either the/} Newton
(Algorithm 3) or the preconditioned conjugate gradient (Algorithm 4) methods.

Table 5 shows the variability of the computational work for a set of 10 random
problems with the same test parameters.

3.4. Which functions perform better? How does ill-conditioning affect
the performance of the functions? Figure 2 shows graphs of the solutions and
residuals produced for well-conditioned problems by ordinary least squares and by the
different p functions considered in this paper. A well-conditioned matrix of dimension
100 x 20 was generated, and 10 sample right-hand sides were generated by adding
random noise to Az, using 10 different sets of outliers. The Huber and the Talwar
functions each produced a solution vector bigger than 10a on one of the right-hand
sides, and those runs were disregarded. Each of the weighting functions produces a
solution vector closer to the unperturbed vector of ones than ordinary least squares,
but the corresponding residual vectors are slightly larger.

Figure 3 shows the errors in the solution vector for a sequence of increasingly more
ill-conditioned problems with 10 outliers. The residual norm for least squares was 5.00,
whereas that for the Fair function was 5.74; neglecting the 10 largest components of
the residual, the norm for least squares was 2.48 whereas that for the Fair function was
0.21. The norm of the error in the x vector was also at least ten times smaller in all
cases using the Fair function. For a problem with condition number 175, least squares
gave an error of 11.5, compared with the true solution of norm 10.0, so the computed
solution vector had little resemblance to the true solution. Both least squares and the
Fair function were unable to recover the x vector for the most ill-conditioned problem.
This is predicted by the perturbation results in 3.1.

3.5. How do the algorithms perform on "real" problems? Experiments
were also run using the housing price equation and the 506 observations of Boston
census tracts discussed in [15]. This model expresses the median value of homes
in each tract as a combination of 14 factors (crime rate, zoning statistics, average
number of rooms in homes, accessibility to radial highways, etc.). The model was
used without the scaling discussed in [15], and the integer parts of the singular values
were 10,128, 672, 632, 272, 197, 156, 84, 74, 10, 8, 6, 5, 2, and 1. The right-hand
side elements were around 10, and a was estimated as 0.1. The constant was taken
to be 2.5a. The four functions found between 59 and 61 outliers, using a solution
vector of size approximately 10. The x vectors from the Huber, Fair, and Logistic
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FIG. 2. Solution vectors for one problem and average solution and residual vectors for 10
problems, 100 20, density I .1, well conditioned, 10 outliers.
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FIG. 3. The absolute error in each component of the x vector for ordinary least squares (solid)

vs. the Fair function (dashed) (fl 2.5a) for three problems of dimension 500 100 with density
# .1 and 10 outliers. The residual norm for each problem was 5.00 for least squares and 5.74 for
the Fair function. Neglecting the 10 largest components of the residual, the norm was 2.48 for least
squares and 0.21 for the Fair function.

functions had infinity norm differences of at most .04; the Talwar vector differed from
the Fair function by .25. The residual norms were 4.096, 4.086, and 4.088 for the first
three functions and 4.650 for Talwar. The CG Newton algorithm took 27 function
evaluations, 7 Hessian evaluations, and 17 cg iterations for the Huber function, and
10 function evaluations, 7 Hessian evaluations, and 16-18 cg iterations for the Logistic
and the Fair functions.

4. Conclusions. (1) Quadratic programming algorithms should be used for func-
tions such as those of Huber and Talwar, but the best algorithms for the other func-
tions are the B Newton algorithm if the problem is not too large and the CG Newton
algorithm (with QR or LU factorization) for larger problems.

(2) The functions considered here give better solution vectors than ordinary least
squares, but even so, the elements of the solution vector are often heavily contaminated
with error if the product of the matrix condition number and the standard deviation
of the errors in the data is greater than one.

(3) The number of iterations for the Newton-type algorithms seems insensitive to
the conditioning of the matrix and to the number of outliers in the data.

(4) The algorithm for generating sparse test problems with varying conditioning
may be useful elsewhere.

(5) The development of parallel algorithms for this class of problems is the subject
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of current research. For these Newton-like algorithms, we need a parallel algorithm for
determining the search direction and a parallel linesearch algorithm. Parallel versions
of the conjugate gradient algorithm [23] are promising candidates for computing the
direction.

Acknowledgments. Virginia Klema and Beth Ducot kindly provided the data
for the housing model, and Gene Golub provided several of the references. Bob
Plemmons made helpful comments on the manuscript.
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DEDICATION TO VERA N. KUBLANOVSKAYA
ON HER 70TH BIRTHDAY

Vera Nikolajevna Kublanovskaya was born on September 21, 1920. She is a distin-
guished representative of the world-famous Soviet research tradition in linear algebra
stemming from Gantmacher and Kantorovich, who were her teachers. Her Ph.D. thesis
(Kandidat in Russian) appeared in 1955 on the topic of the application of analytic con-
tinuation to numerical methods. In 1972 she submitted her-thesis for the senior Russian
Doctorate and now the theme was the use oforthogonal transformations to solve algebraic
problems. During most of her professional career she has worked at the Steklov Institute
of Mathematics in Leningrad (a branch of the USSR Academy of Sciences), where she
collaborated with Faddeev and Faddeeva, among others. In October 1985 Kublanovskaya
was awarded an honorary doctorate at the University of Ume, Sweden.

Vera Kublanovskaya belongs to the generation who laid the foundations ofmodern
computational techniques in matrix analysis and its applications, such as Householder,
Forsythe, and Wilkinson. Although she had been invited to several Gatlinburg symposia
(nowadays called the Householder symposia), the Oxford meeting in 1981, organized by
Fox and Wilkinson, was the first of these symposia that she was able to attend. Since
then she has been invited to several more international conferences, of which she could
unfortunately attend only a few. Those of us who had the privilege of heating her speak
in June ofthis year at the Householder Symposium XI in Tyl6sand, Sweden, are certainly
impressed by the scientific activity she displays at her age. She is a source of great inspi-
ration to the international scientific community.

Kublanovskaya’s 1961 paper "On some algorithms for the solution ofthe complete
eigenvalue problem," together with Francis’s paper published in the same year, forms
the basis of the QR algorithm for computing the eigenvalues of an unsymmetric matrix.
In this paper Kublanovskaya also presents a convergence proof of the QR algorithm
based on sophisticated determinantal theory. Her 1966 paper "On a method for solving
the complete eigenvalue problem for a degenerate matrix" (translated from Russian in
1968) was another milestone in this area. There she presents a method for computing
the Jordan structure of a multiple eigenvalue by unitary similarity transformations. This
paper stimulated several subsequent papers on the numerical computation ofthe Jordan
and Kronecker canonical forms.

In the recent series of papers "Spectral problems for matrix pencils: Methods and
algorithms. I, II and III," Kublanovskaya illustrates well her impact on eigenvalue prob-
lems and their generalizations to matrix pencils and polynomial matrices. These papers
give a fine survey of computational methods for these generalized eigenvalue problems
and their applications in systems theory, and nicely demonstrate her originality in de-
veloping new algorithms. They almost add up to a book on generalized eigenvalue prob-
lems, and they give a thorough description of algorithms for computing the complete
eigenstructure of matrix pencils and polynomial matrices in their most general form.
Several of these algorithms are due to her and her collaborators.

vii
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Those interested in reading some of Kublanovskaya’s important contributions in
detail will find a selected list of her English and Russian publications below. It is our
pleasure to celebrate Vera Kublanovskaya’s 70th birthday by dedicating this issue of the
SIAM Journal on Matrix Analysis and Applications to her. Her papers have been an
inspiration to us, and we look forward to seeing a continuation of her excellent contri
butions. We wish her good health and many more creative years.

Gene Golub
Bo Kfigstr6m
Axel Ruhe
Paul Van Dooren
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AN ANALOG OF THE CAUCHY-SCHWARZ INEQUALITY FOR
HADAMARD PRODUCTS AND UNITARILY INVARIANT NORMS*

ROGER A. HORN AND ROY MATHIAS$

Abstract. The authors show that for any unitarily invariant norm I1" on Mn (the space of
n-by-n complex matrices)

(1) IIA*Bll _< IIA*All IIB*B]I for all A, B Mm,n
and

IIA o BII < IIA*All IIB*BII for U A,B M,

where o denotes the Hadamard (entrywise) product. These results are a consequence of an inequality
for absolute norms on C

(2) IIx o Yll <_ I1 o 11 IlY o 11 for all x, y e Cn.
The authors also characterize the norms on C that satisfy (2), characterize the unitary similarity
invariant norms on Mn that satisfy (1), and obtain related results on norms on C and unitary
similarity invariant norms on Mn that are of independent interest.

Key words. Cauchy-Schwarz inequality, unitarily invariant norms, absolute norms, Hadamard
products, unitary similarity invariant norms

AMS(MOS) subject classifications. 15A60, 15A18, 15A45

1. Introduction and notation. Let Mm,n denote the space of m-by-n complex
matrices and write Mn =- Mn,n; let A* A* denote the conjugate transpose of a
matrix in Mm,n. Recently, Wimmer [20, p. 315] conjectured that an analog of the
Cauchy-Schwarz inequality holds for any unitarily invariant norm I1" on Mm,n"

(i.i) IIA*BII e IIA*AII IIB*BII for all A,B e Mm,n.

For three special choices of norm I1" II (the trace norm, the Frobenius norm, and the
spectral norm), Wimmer proved (1.1) and identified the cases of equality.

In 3 we give a proof of (1.1) and a similar inequality for Hadamard products;
both results follow from a simple norm inequality (Theorem 2.3) for the Hadamard
product of vectors. We identify the cases of equality for the latter inequality as well
as for (1.1). In 3 and 4 we prove some results of independent interest on unitary
similarity invariant norms. In 4 we provide a variety of examples and show that
the set of norms satisfying (1.1) is a convex set that strictly contains the unitarily
invariant norms.

We use A 0 to mean that A is positive semidefinite. If A >- 0 then A1/2

denotes the unique positive semidefinite square root of A. Given A E Mm,n we define

IAI =_ (A’A) /2. The real vector space of n-by-n Hermitian matrices is denoted by
H. If A, B Ha, we write A B if A B

_
0. Recall that the Hadamard product

of two matrices A [aij] and B [bij] of the same size is A o B [aijbij]. We
denote the ordered singular values of any A Mm,n by a(A) >_ >_ ca(A) >_
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0 (where q min{m, n}) and define a(A) =_ [al(A),...,aq(A)]T e Rq+; for A e
H we denote the ordered eigenvalues of A by AI(A) >_ >_ An(A) and define
A(A) [AI(A),... ,An(A)]T E Rn. The eigenvalues and singular values of a positive
semidefinite matrix are identical. A complex matrix is a partial isometry if each of its
singular values is 0 or 1. The trace of a square matrix A (the sum of its main diagonal
entries, or, equivalently, the sum of its eigenvalues) is denoted by tr A.

Given x e Cn and an index set Z c {1,..., n} we define x(Z) Cn by

x if Z,
x(Z)i 0 if f :Z,

and we define Ix [Ixil]=. Given a vector x e Cn we define diag(x) e Mn to be the
diagonal matrix with i, entry x. Given vectors x, y Rn we use x _< y to mean that
x <_ y for 1,...,n. A norm I1" on Cn is absolute if ]lxl] Ixl ]] for all x e Cn,
and is monotone if Ix >_ lY[ implies Ilxll >_ I]YlI. These two notions were introduced by
Bauer, Stoer, and Witzgall in [2], where they arose naturally in the study of induced
norms on Mn. It is a fact that a norm is absolute if and only if it is monotone [2,
Thm. 2] or [8, Thm. 5.5.10].

If vectors x, y Rn are given, and if - and r are permutations of {1, 2, ..., n}
such that xr(1) _> xr(z) _> _> Xr(n) and Y(1) _> Y(2) _> >_ Yr(n), we say that x is
weakly majorized by y if

k k

i--1 i--1

for all k 1,...,n.

If, in addition, equality holds when k n, then we say that x is majorized by y. A
function g(.) C R+ is called a symmetric gauge function if it is a permutation
invariant absolute norm on Cn. We will make frequent use of the fact that for x, y
C and any symmetric gauge function g(.)

(1.2) [x] is weakly majorized by [y[ implies g(x) <_ g(y).

Given a norm I[" on Cm we define its dual (with respect to the Euclidean inner
product) by

(1.3) IIxll D =- max{ly*xl y e Cm,lly[I <-1}.
Given a norm [[. on Mm,n we define its dual (with respect to the Frobenius inner
product < A, B >= tr B’A) by

IIAll D max{ltr (B*A)]" B e Mm,n, IIBII 1}.
If we take n 1, then this definition specializes to (1.3). The duality theorem for
norms [8, Whm. 5.5.14] states that ]1" II (]1" lID)D for any norm I1" I1" A norm I1" [I
on Mm,n is unitarily invariant if IIAII IIUAVII for all A e Mm,n and all unitary
U e Mm and Y e Mn. A theorem of von Neumann [19] (or [8, Thm. 7.4.24], or [16,
Whm. V.5]) states that a norm I1" [I on Mm,n is unitarily invariant if and only if there
is a symmetric gauge function g such that IIXII g(a(X)) for all X e Mm,n. A norm

I1" on M is unitary similarity invariant if IIAII IIUAU*II for all A, U e Mn with
U unitary.

See [8] for further information on Hadamard products, norms, dual norms, unitar-
ily invariant norms, symmetric gauge functions, singular values, and other concepts
discussed in this paper. See [13, p. 263] for a general discussion of the connection
between majorization and unitarily invariant norms.
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2. An inequality for absolute norms. In this section we are interested in
an inequality for Hadamard products of vectors that leads directly to a proof of the
matrix inequality (1.1). To obtain Theorem 2.3, the main result in this section, it is
helpful to know two lemmata, whose proofs we omit. The first result is Theorem 1 in
[2]; the second can be proved by an argument very similar to the proof of Lemma 3.7.

LEMMA 2.1. A norm on Cn is absolute if and only if its dual norm is absolute.
LEMMA 2.2. Let I1" be an absolute norm on Cn and let x E Cn be given. Then

max{ly*xl’y e Cn and Ilyll D <_ 1}
max{zT]xl’z e R and Ilzll D < 1}

We use the following notation in Theorem 2.3. Given x Cn and an index set
2. C {1,...,n}, define x(2.) e Cn by

if 2,(z)= 0 ifiCz.

THEOREM 2.3. Let I1" be an absolute norm on Cn. Then

(2.1)

If x, y 0 then equality holds in (2.1) if and only if there is a positive constant c and
an index set 2" C {1,...,n} such that

Proof. Use Lemma 2.2 to compute

(2.2) Ilxoll =

(2.3)

(2.4)

and II(:Z:)II- IIzll.

[max{zT(Ixl o lyl)’z e R and Ilzll D < 1}] 2

max{[(z1/2olxl)T(zI/2olyl)]2.zeRand IlzllD<l}
_< max{[(z/2 o Ixl)(z/. o Ixl)][(z/2 o il)(z/= o Il)]

z R nd Ilzll D _< 1}
< mx{(zTl o l)’z R_nd I111D _< 1:}

mx{(zl o l)’z Rnd Ilzll D _< }
I: :1 I 1

IIx o 11 IlY 11,

For z [zi] E R, we have written z/2 [z/] e R’+ for the Hadamard (entrywise)
nonnegative square root of z.

That the stated conditions are sufficient for equality is clear from the monotonicity
or I1o

IIx o y(:Z:)ll 2

IIx o (l/c)x(Z)ll Ilcy o y(Z)

IIx o (:r) Ily o (:r)

and hence equality holds in (2.1).
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Conversely, suppose that equality holds in (2.1) for given nonzero vectors x,y.
Then any z 6 Rn that attains the maximum in (2 2) must also attain the maximum+
in (2.3) and both maxima in (2.4). Let 2 be such a vector and define the index set
1 -_- {i" 2i > 0}. EquMity in (2.3) implies that there is positive scMnr c such that

5/2x=c2/y for i=l,...,n

and hence, by the definition of , it follows that [x()] cy()]. Because 2 attains
the first maximum in (2.4), we have x o 2]] 2Tx o 2, and we can use Lemma 2.2
again to compute

]x o 2() mx{zT[x o 2()] z 6 R and []z]D 1}
(x o )
]xo.

But ]x o 21 x o 2() by the monotonicity of ]. , so ]x o 2] [Ix o 2()]. The
same argument shows that y o ] y o ()]

Note that the inequality (2.1) with the l norm is the heart of the classical Cauchy-
Schwarz inequality"

xiyi [xiYi] i]x o y]] ]x o 2] []y o 9i]1 xil 2 Yi[
i1 i1 i1 i1

It is of interest to characterize the norms on Cn that satisfy the conclusion of
Theorem 2.3. We discuss the converse of the following preliminary lemma in Theorem
4.8.

LEMMA 2.4. Let be a norm on Cn such that [lll
c, Il [l,l]. T thio .() ]l i o o C.

Proof. Since the function ,(x) x is positive definite and homogeneous on
Cu, we need only show that it obeys the triangle inequality. We claim that it suffices
to prove that

(2.5) IIli ]lull whenever u, v n and v.

Since Ix + y] Ix] + ]y] for all x, y C, (2.5) and the triangle inequality for [.
give the desired result:

Toprove (2.5) let u v Ru be given with u < v Ifu=v, there is nothing to
prove, so assume that u v. Some corresponding entries of u and v may be equal
but at least one entry of u must be strictly less than the corresponding entry of v.
We shall construct a vector w Rn such that u < w < v [w]] < Ilvli and w has one
more entry than v that is equal to the corresponding entry of u. A finite induction
then leads to the conclusion that []u]l ]v]]. Define k min(i’ui
and define v, v" Rn by

vi 0 forvi
-vi for k,

Note that v" vg(v’ + v) and v. Using the hypothesis on I1" II, w have
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and hence

(2.6) V V

Now define a uk/vk, so 0 _< a < 1. Define w av+(1-a)v" and note that
wi vi if # k and that Wk uk. Thus, w has one more entry than v that is equal
to the corresponding entry of u. Using (2.6) we obtain

I111 IIo / (1 o)v"ll llvll / (J- o)llv"ll llv]l / (1 o)llvll Ilvll,

as desired. D
We can now characterize the norms that satisfy the inequality (2.1).
THEOREM 2.5. Let I1" be a norm on Cn. Then

(2.7) IIx o yll IIx o :11 Ily o 11 fo, aZZ x, y e c

if and only if

Ilzll Izl fo zz z- [z] e cn,

whr Izl [Izl].
Proof. Suppose Ilzll Iz111 for all z e Cn. Lemma 2.4 guarantees that u(x)=

II is an absolute norm on C’, so we may apply Theorem 2.3 to u(.) and obtain

IIx o yll Ix o yl ,:(x o y) ,(: o :),,(y o ) I1 o :ll Ily o

Conversely, suppose (2.7) holds and let z E Cn be given. Define x, y E C by

zi/[zil/ ifzi0, /xi 0 ifzi=0, Yi =- Izil i= l,

Then

Ilzll -IIx o yll IIx o :11 Ily o 11- Izl I1 II- Izl ,
which is (2.7). r

An example of a norm on C2 that is not absolute but nevertheless satisfies the
condition (2.8), and hence (2.7) as well, is

Although we have characterized the norms for which the inequality (2.7) holds
in terms of the natural condition (2.8), it is not always easy to determine whether
a particular norm has this property. For example, it is not known which unitarily
invariant norms on Mm,n satisfy (2.8).

3. Inequalities for matrices. We are now ready to prove (1.1), as well as an
analogous inequality for the Hadamard product of matrices, and to discuss the cases
of equality.

THEOREM 3.1. Let I1" be a unitarily invariant norm on Mn. Then

(3.1) [IA*B[I _< IIA*All IIB*BII /or aZZ A, B e Mm,,

and

(3.2) IIA o BI[ _< IIA*AII IIB*BI[ for all A, B e Mm,n.



486 R. A. HORN AND R. MATHIAS

Inequality (3.2) has also been obtained by Okubo [14, Thm. 4.3], while (3.1) can
be derived by using an argument similar to that used by Bhatia to prove Proposition
5 (another Cauchy-Schwarz type inequality) in [4]. Both of these inequalities can also
be derived as corollaries of Theorem 2.3 in [10].

Proof. Let g be the symmetric gauge function associated with the unitarily in-
variant norm I1" II. Theorem 3 of A. Horn [6] gives the weak majorization relation

k k

(3.3) E hi(A’B)<_ E ai(A)ai(B) k 1,... ,n
i--1 i--1

between the singular values of the product A*B and those of A and B. Compute

IIA*BII 2 g2(al(A*B),...,as(A*B))
<_ g2(al(A)a(B),"’,an(A)(rn(B))
<_ g(a(A),...,as(A)) g "",as(B))

g(a(A*A),...,as(A*A))g(a(B*B),...,as(B*B))
[IA*All IIB*BII.

The first inequality comes from combining (3.3) and (1.2), the second is an application
of Theorem 2.3 to the monotone norm g(.), and the penultimate equality is because

(A’A)as(A =hi
To prove (3.2) we use the weak majorization relation [7, Lem. 1]

k k

(3.4) E a,(A o B)<_ E a,(A)a,(B), k 1,..., n
i--1 i----1

for the Hadamard product and apply exactly the same argument. []

Inequality (3.2) is a generalization to all unitarily invariant norms of a classical
inequality of Schur for the spectral norm [17, Satz III, p. 8]: If I1" is chosen to be the
spectral norm IIIXll12 -: a (Z), then (3.2) is Schur’s inequality a (AoB) <_ al (A)al (B).

Theorem 3.1 allows us to make the following generalization of Theorem 2.3 in

COROLLARY 3.2. Let ]1" be a given unitarily invariant norm on Ms. Then ]’or
all A E Mn,

I]A]l min{][B*B[I/211C*C[[/ B, C e Mn and B*C A}.

Proof. For any A Ms, Theorem 3.1 gives

(3.6) IIAII _< inf{IIB*BII1/ulIC*CII/U B, C e Mn and B*C At.
That the infimum is attained and is equal to J[AJ[ follows by setting B P/2 and
C PI/2U, where A PU is a polar decomposition of A, i.e., P, U Ms, P

_
O, and

U is unitary, rn
In Example 4.4 we give a non-unitarily invariant norm that satisfies (3.5). It is

possible to characterize the unitary similarity invariant norms that satisfy (1.1); to
do so, we require the following analog of Lemma 2.4.

LEMMA 3.3. Let I1" be a unitary similarity invariant norm on Ms such that

(3.7) IlAll <_ II IAI II for all A e Mn,
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where IAI =_ (A’A) 1/2. Then N(A) =_ IAI is a unitarily invariant norm on Mn.
Proof. The unitary invariance, positivity, and homogeneity of the function N(.)

are clear, so it suffices to prove that N(.) obeys the triangle inequality. We have the
weak majorization (see [5], or [13, p. 243], or [9, Cor. 3.4.3])"

k k k

,(A + B) _< ,(A) + ,(B), ,...,
i=1 i=1 i=1

which expresses the subadditivity of the Ky Fan k-norms, i.e., the vector a(A + B)
is weakly majorized by the vector a(A)+ a(B). Define a norm ][. ]]’ on Cn by
]]x]’ ]]diag(x)]]. Condition (3.7) guarantees that x]’ ]x ]’ for all x 6 Cn,
so Lemma 2.4 ensures that the function ]]x]]" Ix] ]]’ is a monotone norm on Cn.
Since the given norm ]]. is unitary similarity invariant, the norm ]. ]]" is permutation
invariant. Thus, the norm ]]. ]" is actually a symmetric gauge function.

If C 6 Mn is a given positive semidefinite matrix, then there is a unitary U 6 Mn
such that C UAU*, where A diag(A(C)). Because the norm ]. is unitary
similarity invariant,

];c ]]uhu* ;dig((C))] ](C)]’= (C)".

Now use this identity with C ]A + B], noting that the eigenvalues and singular
values of a positive semidefinite matrix are identical, to write

N(A + B) [A + BI
l(A + B)l"
I(A) + (B)l"
II(A)ll" + II(B)ll"

IA] + [B[
N(A)+N(B).

The first inequality uses weak majorization and the fact that []. [[" is a symmetric
gauge function, while the second is just the triangle inequality for [. [l".

The condition (3.7) is sufficient for a unitary similarity invariant norm on Mn to
satisfy the conclusion of Lemma 3.3, but it is not necessary. See Theorem 4.9 for
stronger version of Lemma 3.3, which provides a necessary and sufficient condition.

Another way to prove the triangle inequality for N(A) I[IA] []" is to use the
matrix-vMued triangle inequality (see [18, Tam. 2] or [9, 3.1.15]). We demonstrate
this technique in the proof of Theorem 4.9.

The following characterization is a matrix analog of Theorem 2.5 for the usual
matrix product.

THEOREM 3.4. Let II" be a unitary similarity invariant norm on Mn. Then

(.8)

if and only if

(.)

where IAI (A’A) /2

(3.10)

IIA*Bll e [IA*All I[B*BII for all A, B e Mn

IIAII < IAI or all A e Mn,

If either (3.8) or (3.9) holds, then

IIA*BII -< IA*BI <_ IIA*AI[ IIB*B]I for all A, B e Mn.
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Proof. Let [[. be a given unitary similarity invariant norm on Mn. If condition
(3.9) holds, then the function [[[. [[[ is a unitarily invariant norm on M, by Lemma
3.3. It now follows from (3.1) that for any A, B E Mn

I[A*BI[ 2 <-II ]A*BI ]12 -< I] IA*AI [B*BI

Thus (3.9) implies both (3.8) and (3.0).
Conversely, suppose that (3.8) holds and let A E M, be given. Let A UP be

a polar decomposition of A. Using the condition (3.8) and the hypothesis of unitary
similarity invariance, we obtain the desired inequality:

IIall 2 -IJ(p/2U*)*p/]J 2

<_ [](P/:U*)*(P/U*)[[ [l(P/e)*(P/)[[

IlPll IIPII- II IAI II 2.
The hypothesis that the norm I[" ]1 be unitary similarity invariant is essential, as

we show in Example 4.2. In Example 4.13 we exhibit a unitary similarity invariant
norm that does not satisfy the condition (3.9).

We now determine the case of equality in (3.1), and to do so we require two
preliminary results that are analogs of Lemmata 2.1 and 2.2. There is an analogy
between absolute norms on C= and unitarily invariant norms on M. A unitarily
invariant norm I1" on M= is a function only of the singular values, and hence IIAII
II IAI II for all A Mn because A and IAI have the same singular values.

LEMMA 3.5. A norm on Mm,n is unitarily invariant if and only if its dual norm
is unitarily invariant.

Proof. Let I1" II be a given unitarily invariant norm and let A ira,n, U Mm,
and V Mn be given with U and V unitary. Then

IIUAVIID max{Itr B*UAV B Mm,n, IIBII <_ 1}
max{Itr (U*BV*)*A B im,n, ]IBII <_ 1}
max{Itr C*A C ira,n, IIC]I <_ 1}

-IIAII
which shows that I1" D is unitarily invariant. The hypothesis that I]" is unitarily
invariant is used to obtain the penultimate equality in this series of identities. The
converse now follows from the duality theorem for norms.

Before proceeding, it is convenient to isolate some simple but useful facts about
the Frobenius inner product on Mn.

LEMMA 3.6. Let A, B Mn be given.
(a) If A and B are positive semide]inite then tr AB >_ O.
(b) If A and B are Hermitian then tr AB is real.
(c) Let A be positive semidefinite and let B H + iK, where H, K Hn. Then

Re tr B*A tr HA <_ tr
Proof. If A and B are positive semidefinite then so is A1/2BA1/2, and hence

tr AB tr AI/2BA/2 >_ 0, which verifies (a). The assertion in (b) follows from
applying (a) to the positive semidefinite matrices A+ II[Alll2I and B+ ]IIB[II2I and noting
that the trace of a Hermitian matrix is real. The assertion in (c) that Re tr B*A
Re (tr HA-itr KA)= tr HA follows from (b), while the inequality tr HA <_ tr IH[A
follows from the observation that (IHI- H) is positive semidefinite and therefore
tr ([H[-H)A >_ O.
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The following is a matrix analog of Lemma 2.2.
LEMMA 3.7. Let I[" be a given unitarily invariant norm on Mn and let A ca Mn

be given. Then

IIAII max{[tr (C*A)I C ca Mn and ]lCIID
_

1}
max{tr VIA C ca Hn,C O, and I]C[I D <_ 1}.

Proof. The first identity is the duality theorem for norms. To show the second,
compute

IAI
max{Itr C*IA[ I" C e Mn and IICIID 1}
max{Re tr C*IAI" C e Mn and IICII D 1}
tr C3IAI

for some Co ca Mn with IlColl D <_ 1. Then tr CIA <_ tr ICJoIIAI by Lemma 3.6(c),
and hence, using Lemma 3.5 for the second inequality,

[IAII tr ICIIAI
_< max{tr CIAI" C H,C O, and IICII D 1}
<_ max{Re tr C*IAI" C e Mn and IlCIID<_ 1}

IAI II- IIAllo
Thus, all the inequalities must be equalities and the asserted identity follows. D

We also need a well-known result expressing the monotonicity of a unitarily in-
variant norm with respect to multiplication by a partial isometry [3, Prop. 7.7.3]. We
provide a proof that uses only the existence of the singular value decomposition.

LEMMA 3.8. Let be a unitarily invariant norm on Mm,n, and let A ca Mm,n,
P1 ca Mm, and P2 ca Mn be given. Then

IIPAPII Crl (Pl )Cr (P2)l[All.

In particular, if P1 and P2 are partial isometrics then

IIPIAPe <- IIAII.
Proof. Let A ca Mm,n, P1 ca Mm, and P2 ca Mn and let II. be a unitarily invariant

norm on Mm,n. Assume without 1088 of generality that al(P1) al (P2) 1. We will
8how that

IIP1AII IIAII.
The inequality

lIAR211 IIAII
can be proved by a very similar argument. Combining these two results gives the
desired conclusion.

Let P1 UEV be a singular value decomposition of P1, i.e., U, V are unitary and
E diag(a(P1)). Define s ca Cm by

V
/ (g)8j aj(P1) + 1 crj j 1,...,m
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and define S diag(s). Then S is unitary, since 0 _< aj(P1) _< 1 for all j 1,..., m,
and E 1/2 (S + S*). Using the unitary invariance of I1" II, the triangle inequality, and
the fact that S and S* are unitary we compute"

S*

We are now ready to identify the cases of equality in (3.1), with a result that is
an analog of the last part of Theorem 2.3.

THEOREM 3.9. Let II" be a given unitarily invariant norm on Mn, and let
A, B E Mm,n be given nonzero matrices. Then

[IA*B[[ e-- I[A*A[I[IB*B[I

if and only if there is a positive constant c and there are partial isometrics P1 and P2
such that

(3.11) AP1 eBB2, [IPA*APxI[ IIA*AII, and IIPB*BPII [IB*Bll.

Proof. Let II" be a unitarily invariant norm on M,, and let A, B E M,,.
The polar decomposition [8, Thin. 7.3.2] guarantees that there i8 a unitary U Mn
such that A*BU i8 positive 8emidefinite. Use Lemma 3.7 and the Cauchy-Schwarz
inequality for the Frobenius inner product to compute

max{[tr CA*BU]2" C
_
H, C

_
O, and IICll D _< 1}

max{[tr C1/eA*BUC/e]" C e H, C O, IIcII o 1}
max{(tr Ct/2A*AC1/2)(tr Ct/2U*B*BUCt/2)"

(3.12) C e H,, C O, [ICII D 1}
A max{tr C/eA*AC/" C e H,, C O, IIClo 1}

(3.13) max{tr C1/2U**BUC1/2" C e gn, C O, IIcII D 1}
max{tr CA*A" C e H,, C O, IJcll D 1)
max{tr CU*B*BU" C e H,, C O, IcIID 1}

IIA*All IIB*BI[,

Now suppose IIA*I[ 2 IIA*AlllIB*Bl[, so that the preceding inequalities must all be
equalities. If inequality (3.12) is an equality, then there must be a positive semidefinite
d e H such that Ildl[ D and

[tr dl/eA*BUdl/] tr (d/A*Ad/) tr (d/g*,*Bud/).

This last condition states that equality holds in the Cauchy-Schwarz inequality, which
can occur only if A1/2 and BU1/2 are dependent, i.e., there is a nonzero scalar a
such that

(3.14) A/ aBU/2.
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If inequality (3.13) is also an equality it is necessary that

(3.15) IIA*AII tr I/2A*A1/2

and

(3.16) IIB*BII tr I/2U*B*BU/2.

Let E E Mn be the Hermitian projection onto the range of /2, so E is a partial
isometry, E E*, and E/2 /2E (1/2. We now show that c lal is the
required positive constant and PI =_ E, P2 =- (a/IaI)UE are the required partial
isometrics. By the definition of E and (3.14) we have

AE/2 AI/2 aBU/2 aBUE/2

and hence AE aBUE, which is the same as AP cBP2. Now use Lemma 3.8,
Lemma 3.7, and (3.15) to compute

[A*A[ [PA*AP[]

max{tr C(EA*AE)" C H,C
max{tr C/EA*AEC/" C H, C O, and IlCII D 1}

> tr /eEA*AE/

tr /A*A/

Thus, [IPA*API[I I[A*A[I as asserted. The same argument shows that [IPB*BP2[[
IIB*BII.
Conversely, if there is a positive constant c and there are partial isometrics P

and P such that

AN1 cBP2, IIPA*APII IIA*AiI, and [IPB*BP2[I

then by Lemma 3.8 we have

-IIPA*APIIIIPB*BPelI
I]PA*cBPeII]I(1/a)PA*BPelI

--IIp;A*BP2II 2

< JlA*BII.
Thus, both inequalities must be equalities. [:3

4. Examples, counterexamples, and corollaries. Although Wimmer’s con-
jecture (1.1) is now settled, there are several interesting points to be noted. The first
is that not every norm on Mn satisfies (1.1) and there are norms satisfying (1.1) that
are not unitarily invariant. Moreover, the set of norms satisfying (1.1) is a convex set.

Example 4.1. Consider the lp norms defined on Mm,n by

IlAllp laylp 1 <_ p < oc,

I[AI[ max{lail’l<_i<_m,l_<j<_n}.
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Let m n 2 and

A=(1-1)1 1
B-

0 1

Then (1.1) does not hold for the lp norms when 1 _< p < 2 since

IIA*BII 2// (2.2/’)(2/) IIA*AIIvlIB*BIIv.

Example 4.2. Let A -[aij], B [bij] e Ms. The lo norm I1" IIo on Mm,n is not
unitarily invariant, but does satisfy (1.1). Let A [ai.. "an] and B [bl" "bn] be
partitioned according to their columns. Then

IIA*BII 2 rnaxlabsl2 < (max *aai i)(maxbjbj) <_ IIA*AIIoIIB*BII.
Note that I1" I1 does not satisfy condition (3.7); for example, consider

(1 1), ,A,._ V (I 1)A-
0 0 1 1

For this choice of A we have IIAIIoo 1 l/v/- IAI Iloo. However this does not
contradict Theorem 3.4 because ll" I1 is not unitary similarity invariant.

Example 4.3. Let C E Mn be given. The C-numerical radius is defined on Mn by

re(A) max{Itr CU*AU U e Mn is unitary}.

If C is not a scalar matrix and tr C 0 then it is known [12] that rc(’) is a norm on

Ms. The function re(.) is unitary similarity invariant but is never unitarily invariant
when n > 1 and C # 0 because, under these conditions, we can always construct
A Mn such that rc(A) rc(IAI). The classical numerical radius,

r(A) =_ max{Ix*Axl x e C and Ilxll . 1},

is an example of a norm of the form rc(.); it corresponds to the positive semidefinite
matrix C [1] @ 0n-1. Note that

(4.1)

rc(A) max{Itr (CU*AU)I" U e Mn is unitary}

<_ max i(CU*AU) U Mn is unitary
i=1

<_ max a(C)ai(U*AU) U c= M, is unitary
i=1

E ai(C)ai(A).
i--1

The first inequality is an application of the inequality (see [13, Thm. 20.b.1] or [9,
Tam. 3.3.13])

Itr xl < 0"1 (X) -t-""" - os(X) for any X Ms,

while the second is a special case of (3.3).
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Suppose A and C are both positive semidefinite. Then there are unitary matrices
U1, U2 E Ms such that

A U1 diag(a(A)) U and C U2 diag(a(C)) U.
The choice U _-- UU in (4.1) then shows that the preceding inequalities are equalities
in this case. Hence for positive semidefinite C Ms and any A Ms we have

n

rc(IAI) ai(C)ai(A) >_ re(A).
i--1

Thus, Theorem 3.4 guarantees that whenever C Ms is a nonscalar positive semi-
definite matrix the unitary similarity invariant (but not unitarily invariant when
n > 1) norm rc(.) on Ms satisfies (1.1). The numerical radius is an example of
such a norm.

Example 4.4. The Hadamard operator norm I1" IIH on Mm,n is

IIAllH max{a1 (A o B)" B e Mm,n and O’1 (B) 1}.

Although I1" IIH is not unitarily invariant, it satisfies not only (1.1) [1, 5] but also a
rectangular version of (3.5) [15, 7.7]" for any A Mm,n

(4.2) IIAIlH min{(IIB*BIIHllC*CI[H)I/2 B, C e Mm,n, B*C A}.

If A >- 0 then it is known that [[AllH max{ai 1,..., n}. For general A Mm,,,
however there is no known explicit formula to calculate [[AllH, so (4.2) may provide
a useful bound, or may provide the basis for a practical algorithm.

THEOREM 4.5. Let NI(.) and N2(.) be given norms on Ms that satisfy the’ in-
equality (1.1) and let c e [0,1] be given. Then N(.) =_ N(.) + (1 -c)N2(.) also
satisfies (1.1), so the set of norms satisfying (1.1) is a convex set that does not include
all norms and is strictly larger than the set of unitarily invariant norms.

Proof. Since any convex combination of norms is a norm, we need only show that
N(.) satisfies (1.1). Compute

N(A*B)2 [aN(A*B) + (1 -)N2(A*B)]2

c2g2t(A*B)+ 2c(1 -)NI(A*B)N2(A*B)+ (1 -c)2N(A*B)
<_ 2N(A*A)N(B*B)

+2c(1 )([N(A*A)N(B*B)][N2(A*A)N2(B*B)])1/2

+(1 )2N2(A*A)N2(B*B)
[N(A*A) + (1 a)N2(A*A)] [cNI(B*B) + (1 )N2(B*B)]
N(A*A)N(B*B). D

These ideas suggest a way to generate new norms on Ms. A prenorm is a contin-
uous, homogeneous, positive function on a real or complex vector space; it does not
necessarily satisfy the triangle inequality.

THEOREM 4.6. Let II, be a given norm on M,, and define N(A) =_ [[A*AI[ /2.
Then N(.) is always a prenorm on Ms. If the norm 11.11 also satisfies the inequality

(4.3) IIA*Bll 2 _< IIA*All IIB*Bll for all A,B e Mm,n,
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then N(.) is a norm on Mn. In particular, N(A) --IIA*AII 1/2 is a unitarily invariant
norm on Mn if I1" is a unitarily invariant norm, or if I1" is a unitary similarity
invariant norm such that IIAII <_ IAI for all A e M,, where IAI =_ (A’A)/2.

Proof. The function N(A) IIA*AII /2 is clearly positive, homogeneous, and
continuous for any norm I1" II, so it is always a prenorm on Mn. It is a straightfor-
ward computation to show that N(.) satisfies the triangle inequality if it satisfies the
inequality (4.3). D

If we choose for I1" the spectral norm, the trace norm (IIAII tr IAI), the
numerical radius, the l norm, or the Hadamard operator norm, then the respective
norms N(A) =_ (IIA*AII) 1/2 are the spectral norm, the Frobenius norm (N(A) =_

[tr A*A]/2), the spectral norm, and N(A) =_ the largest Euclidean column length in
the last two cases.

See Example 4.13 for a unitary similarity invariant norm that does not satisfy the
monotonicity condition at the end of Theorem 4.6.

We have the following analog of Theorem 4.6 for vector norms on Cn. Its proof
is very similar to that of Theorem 4.6.

THEOREM 4.7. Let I1" be a norm on Cn such that Ilzll <_ Izl for all z [zi] e
Cn, where Izl--[Izil]. Then (x) =_ (llx o :11)1/2 is an absolute norm on Cn.

We will now consider the converses of some of the results proved so far. First we
characterize the norms I1" on Cn such that II1" III is also a norm, and the unitary
similarity invariant norms I1" on Mn such that II1" III is a norm on Mn.

THEOREM 4.8. Let I1" II be a given norm on Cn, and let Ixl =_ [Ixl] for all
x--[xi]eCn. Then,(.) =111.111 is a norm if and only if

(4.4) Ilul] <_ Ilvll whenever u,v e R and u <_ v.

This result is Theorem 5 in [2] (see also [8, Thm. 5.5.10]), where norms that
satisfy the condition (4.4) are referred to as monotone on the positive orthant.

Note that (2.8) provides a su.tficient condition for II1" III to be a norm on Cn

(Lemma 2.4), while the condition (4.4) is both necessary and sufficient. In Example
4.10, we show that the condition (4.4) is strictly weaker than (2.8).

THEOREM 4.9. Let I1" be a given unitary similarity invariant norm on Mn, and
let IAI =_ (A’A) /2 for A e Mn Then N(A) =_ IAI is always a unitarily invariant

function on Mn, and it is a norm on Mn if and only if

(4.5) IlXll _< IIYII whenever X, Y e Hn and 0 - X Y.

Proof. The unitary invariance of N(.) is clear. If N(.) is a norm then it is unitarily
invariant and agrees with I1" on the positive semidefinite matrices. Inequality (4.5)
is true for any unitarily invariant norm because if 0

_
X

_
Y, then ai(X) <_ ai(Y)

for 1,..., n; in particular, the singular values of X are weakly majorized by those
of Y. Conversely, let A, B E Mn be given and assume (4.5). By the matrix-valued
triangle inequality, there are unitary U, V E M such that

IA / B] -< UIAIU* / VIBIV*
and hence (4.5), the ordinary triangle inequality, and the unitary similarity invariance

II.  ive

N(A + B) IA + BI_
IIU[AIU*+VIBIV*II
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IIUIAIU*II + IIVIB[V*II

N(A)+N(B).

Since positivity and homogeneity are clear, it follows that N(.) is a norm. E3

In Example 4.13 we show that there are unitary similarity invariant norms that
do not satisfy the monotonicity condition (4.5).

As we might suspect from Theorem 4.8, the converses of Lemma 2.4 and Theorem
4.7 are not true. There are norms on Cn that satisfy the condition (4.4) but not (2.8).

Example 4.10. Consider the function I[" II defined on C2 by

Then I1" is easily shown to be a norm, but it does not satisfy the monotonicity
condition Ilxll <_ II Ixl II. Consider, for example, x [1,-1]T. However, l(x)
IIx o 2111/2 and -2(x) --II Ixl are both norms since

Thus, II" II is a norm on C2 that satisfies the condition (4.4) but not (2.8).
Similarly, we might suspect from Theorem 4.9 that the converses of Lemma 3.3

and Theorem 4.6 are also false. There are unitary similarity invariant norms on Mn
that satisfy (4.5), but not (3.7). To construct one we first prove Lemma 4.11.

LEMMA 4.11. Let I1" be a given norm on the real vector space Ha. Then the
function II" II’: Mn "-* R+ defined by

(4.6) IIAII’ max{ll(cA / cA )II" c e c and Icl- }

is a self-adjoint norm on Mn that agrees with I1" on Ha, i.e., IIAII’ IIA*II’ for aZZ
A e Mn and IIAII’ IIAII for all A e Ha. If the given norm ][. is unitary similarity
invariant on Ha, then the norm I1" I1’ is also unitary similarity invariant on Mn.

Furthermore, the norm I[" I1’ is minimal in the following sense: if N(.) is any
self-adjoint norm on Mn that agrees with I[" on Ha, then N(A) >_ IIAII’ for all
A EMn.

Proof. The positivity and homogeneity of I1" [1’ follow from the positivity and
homogeneity of I1" II. For the triangle inequality, take A, B Mn and compute

IIA + BII’ max{lls[a(A + B) + &(A -I- B) 111" e C and Io1-- 1}
l(aA + aA*)ll + (oB + aB*)ll e C and Il 1}max{ll

mx{ll(A
(B+ max

llJll’ + IIBII’.
We now know that II" II’ is a norm on Mn, and the fact that IIAII’ IIA* I1’ is immediate
from the definition, as is the assertion about unitary similarity invariance. Suppose
that A Hn and Icl 1. Then

IIJ (oA -I-aA*)ll- (aA / ,A) (Re a)AII--IRe o1 IIAll _< IIAII
with equality for c 4-1. This shows that IIAII’ IIAII whenever A e Ha.
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Finally, consider the assertion about the minimality of I1" I1’. Let N(.) be a given
norm on M,., such that N(A) N(A*) for all A e Mn and N(A) IIAII for all
A E Hn. Then for any c E C with Icl 1 we have

N(A) -[N(aA) + N((aA)*)] >_ N(1/2[aA + A*]) 111/2[cA + A*]ll

and hence

N(A) >_ max{ll1/2[aA + 6A*]ll’a e C and ]hi 1} IIAIl’.
Example 4.12. We shall exhibit a norm that shows that the implications in The-

orem 4.6 and Lemma 3.3 cannot be reversed. Let AI(X) >_ A2(X) denote the al-
gebraically ordered eigenvalues of X H2. Define the function I1" II H2 --+ R+
by

Note the similarity between this function and the norm on C2 defined in Example
4.10. We can easily verify that the function I1" II is a norm on the real vector space
H2: Either use the Weyl inequalities [8, Thm. 4.3.1]

AI(A+B) _< AI(A)+AI(B)
A2(A+ B) >_ A2(A)+A2(B)

for the eigenvalues of any A,B H2, or note that the function [[XI[ is a Schur-
convex function of the eigenvalues of X and apply Theorem 3 of [11]. Note that
IIAII- Ax(A) IIIAIII2 if A e H2 is positive semidefinite.

Let the norm I1" I1’ be derived from I1" as defined in (4.6), and use Lemma 4.11
to observe that I1" I1’ is a unitary similarity invariant norm on M2. For X E M2 set

N(X) =_ (llX*Xll’)/ and (X) IXl I1’, where IX (X’X) 1/2.

Then

N(X) (llX*Xll’)/ --(llX*Xll)/ -(lllX*Xlll.)/ --IIIXlll
and

(x) IXl ’= IXl III IXl II1 --IIIXlll,

Thus, both N(X) and (X) are unitarily invariant norms on M2. However, the choice

(10),A=
0 1 0

shows that the norm II" I]’ satisfies neither (4.5) nor (3.7) since IIA*AII’ IIB*BII’ 1,
[]A*B][’= 2, ][B]]’ 2, and ]B] []’= 1.

Example 4.13. There is a unitary similarity invariant norm on M2 that satisfies
neither (3.7) nor (4.5). Let

2 01
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and consider the unitary similarity invariant norm rc(.) on M2. There is no unitary
U for which UICIU* is a scalar multiple of C. By the Cauchy-Schwarz inequality for
the Frobenius inner product and the definition of re(.) we have

Itr CUICIU* 12 < (tr C2)(tr UICI2U*) (tr C2)2 <_ r(C)

for any unitary U, and hence rc(ICI) < re(C). Thus, the unitary similarity invariant
norm re(.) does not satisfy (3.7). To see that re(.) does not satisfy (4.5) either, set

(10)X=
0 0 0 1

and note that 0

_
X

_
Y, but re(X) 2 > 1 re(Y).

5. Open questions. In Theorem 3.4 we characterized the unitary similarity
invariant norms on Mn for which (1.1) holds, and in Example 4.2 we showed that the
norm II" II, which is not unitary similarity invariant, satisfies (1.1). Is there a useful
characterization of the norms on Mm,n that satisfy (1.1) ?

In Corollary 3.2 we have shown that for any unitarily invariant norm I1" II on Mn
and all A E Mn,

(5.1) IIAII min{IIB*BII1/211C*CII1/2 B, C e Mn and B*C A}.

If I1" is a unitary similarity invariant norm, then the right-hand side of (5.1) is a
unitarily invariant function of A Mn. Thus, a unitary similarity invariant norm
satisfies (5.1) if and only if it is unitarily invariant. We showed in Example 4.4 that
the nonunitarily invariant norm I1" IIH also obeys (5.1). How can we characterize the
norms that satisfy (5.1)?

Consider the lp norms lip on Mm,n, defined in Example 4.1. We have shown
that the inequality

(5.2) IIA*BII <_ IIA*AIIp liB*Blip for all A, B e M,,

is false for p [1, 2) (Example 4.1), and true for p 2 (this is the Cauchy-Schwarz
inequality for the Frobenius inner product). Does (5.2) hold for p (2, ) ? This
question is partially answered in [10, Ex. 4.4].

For p >_ 1, the Schatten p-norm on Mn is defined by

i=1

If p 2k for some integer k, then the Schatten p-norm can also be defined by

IIAIIsp (tr (A*A)k) I/2k.

From this representation it is clear that

whenever p is an even integer. Thus, Theorem 2.5 ensures that

(5.4) IIA o _< IIA o -AIIs, IIB o  lls, for all A, B e Mn
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whenever p is an even integer. If n 2, then (5.3) holds for all p _> 2. To see that
(5.3) is not true for 1 _< p < 2, consider

What are the values of p for which (5.3), and hence (5.4), holds? We can show that
the answer depends on n. More generally, what are the unitarily invariant norms I]"
for which

II[aij]ll -< [laij l] for all [a/j] e Mm,,?

Note that the spectral norm and the Frobenius norm satisfy this inequality.
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HYPERBOLIC HOUSEHOLDER ALGORITHMS FOR FACTORING
STRUCTURED MATRICES*

G. CYBENKOf AND M. BERRY:I:

Abstract. Efficient algorithms for computing triangular decompositions of Hermitian matrices with small
displacement rank using hyperbolic Householder matrices are derived. These algorithms can be both vectorized
and parallelized. Implementations along with performance results on an Alliant FX/80, Cray X-MP/48, and
Cray-2 are discussed. The use ofHouseholder-type transformations is shown to improve performance for problems
with nontrivial displacement ranks. In special cases, the general algorithm reduces to the well-known Schur
algorithm for factoring Toeplitz matrices and Elden’s algorithm for solviflg structured regularization problems.
It gives a Householder formulation to the class of algorithms based on hyperbolic rotations studied by Kailath,
Lev-Ari, Chun, and their colleagues for Hermitian matrices with small displacement structure. In addition, an
extension to the efficient factorization of indefinite systems is described.

Key words, hyperbolic transformations, displacement rank, parallel algorithms
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1. Introduction. In this paper, we derive efficient algorithms for computing triangular
decompositions of Hermitian matrices with small displacement rank using hyperbolic
Householder matrices. The general algorithm we introduce reduces to, in special cases,
the well-known Schur algorithm for factoring Toeplitz matrices [2 ], [27] and Elden’s
algorithm for structured regularization problems [19]. The relationship between the al-
gorithm presented here and the class of algorithms studied by Kailath, Lev-Ari, Chun,
and others for Hermitian matrices with small displacement structure 8 ], 9 ], 15 ], 25
is the same as the relationship between algorithms based on classical plane rotations and
classical unitary Householder transformations. The operation count is slightly reduced
in the complex case, but the more important performance factor is that the majority of
the computation involves matrix-vector instead of vector-scalar operations thereby im-
proving data locality, vectorization, and concurrency properties. Another important con-
tribution of this work is the extension of previously known methods to the indefi-
nite case.

Hyperbolic Householder matrices have recently been studied in detail by Rader and
Steinhardt [31], [32] in the context of fast updating and downdating of linear least
squares problems. Such matrices are natural generalizations of classical Householder
matrices 23 and hyperbolic rotations that have been used over the years to implement
downdating ofvarious factorizations 13 ], ], 22 ], 21 ]. The existence ofHouseholder-
like hyperbolic matrices was already known to a number of researchers as long ago as a
decade 26 ], 12 in the context ofcanonical factorizations ofgeneral hyperbolic matrices.
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Combining these two ideas produces a class of vectorizable and parallelizable al-
gorithms requiting O(an2) sequential operations for an order n Hermitian matrix with
displacement rank a. They are not the most efficient algorithms from the point of view
ofabstract complexity theory since O(n log2 n) sequential methods are known for Toeplitz
matrices [2], [28], [11] and O(log n) parallel methods using O(n log2 n) processors
29 ]. On the other hand, the above-mentioned theoretical results are only asymptotically
more efficient than the algorithm presented here.

The algorithm presented here is conceptually easy to understand. Order n matrices
with displacement rank c have simple representations in terms of c n-vectors called
generators 8 ]. This representation involves inner products with respect to a hyperbolic
norm. These facts have been noted and developed by Kailath, Lev-Ari, Chun, and their
colleagues over the years, leading to a general class ofalgorithms using hyperbolic rotations
to reduce the generators while preserving the hyperbolic inner product. Our use of hy-
perbolic Householders merely replaces a sequence of hyperbolic rotations when elimi-
nating elements in a row or column. Thus the algorithm we present is based on precisely
the same ideas as used in say [8 ], but it substitutes a single hyperbolic Householder
matrix for a sequence of c hyperbolic rotations.

Although we give examples where c is rather small, namely, two and four, there
are applications where a can become arbitrarily large in absolute terms while remaining
small relative to the size n of the underlying matrix. Such matrices arise, for example,
in atmospheric light scattering studies 18 ], 20 where Hermitian block Toeplitz matrices
are encountered. It is a well-known fact that block Toeplitz systems have small displace-
ment rank 8 ].

In addition to a derivation of these algorithms, we present performance results on
machines such as the Alliant FX/80, Cray X-MP/48, and Cray-2. The performance of
the classical Levinson and Schur algorithms for Toeplitz systems has recently been studied
on Alliant FX/8 and Cray 1S vector machines [14 ]. In light of the considerable recent
interest in Toeplitz and related algorithms as well as possibilities for dedicated hardware
implementations, perhaps most notably systolic arrays, we hope that these results will
serve as standards by which to measure the performance of such specialized hardware.

The paper is organized as follows. Sections 2 and 3 briefly review the main ideas
behind hyperbolic Householder matrices and matrices with small displacement ranks,
respectively. Section 4 contains a derivation of the algorithm. Section 5 has examples
showing how the algorithm generalizes Schur’s algorithm and partial computation ofthe
QR factorization of a Toeplitz matrix. The performance results presented in 6 are
followed by a summary in 7.

2. Hyperbolic Householder transformations. Householder transformations have
come to play a major role in modern numerical linear algebra. They are used to introduce
large numbers of zeros into matrices with the typical goal of using orthogonal transfor-
mations to reduce dense matrices into triangular or Hessenberg form [23].

Hyperbolic Householder matrices, which have recently been studied by Rader and
Steinhardt 31 ], 32 ], play a key role in our algorithm. All ofthe material in this section
is a review of the material in 31 and 32 and is included for the sake of completeness.

To define hyperbolic Householder transformations, we need a few simple definitions.
First, let Wbe a Hermitian idempotent matrix, that is, W satisfies

W=I,, W*= W

so that W is unitary as well. All of the interesting examples currently known involve a
matrix W (wij) that satisfies wii +-- 1. In fact, it is a simple exercise to verify that every
Hermitian idempotent matrix is of the form Q*WQ where Q is unitary (that is,
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Q*Q I) and Wis of the above form, namely, with wii -t-1. We note that throughout
this paper it should be assumed that W (wij) with Wii "+" 1.

A matrix U is said to be W-unitary if it satisfies the equation

U*WU=W.

Clearly, the class of/n-unitary matrices corresponds to the traditional notion of unitary
matrices.

It is easy to check that W-unitary matrices form a multiplicative group, that is, In
is W-unitary, the product of W-unitary matrices is W-unitary, and inverses of W-
unitary matrices are W-unitary. In particular, every W-unitary matrix is invertible. We
will use the terms W-unitary and hyperbolic interchangeably.

We now define the notion ofa hyperbolic Householder matrix. Let x be an n-vector
for which x* Wx 4: O. Define

(1) Ux=W-2x* Wx"
All such matrices Ux are W-unitary. To see this, we merely use the definition to get

U*x WUz W-2x, wx}W W-2
x* Wx

since W2 I.

W2xx * xx*W2 xx* Wxx*W3-2-2+4
x* Wx x* Wx x* Wx)

=W

Just as classical Householder matrices can be defined to transform one vector to
another of the same Euclidean norm, hyperbolic Householders can be defined to map
one vector to another providing that they have the same nonzero hyperbolic norm. Thus,
suppose that a and b are two vectors with the same hyperbolic norm, a* Wa b* Wb,
and define

x Wa+ rb

where

Here,

Note that

{signsign a* Wa)b*a/ a*b

a * Wa

ifa*b4=O,

otherwise.

O)=I +1 ifO>-O,
sign

-1 ifO <0.

x* Wx a* Wa + b * Wb + ra *b + ?rb *a

2(a* Wa + ra*b)

2(a* Wa + b*a)
2 sign (a*Wa)(la*Wa[ + la*b[),

so the choice of not only makes x* Wx real, but maximizes its magnitude as well.
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Assuming for the moment that x* Wx thus defined is nonzero, we get

x,Wx a

Wa-2
Wa + ab)(a* Wa + b*a)

2(a* Wa + aa*b

so that Ux maps a to -ab or, equivalently, -Ux/a is W-unitary and maps a to b.
Moreover, this demonstrates that Ux is undefined if and only if both a * Wa and a*b are
zero. Thus, a vector with nonzero hyperbolic norm can be mapped to any other vector
with the same hyperbolic norm by a hyperbolic Householder matrix. However, a vector
a with zero hyperbolic norm can only be mapped to another vector b with zero hyperbolic
norm for which a *b =f O.

One important property that hyperbolic Householder matrices share with classical
Householder matrices is the fact that if the jth coordinate ofx is zero, xj 0, then Uxy
has the same jth component as y except for a possible sign change. This property is
noteworthy because it plays a key role in the algorithm we describe below.

Rader and Steinhardt have computed the condition number of such hyperbolic
Householder matrices [31], [32 ]. Specifically, they show that the largest eigenvalue of
Ux has magnitude

p- I1 / V"-
where " x*x/x* Wx and the smallest eigenvalue has magnitude o -1. Hence, the con-
dition number is o 2. As Rader and Steinhardt point out, this quantity is easily computed
as a byproduct of forming and applying Ux so that monitoring the condition number of
hyperbolic Householders is easy to accomplish. Recently, Bojanczyk and Steinhardt have
developed more stable versions ofhyperbolic Householder matrices in downdating prob-
lems 5], but their applicability to the problem studied here remains unresolved.

3. Displacement rank. Displacement rank is an idea introduced some years ago by
Kailath, Kung, and Morf 25 to quantify the properties of matrices that make them
Toeplitz or close to being Toeplitz in a structural sense. Toeplitz matrices are matrices
that are constant along diagonals parallel to the main diagonal, i.e., T (t0) is Toeplitz
if 0. depends only on -j. We now briefly review the main points of the theory.

Let Z denote the unit shift matrix Z (z0):

Zij i-j-

where 6k is the Kronecker delta function. Multiplication on the fight by Z has the effect
of shifting the columns ofa matrix to the fight by one column, replacing the first column
by the zero column, and shifting the last column out. Multiplication by Z * on the left
has the same effect on the rows of a matrix: it shifts rows down by one, introducing a
zero row into the first row and shifting the last row out. Thus, if

a b c d 0 0 0 0

A= e f g h *A
0 a b c

j k l
then Z Z 0 e f g

rn n p q 0 j k

The fundamental concept in displacement rank involves the difference A Z*AZ,
and we now formally state a definition.
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DEFINITION 1. The displacement rank of the matrix A is the rank of the difference
A Z*AZ.

IfA is a Hermitian, Toeplitz matrix, then (without loss of generality, we use a 4
4 example for illustration)

a b c d 0 0 0 0

A b* a b c
*A 0 a b c

c* b* a b and Z Z=
0 b* a b

d* c* b* a 0 c* b* a

so the difference A Z*AZ is zero except for the first row and column. In particular,
A Z*AZ has rank 2 in general since

a b c d
b* 0 0 0A Z*AZ +_u*u +_ v *vc* 0 0 0
d* 0 0 0

for some row vectors u and v where the last equality follows from the eigendecomposition
ofthe Hermitian matrix A ZAZ. Our nonstandard use ofrow vectors in such expres-
sions merely simplifies notation in the subsequent derivation.

The key result for displacement ranks is the following theorem due to Kailath,
Kung, and Morf.

THEOREM (Kailath, Kung, and Morf [25 ]). The Hermitian matrix A has dis-
placement rank a ifand only ifc is the smallest integerfor which A can be written as

(2) A= ejG*(xj)G(xj)
j=l

where ej + andfor an n-dimensional row vector y, G(y) is an upper triangular Toeplitz
matrix given by

G(y)

Y Y2 Yn
0 Yl Y2
0 0 yl

3:2
0 y

The original proof is due to Kailath, Kung, and Morf and can be found in [25 ],
for instance. We sketch the main points for completeness. IfA has the form of (2), then

A-Z*AZ ej(G(xj))*G(xj)- , ej(G(xj)Z)*G(xj)Z Z egxfx9
j=l j=l j=l

as claimed. Conversely, consider the telescoping sum

(3) A=A Z*iAzi-z*iAZ z*i(A-Z*AZ)Z
i=1 i=0

where we use the fact that Z *n+ )AZ+ 0. Now ifA has displacement rank a, then

A Z*AZ , egxf xj
j=l
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so that substituting the above into (3) gives

A= E ej E Z*ix;xjzi-- E ejG(xj)*G(xj)
j=l i=0 j=l

as desired.
This result illustrates that matrices structurally close to Toeplitz matrices have a

simple parsimonious representation in terms of a relatively small number of vectors,
called generators ofthe matrix. Kailath and his colleagues have derived efficient algorithms
based on hyperbolic and classical rotations 8 for factoring matrices expressed in terms
of their generators. It should be noted that given a general matrix, the determination of
its displacement rank would require about as much work as solving a linear system
involving that matrix. Thus for a given problem, we need to know a priori the displacement
rank and the generators of the matrix. Fortunately, such generators are easy to obtain
for an important class of matrices that occur naturally in applications. We give examples
in5.

The relationship between matrices with small displacement rank and hyperbolic
inner products arises by rewriting the basic identity (2). Specifically, let

W diag (1 In, ’2 In, ’aIn)

and

G(x)

so that W is unitary, idempotent, and Hermitian, and

G* WG =A.

The basic idea behind the use of hyperbolic Householder transformations for fac-
toring A can be described as follows. Suppose that U is a W-unitary matrix that trian-
gularizes G (if such a U exists)

R

UG= O.
6

where R is upper triangular. Then

A G* WG= G* U* WUG [R*O O]W

R
0 =R*R

is a Cholesky factorization ofA.
The algorithm described in the next section uses hyperbolic Householder transfor-

mations to compute such a factorization efficiently. A sequence of hyperbolic House-
holders is used to triangularize G, and the product of this sequence of Householders is
precisely U. Strictly speaking, such a factorization exists only if the underlying A is
positive definite so part of the algorithm we derive involves handling the case where A
is indefinite.
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4. A hyperbolic Householder algorithm. The basic idea behind the algorithm that
we present is derived from known algorithms that use hyperbolic rotations instead of
hyperbolic Householder matrices 8 ]. The advantages of using hyperbolic Householders
is that their construction greatly simplifies a number of special cases and allows more
parallelism and vectorization on large problems.

In order to illustrate the key ideas, we start with a simple example of displacement
rank 3 and avoid dealing with anomalies until after the basics are understood. Suppose
that A G* WG with

and W diag (eI3, g213, g313) with gi +1.

b c-
a b
0 a
s

s
0 r

U I)

0 u

Now construct, according to the previous discussion, a hyperbolic Householder
transformation, Uz, so that

a
0
0
0
0
0
0
0

_0

subject, of course, to the condition that ella[ 2 + e2lrl 2 + e3lu[ 2 eli,[ 2. Then

UxG= r

0 ela
0 0 ela
0
0 ezr ezS
0 0 ezr
0 )

0 g3u
0 0 .3u

and (*Wt A The fact that x has zero coordinates in entries 2, 3, 5 6 8 and 9
implies that Uzy for any vector y has the same 2, 3, 5, 6, 8, and 9 entries as y save for a
scaling by one of the tj. Moreover, we note that the factors ej in ( can be dropped since
they arise from a diagonal, unitary scaling of the rows of the matrix and such scalings
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commute with W. Thus defining G according to

0
0
0= 0
0
0
0
0

a b
0 a

?" s
0 r

u
0 u

still gives (* W( A. We now duplicate the action of Ux on rows 2, 5, and 8 and then
on rows 3, 6, and 9 using Uz,x and Uz,2x, respectively, leading to the matrix

0
0

Gl Uz,2x Uz,x UxG

b

0
0 g
0 0
0 0
0
0 0
0 0

g
0

0

This describes one iteration of the basic algorithm, and there are three fundamental
observations to be made:

1. The first row of G1 is the first row of the Cholesky factor ofA;
2. The entries of G1 can be easily inferred from the entries of UxG so that only the

first step needs to be explicitly carried out; and
3. Isolating rows 2, 3, 4, 5, 7, and 8 of G1 leads to a matrix of the exact same

structure as G so that these steps can be repeated iteratively.
These observations indicate that we never need to work with the entire matrix G but
only with the submatrix of generators

(4)
a b c]G= r s
u I) w

and the reduced signature matrix diag (el, e2, 3)"
Let us now repeat the above step using the matrix of generators G this time. It is

easy to see that we require a hyperbolic Householder transformation Ux that takes
[ar u] T to 6 0 0 T SO that Ux is hyperbolic with respect to diag (e, e_, e3). Then
we have

UG’o 0 g
0 f) v

and the first row [db ] is the first row of the triangular factor we seek to compute.
The next iteration is applied to the matrix with this first row shifted to the fight by
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one column:

oa b]G’= O g "i
0 v

which simulates the next step of the previously described procedure on rows 2, 3, 4, 5,
7, and 8. Then we proceed to reduce the second column in a similar way.

This simple example illustrates the general principle behind the hyperbolic House-
holder Algorithm for matrices with small displacement ranks. However, a few anomalous
cases need to be addressed.

First, in the algorithm we have presented, the hyperbolic Householder matrix is
determined by mapping a column of the generator matrix to a multiple of the first
standard basis element el. For this to be possible, the sign of the hyperbolic norm of el
must be the same as the signs of all columns involved in the reduction; it can be shown
that this only holds for strictly positive or strictly negative definite matrices as determined
by the generators. In fact, this is the only case described by Chun, Kailath, and Lev-Ari
in 8 ]. One remedy is to determine the Householder matrix by mapping a desired column
to one of the standard basis elements with hyperbolic norm of the same sign. Thus, in
the example above, if the column [a b c] r has negative hyperbolic norm while W
diag 1, -1, -1 ), then we have to map the column to a multiple of e2 or e3--it makes
no difference which is selected providing the resulting Ux is defined. Selecting e2, we get

gxG’o t
0 f) if,

and [f g ] is now the first row of the triangular factor of A with the sign -1, which is
stored as the first diagonal entry of a diagonal scaling matrix W’. The next iteration
operates on the matrix

[ ]0 b
gG’o= 0

0 ) if,

This scheme requires tracking the diagonal signature matrix W’ as the algorithm proceeds.
The next special case concerns columns with zero hyperbolic norm. Note that the

hyperbolic Householder matrix Ux is not defined if x* Wx 0. Not only is there no
hyperbolic Householder matrix that can map x to the zero vector, there can be no hy-
perbolic matrix at all since such a matrix would have to be singular and as we have
already seen, hyperbolic matrices are nonsingular. It can be shown that the algorithm
encounters a column with zero hyperbolic norm precisely when the underlying matrix
A has a leading principal submatrix that is singular, and so this is avoided in the strictly
definite cases, be they positive or negative definite.

We have been able to devise an algorithm that can skip over such singularities
providing they have order 1, i.e., one principal leading submatrix is singular but the next
one is not. This particular algorithm uses block hyperbolic Householder matrices ofblock
size two. However, we have not been able to devise a method that works for any order
singularity and so have decided not to include a discussion of this partial result. In fact,

The sign of column x is defined as the sign (x* Wx).
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we view the development of such algorithms for matrices with arbitrary rank profile as
a major outstanding question in this area. It should be pointed out that Levinson-type
algorithms for inverse Cholesky factorization of Toeplitz matrices with arbitrary rank
profile have been developed by Delsarte, Genin, and Kamp 16 ], and those results may
contain clues about how the hyperbolic Householder approach might be extended to
deal with general singular cases. Other work on this singular case can be found in 30].

We now summarize the algorithm:
Assumptions: A is an order n square Hermitian matrix with displacement rank a

and nonsingular leading principal submatrices.
Input: G Rx, the matrix of a generators ofA; and

W- diag (e, e,), the diagonal matrix describing the hyperbolic norm
underlying the problem.

Output: R e Rnn, the upper triangular matrix in the factorization ofA; and
W’ diag (_+1, _+ ), the diagonal signature matrix for which A
R*W’R.

HYPERBOLIC HOUSEHOLDER ALGORITHM
Fori= ltondo

begin
g ith column of G;
r g* Wg;
select ek SO that sign (e, Wek) sign (r);
define Ux so that Uxg -aek;

form G UxG’o;
set ith row ofR kth row of G;
set Wi Wk,;
shift kth row ofG one to the fight;

end

It is important to observe that Ux should not and need not be stored explicitly.
Because of its structure in terms of x, a matrix vector product of the form Uxy can be
computed in only O(a) operations. By comparison, explicit formation of Ux alone requires
O(a -) operations. Precise operation counts for real and complex cases are given in 6.

5. Examples. The algorithm we describe is only useful, of course, if the generators
of a matrix are explicitly and readily available. In this section, we briefly sketch two
important examples in which the generators can be easily obtained.

5.1. Hermitian Toeplitz matrices. Suppose that A is a Hermitian Toeplitz matrix.
It is well known that such matrices have displacement rank two in the general case.
Moreover, it is well known that the generators are easily obtained from the matrix itself
as follows.

Since we assume that the matrix has nonsingular leading submatrices, the diagonal
entry is a nonzero real so we can set it to one by normalization. Let U be the strictly
upper triangular part ofA so that

A I+ U+ U* =(I+ U)*(I+ U)- U*U

=[I+U* U*]
0 U
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where U (bli,j)

uij={t9_i if i<j,

0 if i>=j.

This shows that the 2 n matrix of generators ofA has the form

with signature

t2" tn- 11G’o
0 tl t2 tn-1

W diag l,- ).

The well-known Schur algorithm is the standard technique for factoring A [2 ], [27 ],
and the hyperbolic Householder construction reduces to Schur’s algorithm if we make
a few simple observations. First of all, Schur’s algorithm can be viewed as applying a
sequence of hyperbolic rotations to the matrix of generators. A hyperbolic rotation is
defined as follows. To map the vector [r s] r to [a 0] , let

s

and define

Then

Vt= /i [l 2

as a direct expansion shows. In the positive-definite Hermitian Toeplitz case, the quantity
is guaranteed to be less than one in absolute value and is commonly known as a Schur

or reflection coefficient. By the same token, defining the hyperbolic Householder matrix
Ux based on

[rJ [/Ir[2-- [sl 2

]X +a
s 0

gives, after some arithmetic reduction Ux Vt. Thus, functionally, these two methods
reduce to the same computation in the simple Hermitian Toeplitz case. It should be
noted of course that the hyperbolic Householder approach requires considerably more
computation if the general form ofthe Householder matrix is used. This increased com-
plexity is borne out by the numerical experiments performed in the next section.

5.2. Partial QR factorization of Toeplitz matrices. Suppose that T is an m n
rectangular Toeplitz matrix (rn >_- n). There have been a number ofalgorithms proposed
for computing a QR factorization of T 3 ], 8 ], 10 ], 33 ]. Here we review how the
basic notion of displacement rank plays a role in this problem. A much more general
description of the relationship between displacement ranks of matrices and the displace-
ment ranks of their products can be found in [8].
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The displacement rank ofthe Toeplitz matrix T is generally two, as we have already
seen. The general theory in 8 shows that the displacement rank ofA T* T is bounded
by four. In fact, it is quite easy to explicitly derive the generators of A. Let T (tg_ j)
for =< -< rn and <-j -< n. Then

aij , t-k-gtk-j
k=l

m

tk-i+ltk-j+l-t-tl-itl-j--tm-i+ltm-j+l
k=l

ai-1,j-1 +-itl-j--m-i+ ltm-j+

for i, j > 2. It follows that

A-Z*AZ=

all a12 aln
a21 t--It-1 t-m- tm-1 _t n-- l-m-1 tm- n +

anl tl nt-1 tm + tm tl ntl n tm- n + trn n +

where

O =--11 [all a12" "aln],

/ -- [0 al’"aln],

’y [0 l-1 t_" "t-n],

#= [0 tm-1 tm-2"’’tm-n+l].

Thus the generator for A is

with signature matrix

---11 all 11a12 "Vllaln

a-ll a12 "llaln
0 l_ t-2 t-n +
0 tm tm 2 tm +

W= diag( 1,-1, 1,-1 ).

6. Performance. In this section, we present the performance of the hyperbolic
Householder algorithm presented in 4 on the Alliant FX/80, Cray X-MP/48, and

Note that the generators of A in this case can be computed in O(mn) complex
operations. The reader is encouraged to review 6 ]- 9 ], 15 ], 25 ], and 27 for a
general treatment of displacement rank and other situations where such structures arise.
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HHSV

2

t2

""’, tII-ILV

FIG. 1. Vectorization and concurrency in HHLV and HHSV methods.

Cray-2 computer systems.2 For purposes of comparison, we also present results for the
application of hyperbolic Givens rotations to the matrix of generators (Schur’s method)
as well as for the dense Cholesky factorization of the original matrix A in (2) as imple-
mented by the ZPOFA routine in LINPACK 17 ]. It should be emphasized that all our
experiments are for complex matrices.

In the implementation ofhyperbolic Householder matrices to the matrix ofgenerators
G in (4) on vector and multivector processor machines, we can access/update either
rows (of length n) or columns (of length a) serially (one CPU of the Cray X-MP/48
and Cray-2) or concurrently (Alliant FX! 80). Figure illustrates the two possible im-
plementations that yield either long vector lengths n (HHLV) or short vector lengths a
(HHSV), where n is the order of the original matrix A that has displacement rank a.
We note that while HHLV can better exploit vectorization, HHSV will yield better par-
allelism in that n, rather than a vectors, can be processed simultaneously. A straightfor-
ward application of hyperbolic Given’s rotations (HGIV) to the matrix of generators
(Schur’s method) will access pairs of rows of the matrix G in a sequential fashion and
hence maintain the same vector lengths of HHLV. We refer the reader to 17] for a
description of the Cholesky factorization of a dense matrix (in complex arithmetic).

The total cost in floating-point operations of the three methods we are considering
(when implemented in real and complex arithmetic on the Alliant FX/80) is illustrated
in Table 1, given the individual floating-point operation costs ofbasic complex arithmetic
operations in Table 2. For our comparison ofmethods, we assume that all three methods
are implemented in 64-bit complex arithmetic. We note that the cost of ZPOFA is in-
dependent of a since, in this case, we assume the original matrix A has been explicitly
formed. As illustrated in Fig. 2, the cost ofHGIV will eventually match and then supersede
that ofHHLV(SV) for a fixed matrix order n as c increases. Specifically, on the Alliant
FX/ 80 the cost ofHGIV and HHLV(SV) is identical for c 7 8 for matrices of order
00 (500). Figure 3 reveals that while the cost differential between the methods remains

fairly constant for very small displacement ranks (a 2) and increasing matrix orders

Cray X-MP/48 and Cray-2 at the National Center for Supercomputer Applications (NCSA), University
of Illinois at Urbana-Champaign.
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TABLE
Cost offactorization methods in floating-point operations on the Alliant FX/80.

Method

Floating-point operations

Complex arithmetic Real arithmetic

Hyperbolic Householder
(HHLV, HHSV)

Hyperbolic Givens
(HGIV)

Dense Cholesky
(LINPACK)

12an + 63an + 54n

14( 1)n + 44(a 1)n

-n + 2n2 n (ZPOFA)

3an + 13an + 7n

3(a- 1)n + 13(a-1)n
n n n

--f + - g (DPOFA)

n, the methods approximately require the same number of floating-point operations for
larger displacement ranks (a 8).

In all the experiments presented in this section, we deliberately avoid singularity
encounters in the factorization of a randomly generated G by defining

* gl= - and-2 gil,

* ej.= 1,j= 1,2, ..., n (i.e., W=I,,).
Our concern here is to simply demonstrate the raw performance of the methods. The
resolution ofsingularities is certainly an important concern for future work in the general
application of hyperbolic Householder matrices.

The CPU times (milliseconds) required on eight processors of the Alliant FX/80
and one CPU ofboth the Cray X-MP/48 and Cray-2 for factoring matrices of order 100
(with displacement ranks ranging from a 2 to c 10) are given in Figs. 4 and 5. We
note that the times indicated in all the figures presented in this section are nondedicated
measurements. On the Alliant FX/80, although HGIV is far superior to either HHLV
or HHSV for displacement ranks a -< 6, the performance of HHSV for ranks c ->_ 7 is
the best. This can easily be attributed to the optimal parallelism (n rather than a) of
HHSV mentioned above. For a 10, HHSV is 1.43 times faster than HGIV, 1.64 times
faster than HHLV, and 3.07 times faster than the dense Cholesky factorization rou-
tine ZPOFA.

On the Cray X-MP/48 and Cray-2, the performance comparisons are quite different.
As indicated in Figs. 5 and 6, the HHLV is far superior to HHSV for all displacement
ranks. This is not surprising since the vector lengths (a) are extremely small for HHSV
(64-element vector registers on Cray X-MP/48 and Cray-2). Note that the crossover
point for HHLV relative to HGIV on both Cray machines occurs near a 3. The success

TABLE 2
Cost of basic complex arithmetic operations in floating-point operations

on the Alliant FX/80, Cray X-MP/48, and Cray-2.

Floating-point operations

Complex operation Alliant FX/80 Cray (X-MP/48) (-2)

a+b 2 2
a,b 6 6
a/b 10 13
lal 13 13
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10

N=500

HHLV,

HGIV

2 3 4 5 6 7 8 9 10 11

Disphcement Rank

FIG. 2. Floating-point operations of hyperbolic factorization methods for order 100 and 500 matrices on
the Alliant FX 80.

10

104
50 100 150 200 250 300 350 400 450 500

FIG. 3. Floating-point operations ofhyperbolicfactorization methods for matrices ofdisplacement rank 2
and 8 on the Alliant FX 80 (HHLV(SV) and HGIV are coincident for ALPHA 8 ).
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250

200

150

100

50

"’"’"’1[ZPOFA := 430 ms] ....................
ttI-IL

...................................
HGIV

2 3 4 5 6 7 8 9 10

Displacement Rank

FIG. 4. Performance ofhyperbolicfactorization methodsfor order O0 matrices on the Alliant FX/80.

30

20

15

10

5

0
2

ZPOFA := 40 ms
Cray X-MP)]

....................................................... ttttLV (eray X-MP)

3 4 5 6 7 8 9 10

Displacement Rank

FIG. 5. Performance of hyperbolic factorization methods for order 100 matrices on the Cray X-MP/48
CPU).
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01
[ZPOFA := 40 ms .......7""]

35
(Cray-2)] HHSV (Cray-2) .

20 HG

15- ...................
10

2 3 4 5 6 7 9 10

Displacement Rank

FIG. 6. Performance ofhyperbolicfactorization methodsfor order O0 matrices on the Cray-2 CPU).

of HHLV on the Cray X-MP can be attributed in part to the chaining of longer vector
operations (see [24 ]). For displacement rank c 10 on one CPU of the Cray X-MP/
48, HHLV is 1.56 times faster than HGIV, 1.52 times faster than HHSV, and 1.56 times
faster than ZPOFA. On one CPU ofthe Cray-2 (no chaining), HHLV is 1.56, 1.52, and
1.56 times faster than HGIV, HHSV, and ZPOFA, respectively. Figures 7 and 8 illustrate
the behavior of the methods on the Cray X-MP/48 and Cray-2 for order 500 matrices.
Whereas the crossover point in execution time for HHLV relative to HGIV is near 3 for
n 100 (see Figs. 5 and 6), the crossover point is either four or five for n 500.
Regarding speed improvements for factoring order 500 matrices on the Cray machines,
HHLV can be as much as three and six times faster than HHSV and ZPOFA, respectively,
on the Cray X-MP/48, and 1.6 and four times faster than HHSV and ZPOFA, respec-
tively, on the Cray-2.

In order to assess machine performance rates of HHSV and HHLV for a fixed
displacement rank c 4 in Figs. 9 and 10, respectively, we plot the megaflops (millions
of floating-point operations using the operation counts in Table 2) achieved on the three
machines for increasing matrix orders ranging from n 50 to n 500. In complex 64-
bit arithmetic, we can achieve nearly 100 and 50 megaflops on the Cray X-MP/48 and
Cray-2, respectively, when HHLV is used to factor n 500 order matrices. On the Alliant
FX/80, we can achieve roughly six megaflops for the more optimal HHSV method. If
we consider the speedup of HHSV and HHLV for one to eight processors of the Alliant
FX/80 (see Fig. 11 ), HHSV asymptotically reaches a speedup of six for matrices of
displacement rank c 4, whereas the speedup of HHLV (which can only process four
rows ofthe generator matrix G concurrently) stabilizes around 2.5 for matrices oforder
n 50 to n 500.
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00

800

700

500

300

200

100

[ZPOFA := 1840 ms
(Cray X-MP)] ....................... HHSV (Cray X-MP)

HGIV(Cr..................... HHLV (tray X-MP)

02 3 4 5 6 7 10

Displacement Rank

FIG. 7. Performance of hyperbolic factorization methods for order 500 matrices on the Cray X-MP/48
(1 CPU).
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2 3 4 6 7 10

Displacement Rank

FIG. 8. Performance ofhyperbolicfactorization methodsfor order 500 matrices on the Cray-2 CPU).
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FIG. 9. Performance ofhyperbolic Householder method HHSVfor matrices ofdisplacement rank 4.
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Alliant FX/80
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FIG. 10. Performance ofhyperbolic Householder method HHLVfor matrices ofdisplacement rank 4.
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HHSV

HHLV

50 100 150 200 250 300 350 400 450 500

Matrix Order

FIG. 11. Speedup ofhyperbolic Householder methods HHLV and HHSVfrom one to eight processors of
the Alliant FX 80.

7. Conclusions. An efficient algorithm for the factorization of matrices with small
displacement rank has been described and implemented on Alliant FX/80, Cray X-MP/
48, and Cray-2 vector computers. The algorithm is based on hyperbolic Householder
transformations that were recently introduced by Rader and Steinhardt. For an order n
matrix with displacement rank a, the algorithm uses O(an2) arithmetic operations and
has good vectorized and parallel versions.

The algorithm presented here handles the same problems as Schur’s algorithm for
Hermitian Toeplitz matrices and the algorithms of Chun, Kailath, and Lev-Ari for Her-
mitian matrices with small displacement ranks. While there are some results about the
numerical properties of hyperbolic rotations [1 ], [4 ], we are only aware of preliminary
results about the numerical stability of algorithms based on hyperbolic Householder
matrices for the downdating problem 5]. Our conjecture, as supported by numerical
experiments, is that the algorithm presented here is stable when restricted to the class of
positive definite matrices. Since the algorithm solves factorization problems for leading
principal submatrices, as do the above mentioned algorithms, indefinite matrices can
create numerical difficulties for this whole class of algorithms.

We believe that more research on the numerical stability of algorithms based on
hyperbolic Householder matrices is needed. Moreover, algorithms that can handle singular
leading submatrices would be valuable if they exist. These are important areas for future
research.

Acknowledgments. The authors thank C. T. Pan for helpful discussions on related
work, Kyle Gallivan for insights into various computer implementation issues, and Bob
Plemmons for the helpful comments and suggestions.
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Abstract. If is the computed solution to a tridiagonal system Ax b obtained by Gaussian elimination,
what is the "best" bound available for the error x and how can it be computed efficiently? This question
is answered using backward error analysis, perturbation theory, and properties of the LU factorization of A.
For three practically important classes of tridiagonal matrix, those that are symmetric positive definite, totally
nonnegative, or M-matrices, it is shown that (A + E) b where the backward error matrix E is small com-
ponentwise relative to A. For these classes of matrices the appropriate forward error bound involves Skeel’s
condition number cond (A, x), which, it is shown, can be computed exactly in O(n) operations. For diagonally
dominant tridiagonal A the same type of backward error result holds, and the author obtains a useful upper
bound for cond (A, x) that can be computed in O(n) operations. Error bounds and their computation for
general tridiagonal matrices are discussed also.

Key words, tridiagonal matrix, forward error analysis, backward error analysis, condition number, com-
parison matrix, M-matrix, totally nonnegative, positive definite, diagonally dominant, LAPACK
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1. Introduction. A natural question to ask when solving a general n n linear
system Ax b by Gaussian elimination with partial pivoting (GEPP) is, "how accurate
is the computed solution, ?" The traditional answer begins with Wilkinson’s backward
error result 22, p. 108

1.1 (A +F) b, FII --< Onp(n)ullAllo,
where p(n) is a cubic polynomial, u is the unit roundoff, and o, is the growth factor,

(k)defined in terms of the quantities ai generated during the elimination by

maxi,j,k -(k)aij
Pn--

maxi,jlaijl

Applying standard perturbation theory to 1.1 ), one obtains the forward error bound

(1 2) IIx-.fll < r(A)o,p(n)u
(ro(A)o,p(n)u< 1)xl] (A)p.p(n)u

where the condition number r(A) IIA[][IA-111o. Since the term p(n)can usually
be replaced by its square root for practical purposes [22, p. 108 ], or more crudely can
be ignored, and since p, is usually of order 1, this leads to the rule of thumb that has
about -log0 u lOgl0 ro (A) correct decimal digits in its largest component.

In certain circumstances a bound potentially much smaller than (1.2) holds. This
can be shown using the following componentwise backward error result, for general
A[5]:

(1.3) (A+E)2=b, IEI <-c,,u[l It)l,
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where Cn 2n + O(u), and and are the computed LU factors of A (we assume,
without loss of generality, that there are no row interchanges). Here, the absolute value
operation 1. and the matrix inequality are interpreted componentwise. If I/11 t)l _-<
C’nlAI, then (1.3) may be written

(1.4) (A+E).=b, IEI <--cT, ulAI,

which represents the "ideal" situation where E is small componentwise relative to A.
Note, in particular, that e0. 0 if aij 0. The bound in (1.4) holds, at least, when A is
triangular (see, e.g., 17 ), and when A is totally nonnegative 5 ], assuming no pivoting
in both cases. (A is totally nonnegative if all its minors of any order are nonnegative.)
The bound also holds, under certain assumptions, if is the result ofGEPP followed by
one step of iterative refinement in single precision ], 20 ].

Perturbation results appropriate to 1.4) render the bound 19

5)
[Ix-.fll < cond (A,x)c’u

xll cond (A)cu
(cond (A)c, u < ),

where

and

cond (A,x)= IA-I IAI Ixl II

cond (A) cond (A, e),

The key difference between (1.5) and (1.2) is in the condition number terms:
cond(A,x) is no larger than K(A) and is often much smaller. In particular,
cond (A, x) is invariant under row scaling ofA, whereas K(A) is not.

This work focuses on the case where A is tridiagonal, and was partly motivated by
the question of what types of error bounds and condition number estimates should be
provided in the LAPACK routines for solving tridiagonal systems [3], [9]. (LAPACK
is to be a collection ofFortran 77 routines for solving linear equations, linear least squares
problems, and matrix eigenvalue problems [6 ].) The aim of the work is to determine
classes of tridiagonal systems for which the bounds (1.4) and (1.5) are valid and to
develop efficient methods for estimating or computing the condition numbers in (1.5)
and (1.2).

In 2 we present a specialized version of the backward error bound (1.3) for tri-
diagonal matrices. The result is known, but we give a short proof since the precise value
of the bound is important, and we were unable to find a suitable reference.

In 3 we show that (1.4) holds for Gaussian elimination without pivoting if the
tridiagonal matrix A is symmetric positive definite, totally nonnegative, or an M-matrix.
(Thus, for these types of matrices there is no advantage in doing iterative refinement in
single precision.) We show that in each case cond (A, x), and hence also the bound in
1.5 ), can be computed exactly in O(n) operations. Diagonally dominant matrices also

enjoy a relatively small componentwise backward error, and, as we show in 4, a good
upper bound for cond (A, x) can be obtained in O(n) operations.

We consider general tridiagonal matrices in 5; we explain which error bounds are
applicable and how the corresponding condition numbers may be estimated. In 6 some
further comments are made concerning practical use of the bounds and condition num-
bers, and some numerical results are presented to illustrate the value of using a com-
ponentwise backward error approach when possible.
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2. Gaussian elimination and its error analysis. Consider the real n n, nonsingular
tridiagonal matrix

(2.1) A=

dl el
d2 e2C2

Cn
.. ... e,,

and assume A has an LU factorization A LU, where

1
12 1

(2.2) L 13 1

Ul el
u2 ez

U-" ",,o ".,,

".. en-1
1 un

Gaussian elimination for computing L and U is described by the recurrence relations

li- ci/ bli-
(2.3) u =d;

ui= di- liei_

To investigate the effects of rounding error, we will employ the model

(2.4a) fl(xop y) =(xop y)(1 +6), 161 <=u,

(2.4b) fl(xop y)=(x op y)/(1 +e), I1 u,
where u is the unit roundoff and op { +, -, ,, / }. Note that (2.4b) is valid under the
same assumptions as (2.4a), although usually only (2.4a) is used in a rounding error
analysis. Judicious use of (2.4b) simplifies the analysis slightly.

Applying (2.4) to the relations (2.3) and using a hat to denote computed quantities,
we have

Hence

+ Oi):ti di- ei- 1( + 6i), IOil,lil u,

ICi--’li-1 <=ulti- l,

di- ei-, li . u(l.ei-, + Ii I).

In matrix terms these bounds may be written as

(2.5) A=(J+E, IEI--<ul111.
Ifthe LU factorization is used to solve a system Ax b by forward and back substitution,
then it is straightforward to show that the computed solution satisfies

(2.6) (+AL)((J+AU).f=b, Itl--<ulZl, IXUI-<(2u/u2)ll.

Combining (2.5) and (2.6) we have, overall,

(2.7) (A+F)=b, IFI--<f(u)l1101, f(u)=4u+3u2+u3.
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We have avoided using O(uz) notation in order to emphasize that there are no large
constants in the higher-order terms; in particular, f(u) is independent of n.

3. Componentwise backward error and computation of cond (A, x). The backward
error result (2.7) applies to arbitrary nonsingular tridiagonal A having an LUfactorization.
We are interested in determining classes of tridiagonal A for which the bound IF[ =<
f( u)l/SI t?l implies the "ideal bound"

(3.)

Certainly, (3.1) holds if

(3.)

for then, using (2.5),

so that

IFI <:g(u)lAI.

11211 1

1/211 21--IA-EI <= IAI + ul/211 1,

(3.3) I/_ZI 01 IAI.
l--it

Three classes of matrices for which (3.2) holds for the exact L and U are identified in
the following theorem. A nonsingular A e R x is an M-matrix if aij <- 0 for all 4: j and
A -1 >= 0. There are many equivalent conditions for A to be an M-matrix 2, Chap. 6];
for example, the condition A- >= 0 can be replaced by the condition that all the principal
minors ofA are positive.

THEOREM 3.1. Let A R be nonsingular and tridiagonal. Ifany ofthefollowing
conditions hold then A has an LUfactorization and LII UI LUI"

a A is symmetric positive definite;
b A is totally nonnegative, or equivalently, L >= 0 and U >= 0;
c A is an M-matrix, or equivalently, L and U have positive diagonal elements and

nonpositive off-diagonal elements;
d A is sign equivalent to a matrix B oftype (a)-(c); that is, A D1BDz, where

IOl IO=l I.
Proof. For (a), it is well known that a symmetric positive definite A has an LU

factorization in which U DL, where D is diagonal with positive diagonal elements.
Hence ILl IUI ILl IDI Itl ILDLr[ ILUI. In (b) and (c) the equivalences,
and the existence ofan LU factorization, follow from known results on totally nonnegative
matrices 4 and M-matrices 2 ]; ILI UI LUI is immediate from the sign properties
ofL and U. (d) is trivial. V]

THEOREM 3.2. Ifthe tridiagonal matrix A is oftype a)- d in Theorem 3.1, and
ifthe unit roundoffu is sufficiently small, then Gaussian elimination for solving Ax b
succeeds and the computed solution satisfies

4u + 3U2 +//3
(3.4) (A+F)2:b, IFI <-h(u)lAI, h(u)-

1--U

Proof. If u is sufficiently small, then for types (a)-(c) the diagonal elements of
will be positive, since /i --’ b/i > 0 as b/ 0. It is easy to see that/i > 0 for all ensures
that Z;ll t-?l I/;t-?l. The argument is similar for type (d). The result therefore follows
from (2.7) and (3.3). [3

Theorem 3.2 appears to be new in the case ofM-matrices. A result ofthe form (3.4)
(with a Cn term in the bound) is valid for any totally nonnegative matrix 5]. The sym-
metric positive definite case in Theorem 3.2 is also known [8].
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A corollary of Theorem 3.2 is that it is not necessary to pivot for the matrices
specified in the theorem (and, indeed, pivoting could vitiate the bound (3.4)). Note that
large multipliers may occur under the conditions of Theorem 3.2, but they do not affect
the stability. (Recall the well-known property 21, p. 412 that arbitrarily large multipliers
may occur in LU factorization of a general symmetric positive definite matrix, yet the
growth factor pn -< 1.) We stress this point because in [13 ], which deals with Gaussian
elimination oftridiagonal Toeplitz matrices, it is stated that "the stability ofthe elimination
process is controlled by the size ofthe multipliers mj." We also mention that the example
given by Harrod [14] of the M-matrix

A= e-2 2 0 (e-2)/2 0 0 e 0 =LU,
0 -1 3 0 -1/e 0 0 3

for which the multiplier /32 is unbounded as e --* 0, is an example where Gaussian
elimination performs very stably, as Theorem 3.2 shows.

We now turn our attention to computing cond (A, x). We show that if Zll UI
LUI then cond (A, x) can be computed in O(n) operations.

THEOREM 3.3. Ifthe nonsingular tridiagonal matrixA e Rn has the LUfactoriza-
tion A LU and ILl IUI IAI, then U-ll It-l IA-I.

Proof. Using the notation of (2.1) and (2.2), t UI AI LUI if and only
if for all

IIe-, +u,.I Ilil lei-1 l+ lull,

that is, if

(3.5) sign(liei-1)=tli 1.

Using the formulae

_1 -ep (j>- i),(3.6) U- )i u up

i-1

(3.7) (L-)ij (-lp+) (i>=j),
p=j

we have

U-1L-l )o U-1 )ik(L -1
k max (i,j)

H
k max (i,j) 1,1k p p

max(i,j)-l(__p)max(i,j)-lHH (--/p+ 1) En ml k-lH (eplp +1p p J k (i,j) b/k p max (i,j)

p b/p p =j b/max (i,j) k max (i,j) P (i,j)

Thus, in view of (3.5), it is clear that U-1L-1li (I U-1I L-1l)ij, as required.
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To see the significance of the property U-l] L-l[ ]A-1], note first that, as is
clear from (3.6) and (3.7),

IV-l[ M(U) -1, [L-l[ M(L) -1,

where for B 6 R" the comparison matrix M(B) is defined by

[bill, i=j,

(M(B))iJ=-[b0[, i4:j.

Thus, if [A-l[ [U-l[[L-l[ and y >_- 0 then

A-’[ y U-l L-’I y M(U)-I M(L)-I y.

By taking y [A[ Ix[ it follows that cond (A, x) can be computed in O(n) operations:

form y= ]A] [x[,

solve M(L)v y,
(3.8)

solve M(U)w v,

compute wll ! xl[

For the special case y e and A symmetric positive definite, (3.8) was used in 15, 6
to compute 11A -1 in O(n) operations.

Ofcourse, in practice we use the computed/2 and in place ofthe exact LU factors.
If cond (A) is not too large (cond (A)u < 1/2, say), then we are guaranteed a satisfactory
computed value of cond (A, x), that is, one having some correct digits.

4. Diagonally dominant matrices. A in (2.1) is diagonally dominant by rows if

[dil >-- [cil + [ei[ for all/ (c1--en=-0),

and diagonally dominant by columns ifA r is diagonally dominant by rows. Such A have
an LU factorization, but [L[ U[ 4 [A[ in general, and so we cannot apply the results
of the last section. However, as the next result shows, ILl[ U[ can be bounded by a
small multiple of ]AI. Combining this result with (2.7), we are able to conclude that
the componentwise backward error is small in solving a diagonally dominant tridiagonal
system Ax b.

THEOREM 4.1. Suppose A Rnx" is nonsingular, tridiagonal, and diagonally
dominant by rows or columns, and let A have the LU factorization A =LU. Then
ILl IUI --< 3IAI.

Proof. If J then L UI );j aijl, so it suffices to consider the diagonal
elements and show that (using the notation of (2.2))

Iliei- I+ luil--<31 d;I.

The rest of the proof is for the case where A is diagonally dominant by rows; the proof
for diagonal dominance by columns is similar.

First, we claim that levi --< lull for all i. The proof is by induction. For the
result is immediate, and if it is true for then from (2.3)

lui] >= Idil- IIl le- Idl lei-1
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as required. Note that, similarly, uil <ldl /[cil. Finally,

liei- + ui[ ci
=’ei-1 + uil <= lcil / lUg[

Hi-

<=lcil /(I gel / c/I)

=<3ldil. []

Unfortunately, it is not generally true for diagonally dominant A that A-I
U-l L-I, so we cannot compute cond (A, x) using the O(n) operations technique

of the last section. However we can compute the upper bound in

IA-Iy=< IU-l IZ-ly (y--IAI Ixl)

in O(n) operations. Concentrating, for the moment, on diagonal dominance by rows, a
bound for how much of an overestimate this upper bound can be is provided by the
following result.

THEOREM 4.2. Suppose the nonsingular, row diagonally dominant, tridiagonal ma-
trix A Rnxn has the LUfactorization A LU. Then, ify >= O,

u-’ L-lyll<--(Zn 1)ll IA-’ yll.

Proof. We have L-l UA -, so

IU-l IL-Iy<= IU-I IUI IA-Iy IV-I IVI IA-]y,

where the bidiagonal matrix V= diag (uii)-Uhas l)ii and [vi,i+ lei/uil =< (see
the proof of Theorem 4.1 ). Thus

1 1 1 1 1

IU_IlIL_lly

_
1 1 1 "..

".. ".. 1 IA-IlY’
1 1

and the result follows on taking norms. []

Theorem 4.2 says that when A is row diagonally dominant our upper bound for
cond (A, x) is too big by a factor at most 2n 1. This is somewhat unsatisfactory since
n can be very large. For n 2 the bound in Theorem 4.2 is attained as a-- in
the example

y--e.

For general n we have not been able to construct any examples in which the bound in
Theorem 4.2 is attained (except by relaxing the row diagonal dominance assumption).
In a wide variety of numerical tests with both random and nonrandom matrices, the
upper bound has never exceeded the quantity it bounds by more than a small constant
factor (3, say). Moreover, the bound is exact if the row diagonally dominant A happens
to be symmetric so that it is positive definite), nonnegative (that is, A >= 0, which implies
it is totally nonnegative), or an M-matrixmall three cases are common in applications.
We therefore regard the upper bound as reliable in practice, and conjecture that the
factor 2n in Theorem 4.2 can be improved to a constant independent of n.

We mention that Neumaier 18 found that u- L- Y =< 2 A -11Y held
in a small number of tests with full random row diagonally dominant matrices and
random y > 0, and this inequality is confirmed by our own tests with random matrices.
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However, no theoretical bound on the overestimation factor is known in the case of
full A.

A weaker analogue ofTheorem 4.2 holds whenA is diagonally dominant by columns.
The inequality u-ll L-11y <= A-11 ILl L-IIy leads to, for y > 0,

III u-111L-11Y - (2n- )0111 A- y 0
max/ Yil
mini Yil

Despite the unbounded 0 term in this inequality, we have not observed or constructed
any examples where the upper bound is more than a small constant factor too big. Thus
we regard the upper bound as being of practical use also when A is diagonally dominant
by columns.

5. General tridiagonal matrices. We turn now to tridiagonal systems Ax b where
A does not fall into any of the classes considered in the previous two sections. Suppose
GEPP is used to solve the system. Suppose also that we wish to refer to backward and
forward error bounds of the forms 1.1 and (1.2) and to estimate or compute Koo(A).
Several algorithms for computing Koo(A) exactly in O(n) operations are presented in
15 ]. As explained in 15 ], these algorithms (except the algorithm for symmetric positive

definite A) have the property that the intermediate numbers can have a large dynamic
range (the more so, the more diagonally dominant A is), and the algorithms can break
down in floating-point arithmetic due to underflow or overflow. These numerical problems
can be overcome, but at a nontrivial increase in cost (see [15]). Our preferred approach
is to use the matrix norm estimator SONEST from [16 ]. This provides an estimate for
B]I (a lower bound) at the cost of computing a few matrix-vector products Bc and
BTd. Typically four or five products are required; the norm estimate is frequently exact
and is almost always correct to within a factor 3. In our application, B A -r, and so
we need to solve a few linear systems A Ty c and Az d, which can be done using the
LU factorization already computed. The SONEST approach has about the same com-
putational cost as the methods in [15].

Next, suppose that GEPP followed by iterative refinement is used to solve the tri-
diagonal system Ax b. Then, under suitable assumptions, a result of the form (3.4)
holds [1], [20], and so the appropriate condition number is cond (A, x). (See [1] for a
discussion of possible violation of the assumptions when x and b are sparse, and for
suggested cures.) The techniques of [15] could be adapted to compute cond (A, x) in
O(n) operations, with the same practical numerical difficulties described above. However,
as shown in [1], [7], SONEST can be used to estimate cond (A, x) (even for general
A), and this is the approach we recommend.

Finally, note that for GEPP one could use the elementwise backward error result
(2.7) (suitably modified to take account of pivoting), for which a forward error bound
involving the condition number IA- I/;I 011xl I1/II xl[oo can be derived. Again, this
condition number (which is row scaling independent) can be estimated using SONEST.

6. Practical considerations. We discuss several practical issues concerning the con-
dition numbers and algorithms described above.

For symmetric positive definite A the standard way to solve Ax b is by using a
Cholesky or LDL factorization, rather than an LU factorization. The LINPACK routine
SPTSL uses a nonstandard "LUB" factorization resulting from the BABE ("burn at both
ends") algorithm (see [10], [15 ]). The results of 3 are applicable to all of these fac-
torizations, with minor modifications. Note that the LDL factorization requires n fewer
divisions in the substitution stage than the Cholesky factorization.

A drawback to the computation or estimation ofcond (A, x) IA-I AI xl [Ioo/
xll is the need to keep a copy ofA in order to form the product A x[ once x has
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been computed. Ifn is large it may not be possible to store a copy ofA. One can circumvent
this problem for the matrices in Theorems 3.1 and 4.1, for which A[ L[I U[ and
IAI --< ILl IUI --< 31A], respectively, by using ILl IUI Ixl in place of

We give the computational costs ofthe error estimation techniques in two particular
cases, in terms of flops [12, p. 32 ]. For a general tridiagonal A e R. n, factoring PA
LU by GEPP and solving Ax= b by substitution costs (5 + 2p)n flops, where
p e 0, depends on the number of interchanges; estimating K(A) requires 2n flops to
compute A and, typically, 4 (3 + p) n or 5 3 + p) n flops to estimate A --lll using
SONEST. For a symmetric positive definite A e Rn n, factoring A LDL and solving
Ax b requires 5n flops, and computing cond (A, x) requires 6n flops. Thus these error
estimation techniques at least double the cost of solving a linear system.

Instead of computing cond (A, x) one could compute cond (A) cond (A, e) >-
cond (A, x). The same cond (A) value could be reused when solving systems with the
same A but different fight-hand sides. However, this approach reduces the sharpness of
the bounds, since cond (A)/cond (A, x) can be arbitrarily large.

Finally, we present a numerical experiment that gives an indication of the sharp-
ness of the various error bounds. We used a tridiagonal matrix given by Dorr 11 that
occurs in the solution of a singular perturbation problem by finite differences. With m
[(n + / 2/, h / (n + ), and e > 0, the matrix is defined by (see (2.1))

--e/h 2 < < rn
Ci--

-e/hZ+(1/2-ih)/h 2, m+ <=i<=n,

ei {-e/hZ-(1/2-ih)/h 2, <=i<=m,

-e/h 2, m+ =< <

and di -(ci + ei), <= <= n (note that C1 and en are introduced solely to define d and
d,). A is a nonsingular, row diagonally dominant M-matrix. For small values of the
parameter e the matrix is ill-conditioned.

We chose n 50 and e 0.009. We solved Ax b for six different fight-hand sides.
The computations were done in PC-MATLAB, with simulated single precision arithmetic
of unit roundoff u 2 -23 . 1.2 10 -7. For each system we computed in single
precision and x and the relative error x ll ! x[I in double precision. Since A is
an M-matrix, cond (A, x), cond (A), and K(A )were computed in O(n)flops according
to (3.8) (using y e to compute r(A)). The results are given in Table 6.1.

For our test problem, 1.5 takes the form (using (3.4))

(6.1)
x-lloo __< 10.9 cond (A,x)u.

TABLE 6.1
Numerical results, n 50.

cond(A) 1.33E6, Ko(A)= 1.85E6
P=en+en-l+ +en-4
q (1, a, a 2, 10-5), a 10-5/n-1)

rand vector with random elements from uniform [-1, 1] distribution

x p x el x q x e x rand

cond(A, x) 1.73E2 3.82E0 8.89E3 1.33E6 5.50E5 8.87E5

1.25E0 0.00E0 9.92E2 1.42E2 1.75E4 1.09E2
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In the traditional bound (1.2) there is a similar constant and cond (A, x) is replaced by
K(A). From Table 6.1 we see that in the first three cases cond (A, x) is significantly
smaller than cond (A) and K(A); this indicates the value of using a condition number
that depends on x. The bound (6.1) is of variable sharpness, but it is always smaller than
the traditional bound.

Acknowledgment. Des Higham helped to polish the presentation.
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1. Introduction. The J X J matrices B, BM are called simultaneously (real)
diagonable by a similarity transformation X ifX-BmX is real diagonal for m l,
M. We abbreviate this to Bm are SDS (by X if we need to specify the transformation).
Also Bm are IDS if they are individually diagonable by a similarity transform, i.e., if X
is allowed to depend on m. Bm are simultaneously diagonable by congruence (SDC) if
there is a nonsingular J J matrix X such that X*BmX is real diagonal for m 1,
M. It is our purpose to connect these and related ideas, and in particular to characterize
SDC for an arbitrary Hermitian (M + )-tuple Ao, AM. For simplicity we assume
the scalars to be complex, although there are other possibilities, cf. 2].

Our key tool is a system of generalised eigenvalue problems

Amx ,mAx, rn 1, M

for a given linear combination A A (w) Ao + 1 wjAj.
Remark 1.1. Equation (1) is equivalent to the same system but for rn 0,

M, provided we set

M

Xo:l- wjX2.

Systems like and their homogeneous counterparts,

(2) #eAmx #mAex, 0 <= g, m <= M,
have been used extensively in multiparameter spectral theory for tensor determinants
Am. For example Atkinson [1] gives various extra conditions guaranteeing solubility of

and/or (2) and SDC, perhaps by X which is unitary in various inner products. Here
we say that (respectively, (2)) is soluble by X if there is a nonsingular matrix X such
that the jth column x ofX satisfies (respectively, (2)) for some j-dependent k 6 RM
(respectively, nonzero 6 RM+ ).

In the following we drop the tensor setting and the extra conditions, and we investigate
the relation between the above concepts in their own right. Our results, given in 2, may
be conveniently discussed via two observations, the first being as follows.
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THEOREM 1.2. Thefollowing are equivalent (TFAE
(i) Ao, AM are SDC.
(ii) is solublefor all w in some dense open set ft c
(ii’) is solublefor some o
(iii) 2 is soluble.

We remark that f2 is the complement of J hyperplanes. Some special cases ofthe literature
for k > are immediately accessible.

COROLLARY 1.3 [4, Thm. ], 5, Thm. 6.5.3 ]. IfA is nonsingular for some
then TFAE:
(i) Ao, AM are SDC.
(ii) A-1Am are SDS for m 1, M.
(iii) A-IAm are SDSfor m O, M.
Proof.

Am are SDC A-1Amx )kmX rn 1, Mby ),

A-IAmX XJkm for real diagonal Am.
This proves (i) , (ii) and (ii) (iii) follows from Remark 1.1.

Remark 1.4. The conditions in (ii) and (iii) may be expressed as commutativity
and IDS, as is well known.

COROLLARY 1.5 4, Cor. 6, Thm. 2 ]. IfA is positive definite for some
then TFAE:

(i) Am are SDC.
(ii) A-Am are SDS.
(iii) A-Am commute.

Proof. Corollary 1.3 gives (ii) (i), Remark 1.4 gives (i) (ii), and (iii) (ii)
follows from the spectral theorem for the commuting matrices A-Am, which are Her-
mitian in the inner product defined by

(3) (x, Y)A x*Ay.

We shall extend this result in Corollary 2.6.
If any of the conditions of Theorem 1.2 is satisfied, then they all are, and we thus

have: each X’AmY Am, say (a diagonal matrix) for some X Xi), is soluble by
some X X and (2) is soluble by some X X2).

Our second observation concerns the relation between these transformation matrices
X and the subspace N f)= N(Am)0

THEOe,EM 1.6. Suppose that the conditions (i)-(iv) ofTheorem 1.2 are satisfied as
above. Then they are also satisfied, with the same Am, ,, and t, by a common transfor-
mation matrix X Z which is independent ofw f. Moreover the columns ofZ may be
split into subsets U and V where

(i) the columns ofUform an orthonormal basis ofN,
(ii) the columns ofU are orthogonal to those of V,
(iii) two columns of V are orthogonal if the corresponding (respectively, are

equal (respectively, proportional).
This enables us to give conditions equivalent to SDC by a matrix that is unitary, or
A-unitary in the sense of (3) (see Corollaries 2.5 and 2.6 ). In general we may split offN
by means of Z [U: V] giving

Z*AmZ
0 Bm

where Bm satisfy Corollary 1.3. A more precise statement follows.
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COROLLARY 1.7. TFAE:
(i) Am are SDC.
(ii) For all nonsingular Z Ui V] where the columns of U span N, and for all

a B V*A V is nonsingular,
(b) B-1Bm are SDS, where Bm V*AmV.

(ii’) As ii but with "all" replaced by "some."
(iii) For all o

(a) N(A)= N,
(b) for all A- satisfying AA-A A, A-Am are SDS.

(iii’) As iii but with "all" replaced by "some."
By virtue of Remark 1.4, (i) (iii’) strengthens a result stated by Rao and Mitra [6,
Cor., p. 134]. Replacing Corollary 1.3 by Corollary 1.5 in Corollary 1.7, we obtain the
following.

COROLLARY 1.8. Iffor some o f, A is nonnegative definite then TFAE:
Am are SDC.

(ii) B-1B commute.
(iii) A -Am commute.

An equivalent result is given in 5, Thm. 6.5.2]. In the special case when all the A,, are
nonnegative definite, one may take o i.e. A m= 0 Am (see 5, Rem.,
p. 133], [6, Thm. 1]).

We conclude this introduction with some comments on the well-studied case k
1. Then the equivalence (i) (iii) of Theorem 1.2 is due to Au-Yeung 2 ]. Corollary
1.3 - ii is well known and Corollary 1.5 where iii is vacuous, so (i) is automatic
is standard. The actual statement ofCorollary 1.7 may be new, but (ii)(a)-(b) correspond,
respectively, to vanishing minimal indices and linear elementary divisors, i.e., to the
classical conditions of Kronecker for (i). For further results and references, we cite 3 ],
[4], and [5].

2. Results and lroofs. In this section we prove enough to substantiate the results
of 1.

LEMMA 2.1. Suppose X*AmX Am where Am diag (m, Jm).
(i) If , o, ) 4: O, then (2) is satisfied by , and the jth column x

ofX.
(ii) Ifu O, then (2) is satisfied by any t and thejth column x ofX.
Proof.
(i) #eAmx (jth column ofX-*Am)

m (jth column ofX-*),
which is obviously symmetric in and m.

(ii) For each m, Amx X-*0 0 so t.tmAex #eAmx 0 for all
LEMMA 2.2. If(2) is satisfied by t t and the jth column x ofX, and if

M

(4) zj= zJ(o) =/+ OmZm
m=l

is nonzero for some o gt, then (1) is satisfied by , (t{,"" ,z)/d with the
same x.

Proof. Equation (2) yields

#o + We#e Am # Ao + oeAe ,



534 PAUL BINDING

#JAmx #mAx. V1

Now define ft as the complement of the J hyperplanes 0 zj of (4), i.e., o aft #J
0 for some j 1, M. Then Lemmas 2.1-2.2 yield the following corollary.

COROLLARY 2.3. IfAm are SDC by X, then (2) (and )for all w ft are soluble
by X.

To establish Theorem 1.2, it is enough therefore to prove (ii’) (i). Accordingly
suppose that is soluble by X, with jth column x corresponding to X Xj. We write
yJ for the orthogonal projection of x j onto N+/-, provided xj g N, and Yk for the span of
all y j such that Xj Xk. We use the notation (3) regardless of whether A is definite, and
we call two subspaces U and VA-orthogonal if (u, V)A 0 for all u U, v V.

LEMMA 2.4. The subspaces Y are A-Orthogonal and together span N+/-.
Proof. If Xj 4 X, then 4 Xm for some m, so

XJm(yk, yJ)A XJm(Xk, XJ)A=(Xk)*AmXJ

(xJ)*Amx Xm(XJ, X)A

Thus (yJ, yk)A 0, and so YJ and Y are A-orthogonal.
Let yJ xj + nj where nj e N and yJ 0 if xj N. Given x N+/-,

x F_/’,(yj- nj)

for some oj C. Thus

, nJNCIN+/-

and so indeed x is in the span of the YJ.
We now construct a matrix Z whose columns corresponding to xj e N form an

orthonormal and A-orthogonal basis of N, and whose remaining columns make up cor-
responding bases of the Yk. By Lemma 2.4, Z is nonsingular and Z*AZ is diagonal, so
by ), Z *AmZ is also diagonal. This completes the proof of Theorem 1.2.

Proofof Theorem 1.6. By Corollary 2.3, is soluble by X, so we may construct
Z (perhaps o-dependent) as above. Now Lemma 2.2 shows that if X X for some
w ft then X j X for all o e ft. Thus the Y are o-independent, so Z may be chosen
independently of o.

A simple computation shows that Ax Az and Amxj Amzj for all j and m. Thus
is soluble by Z with the same vectors X. Similarly, Am are SDC by X and Z with the

same Am, and so (2) is soluble by X and Z with the same vectors u. Finally, conclusions
(i)-(iii) follow from Lemma 2.2 and the construction of Z.

COROLLARY 2.5. TFAE:
(i) Am are SDC by a unitary matrix.
(ii) (2) (or( )for all o ft is soluble by a unitary matrix.
(iii) Am commute.

Proof. (i) - (iii) as for Corollary 1.5, and (i) (ii) by Corollary 2.3. If (ii) holds
then the Y are orthogonal, so it suffices to choose orthonormal bases ofN and the Yk

for the columns of Z.
We call vectors/ j A-orthonormal if (u j, UJ)A 6ij. A J J matrix U is a-unitary

if its columns are A-orthonormal. Arguing as above but with A-orthonormal bases for
the Y, we can augment Corollary 1.5 as follows.
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COROLLARY 2.6. TFAE:
Am are SDC by an A-unitary matrixfor some o

(ii) Am are SDC and A is positive definitefor some o 2.
(iii) A-Am commute and A is positive definitefor some o
Proof of Corollary 1.,7. (i) (iii) by construction N c N(A) and the converse

follows from Theorem 1.2 (i) (ii). This proves (a) and to prove (b) we shall assume
that is soluble by X with columns ordered so that

0 0
X*AmXX*AX=

0 D 0 Om’
where D and Dm are real diagonal matrices with D nonsingular. (Ifthe partition is improper
then either each Am 0 or else A is nonsingular and the results follow from Corol-
lary 1.3.)

An easy computation shows that

A---X

for some Q, R, and S of appropriate sizes. Thus

where

A-Am XWmX-1

RDmW D_ID

and it is clear that W has eigenvalues consisting of zero and the diagonal entries of
D-1Dm. Moreover Wm has dim N zero columns, and hence has rank at most J-dim N.
IfD-IDm has an eigenvalue repeated times then Wm M has zero rows, and hence
has rank at most J- . As a result, Wm are IDS and since they clearly commute, they
are SDS by Remark 1.4, so A-Am are SDS.

(iii’) (ii) Let Z*AZ [o o], Z*AmZ [0 0Bm], SO (iii’)(a) (ii)(a). Writing

S B-
Z*,

we have

A-Am ZCmZ-
where

RBm

Thus Cm are SDS, say

Cm g H2 g H2 0 DZm
where Dm and DZm are real diagonal. We obtain B-Bm[HH2] [HDm H2DZm], and
ifH is a nonsingular matrix whose columns are a subset of those ofH and H2, we have

B-BmH HDm,
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where Dm is a diagonal matrix whose diagonal entries are a subset of those of Dm
and D2m.

(ii’) (i) By Corollary 1.3 (iii) (i), there are nonsingular T and real diagonal
D, such that T*Bm T Dm. Thus

Y*AmY=IO0
where

0]
y=u S

T

for any S of the appropriate size. It suffices to choose S so that Y is nonsingular. E]
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Abstract. The generalized eigenvalue problem Ax kBx for Toeplitz matrices generated by a rational
function is considered from a computational point of view. Three different functions having the same zeros as
the polynomial p()) det (A XB)"are introduced and fast methods for the evaluation at a point of these
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of the eigenvalues as zeros of p(,), generalize some results holding in the particular case of banded Toeplitz
matrices.
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1. Introduction. Let R(z) be a complex rational function defined by

C(z)
(z) A(z)B(z-)

(1.1) p

A(z)= ] a,z’,B(z) b,z",C(z) CiZi,
tt=0 ,=0 i= -q

where ar, bs, C_q, and Cp are nonzero. The formal Laurent series Y)=_ rjzj, associated
to the function R(z), is defined by the condition

R(z)A(z)B(z- C(z).

This series defines, for any positive integer n, the n n Toeplitz matrix Rn
n-I(r._ i)id= 0. We refer to the matrix Rn as the rational Toeplitz matrix generated by the

function R(z). Observe that ifA (z) and B(z) 1, the matrix R, is a banded Toe-
plitz matrix.

Given the rational Toeplitz matrices T, and S, generated by the functions

.( z n( z
T(z)= S(z) -1O/(Z)(Z-1 (Z),(Z

respectively, we consider the following generalized eigenvalue problem

(1.2) Tnu ,Snu, u 4: 0.

Problems of this kind occur in several applications: for instance, in the optimization of
rejection filters the maximization of the signal-to-noise ratio leads to the computation
of the minimum X in (1.2), where T, is the interference covariance matrix and Sn is the
signal covariance matrix [5].

Recently most interest has been devoted to the standard eigenvalue problem (where
Sn I) for rational Toeplitz matrices (see [10], [11], [12]) and to the specific case of
banded block Toeplitz matrices ([ ], 2 ], 3 ], 9 ], 13 ]). Explicit formulae have been
given for the polynomial p,(},) det (Tn Xl,) and efficient computational methods
have been devised.
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In [13] a method for computing Pn(X), which uses the approximation of the zeros
of an auxiliary polynomial of degree independent of n, is proposed for the case where
Tn is a banded Toeplitz matrix. This method has been extended to the case of Toeplitz
matrices generated by a rational function in [10], [11], [12]. As shown in [11] this
approach can be used together with root-finders (such as bisection or "regula falsi")
applied to the equation Pn(X) 0, which use only the value that Pn()t) takes on at a
point X. On the other hand, since computable formulae have not been provided for the
ratio Pn(X)/P’n(), Newton’s method has never been taken into account. Moreover nu-
merical stability problems may arise if the degree of the auxiliary polynomial is big
enough.

In 3 these restrictions have been overcome by devising new methods for the eval-
uation ofpn(X), in the case of a banded Toeplitz matrix Tn. These methods do not need
any asymptotic stage, such as the approximation of the zeros of a polynomial, so that
they work over any field ofnumbers (not necessarily algebraically closed as in 10 ], 11 ],
12 ], 13 ). Moreover, these methods also compute, at a cost which is roughly doubled,

the ratio Pn( )/P’n(X), SO that Newton’s method can be applied efficiently. Finally, they
can be easily extended to the case of block matrices.

In this paper we are interested in generalizing the algorithms given in [3] to the
case of 1.2), where the matrices Tn and Sn are rational Toeplitz matrices.

Since ), is a solution of (1.2) if and only if

1.3 det Rn 0,

where Rn Tn XSn is the Toeplitz matrix generated by the rational function

g(z,X)=
C(z, x)

A(z)B(z-1)

(1.4) C( z, X) ,]/( z)( z)/?(z-l) )k/( z)o/( z)( z-1 ),

A(z): oz(z)6(z),

t( z) Nz)( z),

we can restate 1.2) as a singularity problem for a Toeplitz matrix generated by a rational
function. By using Greville and Trench’s lemma 6 we rewrite condition 1.3 in terms
of the solution of a homogeneous constant-coefficient linear difference equation ( 2).
Following [13] and [3], we can reduce the computation of det Rn in (1.3) to the com-
putation of the determinant of a k k matrix whose order k is independent of n and
whose entries are computable with a low computational cost ( 3 ). This can be achieved
by solving the difference equation in either ofthree different ways: representing the solution
of the difference equation by means of the zeros of a suitable polynomial as in 13 ];
representing the solution in terms of the integer powers of a companion matrix as in
[3]; or applying the cyclic reduction method that is customarily used in the solution of
certain block tridiagonal systems. This way we obtain three functions, An(X), n(X),
Zn(),), having the same zeros as det Rn.

In 4 we apply the results of 3 to devise computational methods for the numerical
evaluation ofthe functions An(X), Zn(X), zn(),). The case of An(X) is treated as in 10 ],
[11 ], [12 ], while for n(X) and zn(X) we use a generalization, to the case of rational
matrices, of the methods given in [3] for the case of banded Toeplitz matrices. An
outline of the procedures to compute the ratios An(X)/Z,(X), n(X)/z;,(X) and
Zn(X)/Z;,(X) is also given.
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In 5 we present an explicit formula for the characteristic polynomial Pn(3‘)
det (Tn M,) ofa rational Toeplitz matrix T. It generalizes an analogous formula given
in [3] for the particular case where Tn is banded. Unlike the representation of p,(3‘)
given in 12 ], this formula gives p,(3,) in terms of quantities that are computable with
a finite number of arithmetic operations.

In 6, considering a concrete example occurring in the optimization of rejection
filters, we show how the conditions under which the results of 3 hold can be removed.

2. Reduction to a linear difference problem. We want to state the singularity con-
dition ofa rational Toeplitz matrix in terms ofthe solution of a linear difference equation.
So let Rn be the n n Toeplitz matrix generated by the rational function R(z) defined
in 1.1 ), set

M=max (p,r),N=max (q,s),k=M+N,

and assume that

aobo 4: O,

(2.1)
gcd (A(z),zSB(z-1)) 1,

gcd (zqC(z),zSB(z-1)) 1,

gcd (A(z),zqc(z)) 1.

That is, the polynomials A(z), zSB(z- and zqC(Z), are pairwise relatively prime.
Throughout the paper we will denote by 0-s, Or the coefficients ofthe function

O(z) A (z)B(z- ), that is, 0(z) O_sz -s + + Orzr’ moreover, we assume that every
coefficient ofA (z), B(z), C(z), 0(z) is zero if its subscript is out of range.

Consider the matrices

ao aM- \= ".. )cM’ao

(2.2)
(bo ) c:.CNN,f=
b_ bo

ao

bN bo )o, Oo
bN bo

EcMk

and observe that, since aobo 4: 0, i. and I] are nonsingular matrices.
The following result allows us to express the singularity condition of the matrix R

in terms of the solution of a linear difference equation of order k. The formulation of
this result is slightly different from that given originally in [6] and is more useful for our
purposes.
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LEMMA (Greville and Trench). Under the hypotheses (2.1) there exists a unique
sequence { 4i }- such that

aui-u b
g=O

b,,_ a (i.o, for >= 0,
=0

where i,j is Kronecker’s symbol. Moreover thefollowing properties hold:, -=_ 4iz is theformal Laurent series ofthe rationalfunction

(ii) R c(n)(I)(n), where

Ro(z) A(z)B(z-)

C-N Co CM )Ctn)

C-N CO CM

_.cnX(n+k)

( N 0 )-M (-n M+
(i) (n) c(n+k)n.

(N+ n )N 0 -M

(iii) the matrix n+k (j- n+k-1
Ji,j o is nonsingular and its inverse Hn / k has the

following structure

Hn+k (2)

(3)

O-N t90 19M )H(2)= ". Ecn(n+k)
O_N 00 0M

H(3)=(0 B)ECM(n+k),

where A, B,/i., ! are the matrices defined in (2.2).
Now we can state the condition det Rn 0 in terms of a difference equation.

In fact, if uC" is such that R,u 0, then from Lemma 1, part (ii), we deduce
C(")I,(") u 0, hence the (n + k)-vector v @(n)u belongs to the kernel ofthe rectangular
Toeplitz matrix C("), that is

M

(2.3) cjvj+=0, O<=i<=n 1;

moreover, v 4:0 since the matrix I,(") has full rank. This is a homogeneous constant-
coefficient linear difference equation of order k, which can be completed by adding a set
of boundary conditions as follows. First observe that @(") is a submatrix of the matrix
@, / k defined in Lemma so that we have

H<)= I(A O)eCN (n+k)
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where 0m denotes the null vector in Cm. Moreover from Lemma 1, part (iii), we deduce

(2.4) I(A 0)v =0u;

O-N 00 OM )(2.5) ".. ".. ".. v=u;
O-N 00 OM

(2.6) ,(0 B)v 0t.

Now the matrices 1 and are nonsingular; therefore, from (2.4) and (2.6) it fol-
lows that

M

(2.7) a,vu+i=O, -N<=i<-_-I
tt=0

and

N

(2.8) b,,v,,+=O, n<=i<=n+M 1.
u=O

Relation (2.7) yields initial conditions for the solution of the difference equation
(2.3), while (2.8) yields terminal conditions.

Conversely, if v is a nonzero solution of the problem given by (2.3), (2.7), and
(2.8), then it is easy to check that the vector u Ht-)v belongs to the kernel of the ma-
trix R.

3. Solving the difference problem. It is well known that the general solution of the
homogeneous linear difference equation with constant coefficient (2.3) can be expressed
as a linear combination ofelementary solutions given in terms ofthe roots ofthe associate
algebraic equation zVC(z) 0 (see for instance 8 ). Imposing the boundary conditions
(2.7), (2.8) to the general solution expressed in this form leads directly to the following
result proved in 12 ].

THEOREM 1. Let Rn be a rational Toeplitz matrix satisfying the condition (2.1) and
assume ct O. Ifz, zL are the distinct zeros ofthepolynomial zNC( z) and a,
ai their multiplicities, then the equation (2.3) has a nonzero solution satisfying (2.7) and
(2.8) ifand only ifthe matrix fin (oi,h)ki;= o is singular, where

d
dz-----;(ziA(z))lz=zj if O<=i<=N 1;

O)i,h
d
dz--(z+B(z-))lz=z if N<=i<=k 1;

and t, ,( h, j) is defined by
j-1

=h- , at, O<=<=aj 1.
l=1

By expressing the solution of (2.3) in terms of the companion matrix associated to
the polynomial zNC(z), it is possible to extend a result that has been proved in [3] in
the case of banded Toeplitz matrices to rational Toeplitz matrices. We have, in fact, the
following result.
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THEOREM 2. Let Rn be a rational matrix satisfying the condition (2.1) and assume
cM :/: O. Then the equation (2.3) has a nonzero solution satisfying (2.7) and 2.8 ifand
only ifthe matrix

is singular, where A and B are the matrices defined in (2.2) and

is the companion matrix associated to the polynomial zNC( z).
Proof. Any solution v 4 0 of (2.3) is such that

CM

(3.1) =F i=0, 1, ,n-l;
/)M+ /)M+ i-

therefore we have

F/w, w
I)M + i- I)M-

moreover, since F is nonsingular, we have that v 4:0 if and only if w 4: 0. Setting n,
(2.7) and (2.8) take the form Aw 0, BFnw 0, w 4: 0, whence

det
BF

=0.

Reversely, if n is singular there exists a vector w e Ck, w 4: 0, such that )nw 0, that
is Aw 0, and that BFw 0. Therefore the vector v e Cn+ k, recursively defined by
(3.1), is nonzero and satisfies (2.3), (2.7), and (2.8). E]

A third approach to solve the linear difference equation (2.3) is cyclic reduction.
This method, devised for solving certain block tridiagonal systems, has been used in 3
to compute the determinant of a banded Toeplitz matrix.

Assume, for simplicity, that n m0, where 0 max (N, M), m 2 h 1, and h
is a positive integer, so that the linear difference equation (2.1) with the boundary con-
ditions (2.7), (2.8) can be rewritten as a three term matrix difference equation

(3.2a) v 0, v :/: 0

(3.2b) (A0 A)(v-1)=0vo
(3.2c) (B1 B)( Vm )=0m+
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where

C_ Co C v_
C_ Co Cx Vo

(z ) ".. ".. ".. v.. ". C1 !m
C__" C0 C1 Vm+l

Ai, Bi, C E Cpp, i E CP, and we suppose that det Co 4: 0.
At the first step of cyclic reduction, interchanging block-rows and block-columns

of the matrix according to the permutations 1, 3, 5, 2h 1, 2, 4, 2 h 2),
1, 2, 4, 2h, 3, 5, 2h + ), respectively, we get the equation_

C_1 Co C1
C0 C_ ".. v

Co C-1 C1 t/2
--’--0.(3.3) C_x C Co v

"-. Cx Co /C_ CO C

Eliminating the (m + / 2 unknowns Vo, v2, Ym in the last (m + / 2 equations
of the above system and applying one step of block Gaussian elimination, we obtain

(1) (01) 1)
V-1

-! V.. ".. ".. V3 -’0.. ".(3.4)

1(__i) (O1) C ’m
Vm+

where

(11) -C_IC-I C_I

(01)= CO --C_IC-1C -C1C-1C_l,

It is important to point out that equation (3.4) is still a three term matrix difference
equation as (3.2a), but its size has been reduced by a factor of 2. Moreover, from the
first (rn + )/2 equations of the system (3.3) we can deduce that v 4:0 if and only if
vi 4: O, -1, 1, 3, m, rn + 1, provided that det Co 4: O.

In order to get a new boundary condition that does not involve the vector Vo, as
3.2b ), we can replace 0 in 3.2b by the expression 0 -C (C-1v_ + C1 obtained
from the first block-row of (3.3). We get the new initial condition

(3.5) A(01)V-1 "t-AI)v1:0,
where

A(ol) Ao A1C C-1,

A]1)-- -A1C-I C1"
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Thus we can apply again a cyclic reduction step to the problem consisting of(3.4), 3.5 ),
and (3.2c); in general, at the ith step of cyclic reduction we get

(3.6)

(3.7)

After h steps of this process (3.4) and (3.5) reduce to

(m+l

(_h1- 1) ;h-1) Cl t Ym
Ym +

-F" A )(m+ 1)/2 =0,

Bivm-FB0vrn+ =0.

Thus we obtain the following result.
(i)THEOREM 3. Under the hypothesis (2.1), if the matrices Co l, h 1,

generated by (3.6) and by jo)= C, are nonsingular, then the equation (2.1) has a
nonzero solution satisfying 2.7 and (2.8) ifand only ifthe matrix

/.ZIk (0-1) AIh-l)
’n /(T (hl 1) ;h-1) lh-1)

(_hl- eh -1 Cl
C4" 4.

B B

is singular, where - -) (-), o h-) are defined recursive& by (3.6)
(0) (0)= A.(3.7) and by c C,,,

4. Computational methods for the generalized eigenvalue problem. We can apply
the results of the theorems in 3 to the generalized eigenvalue problem (1.2), stating
three different equivalent conditions for the existence of C that solves 1.2). In fact
observe that, denoting A,, ,, and ,, the determinants of the mat6ces ,, On, and, defined in Theorems 1, 2, and 3, respectively, we get three scalar functions of X having
the same zeros as the polynomial Pn(h) det (T, Sn). Moreover, for any given h,
the entries of the mat6ces ,, ,, and , can be computed with a low computational
cost, and the evaluation of their determinants has a cost independent of n. This leads us
to compute the generalized eigenvalues of (2.3) by applying to the functions A,, ,, and,, any root-finding method that uses only values of the function (such as the secant
method, false position, etc.). Even though this is, in general, not the method recommended
for nume6cal computations of the eigenvalues, in this case the computational saving
can make it competitive.

It is interesting to point out that , and are rational functions of h that can be
computed by a rational algorithm, that is an algorithm that outputs the exact result in a
finite number of arithmetic operations. Moreover A, and , can be used to give an
explicit expression of p,(). The case of An has been proved in [12] for the standard
eigenvalue problem; the case of n is dealt with in the next section.
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We observe that higher-order convergence can be obtained if Newton’s method is
applied for approximating the roots of the equations An 0, zn 0 and zn 0. Any
iteration of Newton’s method applied to a general equation f(k) 0, requires the com-
putation of the ratiof(k)/f’(k), wheref’(k) is the first derivative off(k). So we need
computable formulae for this ratio in the case wheref(k) is any one ofthe functions An,
Zn, and

In this section we describe three algorithms for the computation of An, An, and
/n, based on the theorems of 3, and we analyze their computational cost. Then we
extend these algorithms in such a way that Newton’s method can be applied with about
double the computational cost.

We observe that the structure ofthe matrices fin, ’n, and (n seems hardly exploitable
to compute their determinants with low computational cost. Hence Gaussian elimination
seems to be the most effective procedure for this task, so we assume that the cost of this
computation is given by O(k3) arithmetic operations.

The cost of computing the entries of fin grows logarithmically with n. In fact the
cost for finding the zeros z, z2, "", ZL of the polynomial zNC(z), of degree k, is in-
dependent of n; while powering each zj, for j 1, , L, for the computation of the
Nth row of fn requires O(log n) multiplications if the repeated squaring technique
is used.

We can divide the computation of An(k) at a point ,, into the following steps.
Compute the zeros z, z2, zL of the polynomial zNC(z) in (1.4) together

with their multiplicities a, 0"2, O"L.

(2) Compute the rows 0, 1, N- of the matrix fn.
(3) Compute z’, z’, znz with the method of repeated squaring.
(4) Compute the rows N, N + 1, k of the matrix
(5) Use Gaussian elimination to compute
The cost ofthe above algorithm is at most O(k3) + O(k log n) + O(k2 log k log d)

operations, where O(k2 log k log d) is the number of arithmetic operations sufficient to
approximate all the zeros of a k-degree polynomial with the precision of d binary digits
(see [7]).

Concerning the evaluation of An(k), we observe that also in this case the entries of
n(,) can be computed with a cost growing logarithmically with n. In fact we may use
the same technique as in [3], computing the coefficients of the polynomial k(z)
z mod/3(z), where/3(z) zk -_ jZj / N (compare Theorem 2), by means of
repeated squaring modulo/3(z). Then it is sufficient to compute k(F) F n observe that
/3(F) 0) with a cost independent of n. We have, in fact, the following algorithm for
the evaluation of z(k) at a given point k, where, for simplicity, we suppose that n
2 h, h positive integer.

Compute b(z) zn mod/3(z) as follows

0(z) z,

i+ l(Z)=i(z)2 mod/3(z), 0, 1, ,h- 1.

(z) h(z).

(2) Compute if(F) Fn and therefore )n(k), by means of Horner’s rule.
3 Compute zn(k) det (,(X) by means of Gaussian elimination.
Stage of this algorithm costs O(k2 log n) if each step of polynomial squaring and

polynomial division is performed with customary algorithms. Ifthe ground field supports
FFT, then the cost of polynomial arithmetic can be reduced to O(k log k) operations
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[4], so that stage costs O(k log k log n). Stages 2 and 3 have a cost independent
of n that is dominated by O(k3) operations needed in Gaussian elimination. The over-
all cost of this algorithm is O(k log k log n + k3) for any field supporting FFT and
O(k2 log n + k3), otherwise.

From the proof of Theorem 3 we obtain a third algorithm for the evaluation of
n(). Assume n am, m 2 h 1, set

C_ Co
C_p C_p + CO

C1 Cp

Ao Bo
a0 bo-

A B
al ao

and perform the following stages.
(1) Fori= ltoh- lcompute

(i,-leli C"(oi’-’C(i:(t0+ 1)(0i) (l?0

(i)X i+’ =Xo
(i+l)____i)ei)-I

<o) C, Zo)where j ..j Aj.
(2) Compute the determinant ,(k) of the matrix

fi.=
B B0

The cost of this algorithm is O(k log n) operations.
Concerning Newton’s method we have to compute the ratio f(k)/f’(k), where

f det X (2) and X (),) is one of the matrices in, )n, and 0n. In this case we make use
of the following identity

f(h)
trace (X X)-IX ’(k))

where X ’(2) is the componentwise derivative of X (2).
Case 1. X () fin(k). The matrix fn() has a first derivative if the zeros Zl,

zk of the polynomial zNC(z) are pairwise distinct. Moreover ft,(),) can be evaluated by
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computing the values z} through the following linear system of equations.

\ z’
s, s,2 s, z

(4.1) s2., s2.,2 s, / z. .
/

s_, s_,2 s_,/ z
where (k) (- )icu_ (k) / cu(k) and si, is the symmetric function of degree in the
variables z, , z_ , z+ 1, z. This system is obtained by tang the first derivative,
with respect to , ofthe relations &(z, , z) i, where s(z, , z) is the symmetric
function of degree in the variables z, ..., z. The cost of computing the symmetric
functions in (4.1) and of solving the linear system (4.1) amounts to O(k) operations.
So the asymptotic overall cost for computing (X)/,(k) trace (l(k)(k)) is
still O(k log n + k3).

Observe that if for a given k the zeros z, ..., z are not paiise distinct, the
derivatives z], ..., z may not exist at k.

Case 2. X(k) (). It suffices to compute (F"), since the matrices A and B
are constant with respect to . This computation can be performed by means ofa suitable
modification of the second algorithm given in this section, obtaining at the end the
matrices F" and (F"). A complete description of this modification is given in [3] in
the case of banded Toeplitz matrices. The overall cost is still O(k log k log n + k3) for
any field supposing FFT.

Case 3. X (k) 0,(). In order to compute 0(), it is sufficient to take the first
derivatives in the relations at step of the third algorithm of this section recalling that
(Y-)’ -Y-Y’Y- for any nonsingular matrix Y. The overall asymptotic cost is
O(k log n).

We observe that, even though the cost of one iteration of Neon’s method is
roughly doubled in all the three cases, this method is preferable for approximating simple
eigenvalues, due to its quadratic convergence.

5. Explicit formulae for the characteristic polynomial. In the case of the standard
eigenvalue problem where Sn is the identity matrix, Theorems and 2 of 3 allow us to
give explicit formulae for the characteristic polynomial Pn()) det (Tn ),In) ofa rational
matrix. In [12] the following result is proved:

det (Mn-Tn) (-1)n(M-)(aobo)- --(c- XOt)
V(X)

where Wis the determinant of the k k matrix (), with A and B defined in (2.2), and
V(X) is the generalized Vandermonde determinant of Zl, , zk. In this section we give
an analogous result involving the determinant n(X). The proof of 5.1 given in 12
is based on the following facts. The function (cM- XOt)n(A,,(X)/V(X)) is a polynomial
in X of degree n, and its leading coefficient is (-1)n(t-1)(a0b0)nW. If the eigenvalues
),l, "", ),n, of Tn are pairwise different, the relation (5.1) holds since in the view of
Theorem the left-hand and the right-hand sides of (5.1) are both monic polynomials
of degree n having the same zeroes. The generalization to the case where the eigenvalues
are not distinct is obtained by a continuity argument.

We can follow the same technique to prove the following formula involv-
ing 3,n ),)"

(5.2) det (M.-Tn) (-1).(t-)(aobo)-n_(cu_ XO)..;Xn(X)"
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We outline the proof of this result. It is sufficient to prove that (CM )kOM)nAn(k) is a
polynomial of degree n having leading coefficient (-1 )n(M-1)(a0b0)nW. To this purpose
consider a k k matrix ofthe type (xm), where X e CMk, and show that its determinant
is a polynomial of degree m; the proof is completed by setting X B and m n.

Let x, xf be the rows of the matrix XH where

O 1

1t
is the shift matrix of order k, and let r (r, rM) r be the kth column of X. First
we want to relate det(xm) and det(xm+l). Since F= H +etk)fl r, where fir=
(Or-cr)/A, Or= (O-N’" "OM-), Cr= (C-N’’" CM-), A CM- OM, and eg) is the
kth column of the k k identity matrix, we have

(5.3) det
XFm + det

XHFm + "/’i k det iF det
iFi=1 X m X m

where X i) (x, xi- 1, 0, X + 1, XM) T and X c
(i) (Xl, Xi- 1, C, Xi+ 1,

XM) r. This can be proved by using the multilinearity of the function determinant M
times, being

xFm + XHF + "r TFm.
For instance, at the first step we have

A

det
XF + det +

xTM
xF
A

-t- TM det

x_
TFm

fl:r F

+ B r F

TM-

Moreover, a suitable Gaussian elimination allows us to rewrite the second determi-
nant as

1
det

A

A

1
(koT--.T)Fm /

Another application of the multilinearity of the determinant to the last row yields the
Mth term of the sum in (5.3).
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Relation (5.3) can be easily used to prove by induction on m that for every X 6

Ct k (which is constant with respect to ) one has

A )__Om(X)mq-Qm_l(X,X)det
XFm Am

where Qm_ l(X, X) is a polynomial in X of degree at most m and OZm(X is a scalar
satisfying the recurrence relation am+ I(X) --OMOtm(XH) + iM= ziOm(X(oi)) This
relation can be used to prove by induction on m the following formula:

(5.4) am(X ):(-1)m(M-1)(aobo)m det ( ).
This can be obtained computing the determinant of the (k + (k + matrix
(0Ax), where

ao aM )-- ". ". (c(N+ 1)x(k+ 1)

ao aM

by means of Laplace’s rule applied to the first and to the last column of the matrix.
Setting X B and m n, we obtain from (5.3) that the function A det (,)
(CM OM)nAn( k is a polynomial ofdegree n, and from (5.4) that its leading coefficient
is (-1)n(t-l)(aobo)nW.

6. An example of degeneration. Theorems and 2 in 3 require that the leading
coefficient cM of the polynomial C(z, 3) is nonzero. In many cases cM is a nontrivial
linear function of ), so that the condition holds for any ), except at most one value.

In some special case it may happen that c vanishes identically, so that Theorems
and 2 cannot be directly applied. However in this case it is often possible to manage

ttte difference equation defined by (2.3), (2.7), and (2.8) to find analogous singularity
conditions involving either the zeros ofthe polynomial zVC(z) or the companion matrix
associated to (2.3).

We will examine in this section an example of degeneration occurring in a concrete
situation.

In the problem of optimization of rejection filters 5], the maximization of the
signal/noise ratio leads to the generalized eigenvalue problem

Tnu )xSnu,

where the minimum eigenvalue must be computed. In this setting Tn is the in-
terference covariance matrix, and Sn is the signal covariance matrix. An interesting sit-
uation occurs when Tn and Sn are hermitian Toeplitz matrices defined by ti-j

li-jl li-jl
01 exp (2ri01(i -j)) and si-j p2 exp (27ri02(i -j)), i,j 0, n 1, and
01, 02, 01,02, are real numbers with

(6.1) Pl =/= p2 0 < pl P2 < 1.

It is easy to check that Tn and Sn are both rational matrices generated by the functions

(z) n(z)
T(z):a(z)B(z-1 S(z)=6(z)e(z-I



550 DARIO BINI AND FABIO DI BENEDETTO

respectively, where

(z): -p,
(z): -p,

i Pi exp (27ri0i), 1,2.

/3(z) lz,

(z) z,

The generalized eigenvalue problem is reduced to the computation of X and u C n,
u 4 0, such that Rnu 0, where Rn T, XSn is the Toeplitz matrix generated by the
rational function

where

R(z,:X)=
C(z,X)

A(z)B(z-)

C( z, 6z- + Co + CZ,

A (z) ao + az+ a2z
2

B(z)=O+lZ+d2Z2,

Co (1 _p2)(1 +p22)_)k(1 _p2)(1 + p2),

c, x(-p.)T,-(-p,)=,

ao 1, a --(1 + 2), a2 12.
With the notation of we have for this case p =q 1, r s M= N= 2,

k=4.
The conditions (2.1) are satisfied since ao b0 and

A(Z)=I2 Z-- Z-- )=(Z--I)(Z--2 ).

Moreover, ifA(z) and z2B(z- had a common zero, then we would have i 1/j, for
some integers i, j, whence pip 1, which is not consistent with (6.1). Then the Greville
and Trench lemma holds, and we can characterize the solution of the generalized eigen-
value problem by means of the difference equation

(6.2) 6vi_ + CoVi + cvi + O, 0 n

with the bounda conditions

(6.3a) aov-2 + av_ + a2vo 0,

(6.3b) aov- + avo + a2v O,

(6.4a) 5zv,- 2 + 5v,_ + 5or, O,

(6.4b) 52Vn + 6 v, + 5oV, + O.

Observe that this problem is degenerate, since CM C2 0 for any 6 C.
Solution by means of the characteristic equation.

The general solution of equation (6.2) is given by vi z+ + z+ , -1,
n, assuming that z and z are the distinct roots of the characteristic equation

6 + CoZ + c z2 O.



EIGENVALUE PROBLEM FOR TOEPLITZ MATRICES 551

Now observe that conditions (6.3a) and (6.4b) involve the entries v-2 and
which do not appear in the difference equation (6.2), and they can be viewed as implicit
definitions ofthese additional components. Conditions (6.3b) and (6.4a) are the boundary
conditions that can be used to determine Cl and c_. In fact from (6.2), (6.3b), and
(6.4a) we obtain the condition,

(A(z) +A1 (z2)(6.5) det z +B(zi-1) z B(z1)

that represents the extension of Theorem to this degenerate case.
A similar argument leads to the condition

ao + az + a2z2
det

oZ2 + 61z +2
al + 2a2z

(n + )6ozl + nr + (n )rzZi-1

in the case where Z z2.
Solution by means of powering a companion matrix.

Consider the 2 2 companion matrix associated to (6.2)

t t1 CO

1 1

so that the general solution of (6.2) can be written as

O<=i<=n.

Imposing the boundary conditions (6.3b) and (6.4a), we obtain

0,(a0 al a2)
F v0

Fn- =0,(72 a a0)
F v0

that is the condition

I (1)(ao a a2)
F
0

=0(6.6) det

(t2 (1 tT)( F 0)F
Observe that the matrices in (6.5) and (6.6) replace the matrices ’n and 0n, re-

spectively, of Theorems and 2. It is interesting to point out that the matrices (6.5) and
(6.6) have dimension 2 while the size k of the original problem is 4. In this case the
degeneracy of the problem has brought a further reduction of the complexity.

Solution by means of cyclic reduction.
Theorem 3 does not require the condition c2 4: 0; however, it is worth pointing out

that solving equation (6.2) with conditions (6.3b) and (6.4a), by means of a cyclic
reduction, does not involve block matrices as in the general case (see 4). Even in this
case, the degeneracy ofthe problem brings a simplification ofthe computational method.
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EIGENPROBLEM ERROR BOUNDS WITH APPLICATION TO
SYMMETRIC DYNAMIC SYSTEM MODIFICATION*

YITSAK M. RAM’:I:, JOAB J. BLECH?, AND SIMON G. BRAUNf

Abstract. Suppose A and B are two m m symmetric matrices. Let C A + B. Some of C’s lowest
eigenvalues together with their corresponding invariant subspace are bound in terms of B, a subspectrum ofA,
and an invariant subspace ofA.

An application demonstrating the usefulness of the presented theorems is given. The application chosen
is related to the frequently encountered engineering problem of the influence of a structural modification on
the dynamic behaviour of a structure.

Key words, modified eigenvalue problem, truncation error, structural modification, modal analysis, vibration
test

AMS(MOS) subject classifications. 15A42, 65F15

1. Introduction. Suppose A and B are two m m symmetric matrices. Let C
A + B. Let A A be the spectral decomposition of A, where is an m m ortho
normal matrix and A diag Xi(A); 1, ..., m }.l Partition and A in the form

ff2 and

A=
0 A2

where l s R and A e R . Suppose A,, l, and B are given, whereas A, 2, and
A2 are unknown. We consider here the problem of bounding some of the lowest eigen-
values of C. Error bounds on the angle between the invariant subspace of C and the
subspace, which is spanned by its corresponding Ritz vectors from span () are
also given.

This problem arises in the field of vibration analysis. The dynamic behaviour of an
engineering structure is determined by the symmetric definite generalized eigenvalue
problem (K- XM)x 0 (see, e.g, Strang [23, pp. 261-263], Weinberger [25, pp. 6-
17]) where K R x m and M Rm are the stiffness and the mass matrices of the
structure, respectively, and x Rm. In some applications, due to the complexity of the
structure no reasonable analytical model ofthe stiffness matrix can be evaluated, whereas
the mass matrix is known. Additional information on the dynamic behaviour of the
structure is available from a vibration test, where the excitation and the response of the
structure at many points are measured experimentally. Identification techniques (Chu
6 ], Link 15 ], Braun and Ram 4 ], 5 extract a part ofthe eigenpairs ofthe structure
from the measurements. Since the measured data form a discrete time series, an inherent
limitation ofthe vibration test is that the identified eigenpairs are restricted by the sampling
rate. Thus, a vibration test usually results in an incomplete set of eigenpairs (Berman
and Flannelly 2 ).

A frequently encountered engineering problem is one in which the designer
would like to change the dynamic behaviour of an existing structure by means of stiff-
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ness modifications. In this problem the following are assumed to be known" (a) the
mass matrix M; (b) a subset of the eigenpairs of (K-kM)x= 0 corresponding
to the smallest eigenvalues (from a vibration test); and (c) the design incremental
stiffness matrix AK Rm m. The objective is then to bound a part of the eigenpairs of
((K + AK) )M)x 0.

In 4 we shall show that this structural modification problem is congruently equiv-
alent to the above-mentioned problem that we wish to consider.

There are many publications concerning bounds for the eigenproblem that cover a
very wide range of applications. In Stewart 20 ], 21 ], 22 ], Crawford 7 ], Kahan,
Parlett, and Jiang [13 ], and Weinberger [25] the sensitivity of the eigenpairs to random
perturbation is considered. For this purpose it is assumed that an upper bound on the
norm of the perturbation matrix is given. Although we may note that in our problem B
is perturbed by the (unknown) matrix A, the above-mentioned perturbation bounds are
not very appropriate for our case since, in practice, the norm ofA is very large. Moreover,
in these approaches the information concerning the given eigenvectors of A would not
be taken into account. Other publications (e.g., Davis, Kahan, and Weinberger [9 ],
Kahan 12 ], Lehmann 14 ], and Thompson 24 are motivated by the desire to reduce
the size ofthe eigenproblem. In this case a large matrix is given explicitly and the objective
is to bound the eigensolution by considering certain submatrices. Since A is unknown,
our problem does not belong to this category, and a separate analysis is needed to solve
the problem.

Arbenz and Golub [1] have developed a very efficient procedure for finding the
eigenvalues and eigenvectors of C A + B, where B is of low rank and the (complete)
spectral decomposition ofA is given. It is well known that this problem arises in many
applications. However, occasionally, as in our problem, only a subspectrum ofA is known.
This occurs in the following cases: (a) IfA is a finite-element approximation for A, then
sometimes differs significantly from A, but still the eigenpairs of.3 corresponding to
the smallest eigenvalues approximate eigenpairs ofA accurately (Berman [3]). (b) Ifthe
eigenvalues and the eigenvectors ofA are experimentally measured, as in the case of the
structural modification, then the eigenvectors corresponding to the high frequencies are
very sensitive to small uncertainty in the location of the measurement points. Also the
sampling rate and the use of anti-aliasing filters restrict the possibility of extracting the
largest eigenvalues.

In the case where all the eigenpairs of A are given and B is of low rank, it is rec-
ommended to calculate the eigenvalues of C by Arbenz and Golub’s procedure. Indeed,
one ofthe applications mentioned in their paper is the work of Simpson 18 on structural
modification.

It should be noted that our development is restricted to the symmetric-definite
eigenvalue problem. Although the generalized eigenvalue problem arises in many fields
(see, e.g., Haley [11] for applications in the linear system analysis and control), the re-
quirements in our problem of symmetry and definition exclude all controlled systems.
But this approach may be useful in the analysis of modified passive dynamic systems.

This work is organized as follows. The bounds for the eigenvalues are derived in
2. Bounds for the eigenvectors are given in 3. The application concerning the structural

modification problem and a detailed example demonstrating the procedures are given
in 4. Conclusions are summarized in the last paragraph.

2. Error bounds for eigenvalues. We introduce a matrix E, which is orthonormally
similar to C, and partition it in the following form:

(2.1) E=-tC’=
Et2 E4 ’t2C, t2C2 E-R"""
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Using the orthogonality relation

(2.2) A% I -/i,

0,

we get

i=j
(i= 1,2;j= 1,2),

i4=j

(2.3) E= [A1 +]BI ]B2 ](bB A2 +B2
Note that only the leading principal submatrix E1 is known explicitly.

A similar problem was treated by Lehmann 14 and Kahan 12 ]. Their results are
expounded in detail in Parlett [16]. There are, however, basic differences between the
present work and the one just mentioned. In their problem only E4 is unknown, whereas
in our problem only El is given explicitly. Our problem contains additional information
on the structure of E2 and on the first eigenpairs ofA.

Lehmann and Kahan’s results enable us to get intervals that contain eigenvalues.
Each interval depends on an arbitrary parameter. There is no outline on how to choose
the parameters such that the intervals be minimized in length. In addition, it is impossible
to determine from their work which eigenvalue lies within each interval.

The following theorem, which essentially combines the Lehmann interval and the
monotonicity principle for eigenvalues, enables us, in certain circumstances, to obtain a
greatest lower bound on a specific eigenvalue of C. A sufficient condition for the realization
of those circumstances is then presented in Theorem 2.2.

THEOREM 2.1. Suppose that A R m and B R are symmetric matrices and
that E is any matrix orthonormally similar to A + B. Let E be partitioned as in (2.1).
Denote by S an n q matrix that satisfies thefollowing relationship:

(2.4) SS E2Et
where q rank E2). Introduce an auxiliary matrix Y[X u

(2.5) Y[X(u)]=
S X()

wherefor any real number # Spec (E) the matrix X(#) Rqq is defined by

(2.6) X(u) Ulq -1- St(E1- #In)- S.

Let Ol 1, n 1; n >- 2) be defined by

(2.7) ai max ,j(A) + Xi-j+:z(B)].
j=l, ,i+1

If i(E) < ai, then for any u that satisfies

(2.8) i(E1) < tx <= ai, 1, n 1,

thefollowing inequalities hoM

(2.9) Xi(Y[X(#)])<=Xi(E)=,i(A+B)<=Xi(E).

Moreover, if the only known data are El, the product E2Et2 and the subspectrum ofA
and B, then the largest number which guarantees a lower bound is hi(Y[X(ai) ]).

Proof. From the monotonicity principle [16, p. 192] it follows that

(2.10) ai<=i+ (A +B)= i+ (E), 1, ,n-1.
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The equality on the fight-hand side of (2.10) is due to the similarity between E and
A + B. By Cauchy’s interlace theorem we have

(2.11) )i(E) -< ki(E ), 1, n.

Since ,i(E) < ai, any / that satisfies ;(E) < _-< ai must also satisfy ,i(E) <
z =< ,i+ l(E).

Lehmann’s Theorem 16, p. 199 states that there is at least one eigenvalue ofE in
the interval Xi(Y[X(z)]), g]. Therefore ,.(E) must lie within Lehmann’s interval. The
following inequality must, therefore, hold:

(2.12) Xi(Y[X(I)] < X(E).

From (2.11) and (2.12) it follows that

(2.13) Xi(Y[X(t)]) < ),(E) <- ,i(E).

For any ,i(E < t < X+ (El) and for any unit vector u Rn + q the product uty X u u
is a continuous function of . In this case, X(Y[X(u)]) is a monotonic nondecreasing
function of u [16, p. 199]. Hence, the largest number which assures a lower bound on
Xi(E) is Xi(Y[X(ai)]). l’-I

Remark 2.1. The application of Theorem 2.1 to our problem requires the formation
of the matrix S. In general the construction of S requires finding an orthonormal basis
of E [10, pp. 150-153 ]. In our problem E2 is not given explicitly. We next show how
to construct S. Noting that and2 are orthogonal projectors onto complementary
subspaces it follows that2 Im O(bt, hence an explicit formula for the product
E2Et2 is given by

(2.14)

Let E2E_ QDQ be the spectral decomposition of E2E, where Q 6 R n x is an ortho-
normal matrix and D DIAG {di; 1, n}. Then di 0 for 1, n q
and di > 0 for n q + 1, ..., n. The columns of the matrix S can be taken as the
last q columns of QD /2 (in any order). Consider now the numerical problem of deter-
mining q. Apparently, q is determined by the number ofthe nonzero diagonal entries of
D and it is equivalent to the nontrivial problem of determining the numerical rank of
E2Et2. However, note that q =< min [n, m n, rank (B)]; also note that Theorem 2.1
still holds for any q that satisfies RANK (E2) =< q =< m n. Thus the problem of
determining the numerical rank of E2 in our case is not critical.

To find the greatest lower bound on the ith eigenvalue in the sense of Theorem 2.1
it is necessary that Xi(E1 < ai. Theorem 2.2 gives a sufficient condition for this inequality
to hold.

THEOREM 2.2. Consider E as given in (2.3) (together with the definitions in 1 ).
Then the inequality

(2.15) X,+ (A)- X,(A) > 211Bll:z
is a sufficient condition for the inequality

(2.16) ai-= max [Xj(A)+ ki_j+2(B)]> ki(Ei)
j=l, ,i+1

to hold.

Proof. By definition (2.16

(2.17)

i=l,...,n-1, n>=2

Oti>----. ki+ I(A)+ Xl (B)>--. ki+ I(A)-II BI[2.
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From the monotonicity principle

(2.18) ,i(El)=--i(_/kl-F BI) -< ki(Jkl) q kn(] BI).

But, hi(A) Xi(A (see problem definition in and since is an orthonormal matrix
IIn,llz =< nllz and it follows that

(2.19) Xi(E <= Xi(A +
Combining (2.17 and (2.19 we obtain the following inequality:

Xi +1 (A) X,(A) > 211 gllz
as a sufficient condition for O/i > ki(El to hold.

Example. To demonstrate the bounds for the eigenvalues we consider the following
four-by-four symmetric matrices:

4.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
3.0 7.0 2.0 0.0 B= 0.0 0.0 k 0.0A= 0.0 2.0 9.0 5.0 0.0 k 0.0 0.0
0.0 0.0 5.0 11.0 0.0 0.0 0.0 0.0

The eigenvalues ofA are

X(A)= { 1.8681,4.7344,9.0780, 15.3194 },
with corresponding normalized eigenvectors

0.78063 0.40063 -0.47754 0.04533
-0.55474 0.09808 -0.80832 0.17102cI)--[(I)lCI)2]’- 0.25248 -0.71204 -0.12354 0.64341
-0.13824 0.56822 0.32140 0.74479

Suppose only h diag { 1.8681, 4.7344 }, , and B are given.
Fig. 2.1 demonstrates the monotonicity lower bound for X(A + B) (i.e., ,(A) +

X (B) -< X (A + B)) and the lower bound for ), (A + B) in view of Theorem 2.1, as a
function of the parameter k. Note that for -1.9 < k < 2.6 the lower bound obtained by

-14.0
-2.0

FIG. 2.1. Eigenvalue bounds.

X(c),Xz(c)
--0-- (l

--+- X (E)---- MONOTONICITY
LOWER BOUND
FOR 1(C)

O- h,tY[xta)])



558 Y. M. RAM, J. J. BLECH, AND S. G. BRAUN

the present method is better than the monotonicity lower bound. Also note that for
XE(A) X(A) 2.8663 > 211BII2 2lkl, i.e., Ikl < 1.43315, the lower bound exists
(according to Theorem 2.2). As seen in the figure, when a- +X(E), we get
X(Y[X(c)]) - -oo, since det (E ClI) - -0.

3. Error bounds for the eigenvectors. Suppose that the orthonormal matrix U
Rnxp (n >- p) spans an invariant subspace for El. Then the Ritz matrix W OU
approximates a p-dimensional invariant subspace of C from span (Ol). Associated with
Wthere is defined a residual matrix R(C, W) CW- WWtCW.

We adopt the approach taken by Davis and Kahan [8 ], which gives a bound on
the angle between the eigenvectors of C and their Ritz approximation from a subspace.
This approach requires having the residual matrix and the spectrum gap. It is possible,
in our problem, to obtain the gap by Theorem 2.1, however the residual matrix,
R(C, W), cannot be constructed directly from its definition since C is not given ex-
plicitly.

In what follows it is shown how that difficulty is circumvented. We start with the
following proposition.

PROPOSITION 3.1. Suppose that the columns Of R n are orthogonal eigenvectors
ofthe symmetric matrix A, such that , A, A1, where A diag X; 1, n }.
Let U R x (n >= p) be any orthonormal matrix. Denote W rblU. Then

(3.1) R(A, W) 1,1(I,- UUt)AIU

where R A W) AW WWAW.
Proof.

R(A, W)= AOlU-OlU(rbIU)AOlU

(3.2) (AI-UUt]Arbl)U

(AI t:I)l ggtjxl g.

Since the columns of ql are eigenvectors ofA we have

(3.3) Aql- qA1 =0.

By using (3.2) and (3.3) we get

(3.4) R(A, W)= rb(I,,- UUt)AIU. [-]

The bound on the angle between the invariant subspace and the subspace, which is
spanned by the Ritz vectors, follows from the next theorem.

THEOREM 3.2. Suppose the orthonormal matrix U R x (p <= n) spans an invariant
subspacefor rb] CO1, such that Utrb] COI U O, where

O diag {O;i=t, ,t+p;t >- 1,t+p<-n}

and O is the ith smallest Ritz value ofCfrom span ). Denote the Ritz matrix W
rbl U. Then the angle r between the subspace that is formed by span (W) and the corre-
sponding invariant subspace ofC satisfies thefollowing inequality"

IIl(/- UU)tlU/BW WWBWll2(3.5) sin r _-<

where r is the gap between the spectrum ofO and the complementary spectrum ofC.
Proof. Using the Davis and Kahan result [8, p. 225], we have

[IR(C, W)II2
sin r _-<
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But

R(C, W)= R(, W)+R(, W).

In Proposition 3.1 we have shown that R(A, W) ’1(I,, UUt)A1U, and by definition
we have

R(B, W)=-BW- WWtBW.

The proof is then completed by back substitutions. V1

The desired gap can be bounded by using Theorem 2.1.

4. Application. Consider a linear vibratory system with m degrees of freedom that
is characterized by the following generalized eigenvalue problem:

(4.1) K’=M’22 M,K,’Rmm fta=diag{w/ =1 m}
where K and M are the stiffness and the mass matrices respectively, and 09 is the ith
lowest natural frequency of the system. Here K is a nonnegative symmetric matrix and
M is a positive definite symmetric matrix. Partition and 22 in the form 9 9192
and

where xIt Rm and ft 2 R n x n. Let the symmetric matrix AK 6 Rm be the modi-
fication of K. By a vibration test it is possible to extract l and f experimentally from
excitation and response measurements 17 ], 19 ]. Suppose we design a modification AK
of the stiffness matrix, leaving the mass matrix practically unchanged.

Summarizing, l, ft2, M, and AK are given, whereas K is unknown. Denote the
following"

(4.2) Al =2, 1 =M1/2l(qgMXl)-l/2 B=M-I/2AKM-I/2

Theorem 2.1 gives bounds on the lowest eigenvalues of the pencil (K + AK, M),
whereas Theorem 3.2 gives a bound on the angle between the invariant subspace of
M-1/2(K + AK)M-/2 and its Ritz approximation from span ().

Example 4.1.
Complete system description. Consider the three degrees of freedom vibratory system

shown in Fig. 4.1 (a). This system is characterized by the eigenproblem of (4.1).
In this case the mass and stiffness matrices are

1.0 0.0 0.0 2000.0 -1000.0 -1000.0
M= 0.0 0.25 0.0 K= -1000.0 2000.0 -1000.0

0.0 0.0 1.0 -1000.0 -1000.0 2000.0

The solution of eigenproblem (4.1) yields

0.0 0.0

0 0.0 3000.0

0.0 0.0 9000.0

and

1.0 -1.0 1.0]xIt[tl’,XIt2]-- 1.0 0.0,-8.0
1.0 1.0 1.0
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m 1.0

=1000.0

2 =1000.0

m2 0.25
=ooo.o

m3 1.0 ]
(a)

m 1.0

2 =1000.0

m2 0.25

kl =1000.0 , =ooo.o
m3 1.0

(b)

FIG. 4.1. (a) Unmodified system. (b) Modified system.

The vibratory system is now modified by the addition of two springs as shown by Fig.
4.1 (b). The modification is represented by the matrix AK, where

450.0 0.0 0.0 ]AK= 0.0 0.0 0.0
0.0 0.0 900.0

The eigenproblem of the modified system is

(4.3) (K+ AK)q, M2.

The solution of eigenproblem (4.3) yields

and

580.41 0.0 0.0 ]0.0 3688.09 0.0
0.0 0.0 9081.50

-0.70714 0.66437 -0.24201
Ml/2yffl(CffgtMC) -1/2= -0.35539 -0.03806 0.93394

-0.61128 -0.74643 -0.26302

Problem definition (partial system). Suppose that 22, XItl, M, and AK are given
(whereas K, ft22, and XI/2 are unknown).

(a) Find upper and lower bounds for the smallest eigenvalue of the pencil
(K + &K, M).

(b) Find a bound for the angle between the eigenvector ofM-/2(K + AK)M-/2
corresponding to the smallest eigenvalue and its Ritz approximation from
span (Ml/2XItl).

Transformation to the standard eigenvalue problem. The transformation of this
problem to the standard eigenvalue problem via (4.2) yields

A----[k ,I= 1/3 0.0 B= 0.0 0.0 0.0
2/3 f/2 0.0 0.0 900.0
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Bounds for eigenvalues. We will first show how to use Theorem 2.1 to get upper
and lower bounds for the smallest eigenvalue of the modified system.

Using (2.7) we get

a =max [(A) + h2(B), h2(A) + h(B)] =max [0.0+450.0,3000.0+0.0] 3000.0.

Since

h2(A)- ,1 (A) 3000.0> 211 nil2 1800,

it follows by Theorem 2.2 that there exists a sufficient condition for having the lower
bound for hi(C).

The leading principal submatrix El is calculated by (2.3)

[ 600.0 150
E =A+]B

150 f 3675 J
The product E2E can be evaluated using (2.14), resulting in

[ 45000 11250 V]E2E= 11250 5625 1"
The spectral decomposition of E2E is

E2Et2=
-2 //3 1/3 0 50625 2 ]/-/3

Hence, by Remark 2.1 the matrix S can be taken as

-2 V/3
1/3

and

585.43 0.0

0.0 3689.56

S /50625
/ 3 75

By using (2.6) we get X(a) 2993.92. At this stage the matrix Y[X(a)] is completely
defined as

[ 600 150f 150V]Y[X(a)]= 150f 3675 75
150 l/ 75 2993.92

Finally, from (2.9) we obtain the desired bound for (A + B):, (Y[X(a)]) 567.84 =< , (A + B) =< h (El) 585.43.

Check. The exact smallest eigenvalue of C is , (C) 580.41.
The monotonicity lower bound for X (A + B) is , (A) + h (B) 0.0 < h (A + B).
Therefore, using the principle ofmonotonicity and the interlacing property for eigenvalues,
we bound X(A + B) in [0.0, 585.43], whereas the technique presented here bounds
(A + B) in 567.84, 585.43 ].

A bound for an eigenspaee. We denote the spectral decomposition of El as follows:

[ 0.99765’ 0.06850]tb/2E UU’ where U=[u, -0.06850, 0.99765
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FIG. 4.2. A boundfor an eigenvector.

The Ritz vector

[ ]0.71354
WI"’(I)lU 0.33255

0.61666

approximates an eigenvector of C (den0ted here by vl ).
Since c is a lower bound for X2 (C) and since X (E) is an upper bound for (C),

we deduce that the desired gap z can be taken as z a XI(E1) 2414.57. It is
impossible to evaluate the residual matrix R(C, w directly from its definition since C
is unknown. Hence we make use of Proposition 3.1 to get

48.68
R(C, Wl) 1(/- UlU)-A-lUl +BWl- w1wBw1 -194.69

48.68

The residual norm is R(C, w)[12 206.5.

" k0 k k2 ._
m19

(a/

.’4 ko kl. k2 k18 ,k19 ko

(b)

m =1 i=1 20 ;ko=3000 ;ki=15000, i=1 ,19

FIG. 4.3. (a) The original system. (b) The modified system.
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TABLE 4.1
Upper and lower boundsfor the eigenvalues.

(a) Bounds for X (K + AK, M)

n 4 6 8 10 12 14 16 18

Upper bounds 191.79 187.48 185.69 184.80 184.34 184.09 183.98 183.93
Lower bounds 105.18 113.34 124.09 137.34 152.20 166.52 177.31 182.74

(b) Bounds for X2(K q- AK, M)

n 4 6 8 10 12 14 16 18

Upper bounds 836.54 821.76 816.13 813.43 812.03 811.30 810.96 810.83
Lower bounds 686.66 701.27 720.49 743.02 766.58 787.56 802.25 809.30

Since R(C, w)l]2 < , the use of Theorem 3.2 is possible and we obtain that the
bound on the angle between vl and w is

r_-< arc sin ][R(C, w) 112/z-- arc sin 0.085 =4.87.
Check. The exact eigenvector of C corresponding to , (C) is

Hence

0.70714]0.35539
0.61128

r arc cos w] vii w 112" Ilv 112 arc cos 0.9997 1.39.
In this case a geometrical interpretation is possible as shown in Fig. 4.2. It can be seen
that the sought eigenvector lies in a cone of an apex angle 3’ 4.87 whose axis of
symmetry is the Ritz vector w.

Example 4.2. Consider the 20 degrees of freedom system shown in Fig. 4.3 (a). The
system is modified by the addition of a spring between m20 and the ground, as shown in
Fig. 4.3(b). The upper and the lower bounds for the two smallest eigenvalues of the
modified system as a function of n are shown in Table 4.1. Note that the two smallest
eigenvalues of the original system are l(K, M) 62.2393 and X2(K, M) 592.1683.
The two smallest eigenvalues of the modified system are Xl(K + AK, M) 183.9273
and Xz(K + AK, M) 810.8037.

We thus note that the present method provides a systematic way to define the possible
location of several natural frequencies of the modified system, based on vibration test
data and on the analytical model of the incremental stiffness matrix.

5. Summary. Upper and lower bounds for the eigenvalues of the sum of two sym-
metric matrices A + B where part ofthe eigenpairs ofA are unknown have been developed.
Based on the given data, the angle between an invariant subspace of A + B and the
subspace, which is spanned by certain Ritz vectors, has been bounded. An application
concerning the possible location of part ofthe natural frequencies of a modified structure
based on vibration test data of the original structure and on the analytical incremental
stiffness matrix has been presented. The results are of engineering interest.
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ON THE INERTIA OF INTERVALS OF MATRICES*

DANIEL HERSHKOWITZf AND HANS SCHNEIDER

Abstract. The inertia of intervals and lines of matrices is investigated. For complex n n matrices A and
B it is shown that, under mild nonsingularity conditions, A + tB changes inertia at no more than n real values
of t. Conditions are given for the constancy of the inertia of A + tB, where lies in a real interval. These
conditions generalize and organize some known results.

Key words, inertia, constant inertia, inertia change point, interval of matrices, matrix stability, Lyapunov
operators, Z-matrices

AMS(MOS) subject classification. 15

1. Introduction. Bialas [1 ], Johnson and Rodman [4 ], Viliaho [7], and Fu and
Barmish [2], [3] have recently studied the inertia of intervals and lines of matrices. We
extend these investigations under nonsingularity conditions. While some of our results
are not difficult and are related to known results, taken together they show interrelations
between various types of conditions, and as such they organize knowledge in this area
of inertia theory.

Let A and B be square complex matrices and suppose there is a real such that the
Lyapunov matrix L(A + tB) associated with A + tB is nonsingular. We show that A +
tB changes inertia at no more than n 2 values of t. Let T be an interval, i.e., a connected
subset ofthe real numbers. Under the assumption that L(A) is nonsingular, we state our
principal condition,

(CI) A + tB has constant inertia of type (r, u, O) for every in T,

and we compare several other conditions (some obviously equivalent) to (CI). Some of
these conditions involve the real eigenvalues of A-1B and of L(A)- L(B). Each of the
conditions either implies or is implied by (CI), but not all are equivalent in general. By
adding additional requirements on a single matrix or on the interval, such as stability,
the reality ofall eigenvalues, or a condition we call Property X(which Z-matrices satisfy ),
some implications in one direction become equivalences.

Section 2 of our paper contains notation, definitions, and some well-known results
stated for easy reference. Section 3 contains preliminary results on eigenvalues and results
on changes of inertia. Our main results on intervals with constant inertia, summarized
above, may be found in 4. In 5 we give some applications to the convex hull of two
matrices. We derive results from ]-[ 4 and 7 ].
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Our principal theorems are proved for the case of general complex matrices, and
we then apply the results to Hermitian matrices and Z-matrices.

Properties of the Lyapunov operator A -- L(A) that are crucial to our results are
the following:

If , is an eigenvalue ofA, then 2 Re (X) is an eigenvalue of L(A).

(1.2) If is the maximal (minimal) eigenvalue ofL(A ), then there is an eigenvalue

X ofA with 2 Re () t.

Similar results may be proved for any real linear operator, from the space of complex
n n matrices into a space of matrices, which satisfies (1.1) and (1.2). For spaces of
real matrices, another operator that satisfies these conditions is found in [1] and [3].
The results in [1] are proved for that operator, whereas in [3] results are proved for all
operators satisfying (1.1) and (1.2). The results in [2] are proved for the Lyapunov
operator, as in the present paper. Only real matrices are considered in ]-[ 3 ]. In referring
to the results of these papers in the sequel, we do not distinguish between the various
operators involved. We also observe that the results in [7] deal with real symmetric
matrices (where there is no need to employ the Lyapunov operator), but some results
in [7] hold under weaker nonsingularity assumptions.

2. Notation and preliminaries. As usual, and C denote the real and complex
fields, respectively, and C’" denotes the complex space of all complex matrices. By gCgn
we denote the real space of all n n Hermitian matrices. In this paper, A and B will
always be n n complex matrices that may be considered fixed throughout. The convex
hull of A and B is denoted by conv (A, B). The spectrum of a matrix A is denoted by
spec (A). The spectrum is considered to be a multiset, that is, every eigenvalue is counted
as many times as its multiplicity.

Notation 2.1. We denote the following:
r(A)the number of eigenvalues ofA in the open fight halfplane,
u(A)the number of eigenvalues ofA in the open left halfplane,
i(A)the number of eigenvalues ofA on the imaginary axis.
DEFINITION 2.2. The inertia In(A) of A is defined to be the triple

(r(A), ,(A), 5(A)).
DEFINITION 2.3. (i) The matrix A is said to be positive [negative] stable if all its

eigenvalues are in the open fight [left] halfplane.
(ii) The matrix A is said to be positive [negative] semistable if all its eigenvalues

are in the closed fight [left] halfplane.
(iii) The matrix A is said to be positive negative near-stable ifA is positive neg-

ative semistable but not positive [negative] stable.
In this paper "stable," "semistable," and "near-stable" may be interpreted consistently
to mean either "positive stable," "positive semistable," and "positive near-stable" or
"negative stable," "negative semistable," and "negative near-stable."

DEFINITION 2.4. The Lyapunov operator (or Lyapunov matrix) L(A) ofA is defined
to be the linear operator of Jog, into itself given by

L(A)H AH+ HA*.

For reference, we collect some properties of the operator L(A). We follow the notation
of 5 for the Kronecker (or tensor) product of matrices.



ON THE INERTIA OF INTERVALS OF MATRICES 567

PROPOSITION 2.5. We have
(i) L(A) I (R) A + A (R) I.
(ii) The spectrum ofL(A) is the multiset { X + " X, # 6 spec (A) }.
(iii) L(A is nonsingular ifand only if) + z 4:0 for , spec (A).
(iv) A is stable [semistable] (near-stable) ifand only ifL(A) is.
(v) The mapping A --, L(A) is real linear, i.e., L(sA + tB) sL(A) + tL(B),

for all real numbers s and t.

Proof. Parts (i) and (ii) are standard (e.g., see 5, Chap. 12 ). Parts (iii) and (iv)
follow immediately from (ii). Part (v) follows from the definition of L(A).

In our proofs (as in the proof ofalmost any inertia theorem we use properties often
called "continuity of eigenvalues." The basic result is stated as Lemma 3 in [6]. Here
we state consequences of this lemma in the forms needed for our applications.

LEMMA 2.6. (i) Let A (t) be a continuous matrixfunction ofthe real variable t. Let
be an eigenvalue ofA (0). Let S be a disc in the complex plane with center at such

that S does not contain any other eigenvalue ofA (0). Ifthere exists a positive 6 such that
for all t, 0 < < 6, A t) has an even number ofeigenvalues in S, then the multiplicity of
) as an eigenvalue ofA (0) is even.

(ii) IfA has no imaginary eigenvalues, then for all sufficiently small e, we have
In (A + eB) In (A).

(iii) If In (A 4: In (B), then there is a matrix C6 conv (A, B) that has an imaginary
eigenvalue

(iv) IfA is stable but B is not stable, then there is a matrix C conv (A, B) that
is near-stable.

Proof. Parts (i) and (ii) follow from Lemma 3 of 6 ]. Parts (iii) and (iv) follow
from (ii) using the completeness ofthe real numbers and the connectedness ofthe interval
[0, 1.

Convention 2.7. By the term "interval" we mean a connected subset of the real
line. That is, open intervals, closed intervals, half-open intervals, halflines and the whole
real line are intervals.

DEFINITION 2.8. Let Tbe an interval. The matrix interval S(A, B; T) of matrices
is defined to be the set A + tB T}.

DEFINITION 2.9. Let to e. We say that to is an inertia change point for
S(A,B;) if for every e>0 there exists te such that It-t0[ <e and Inertia
(A + tB) 4: Inertia (A +toB).

DEFINITION 2.10. Let T be an interval.
(i) The interval Tis called an interval ofconstant inertia (Tr,

if every matrix in S(A, B; T) has inertia (Tr, ,/).
(ii) The interval T is called an interval of semiconstant inertia (Tr, , 0) for

S(A, B; ) if every matrix Ce S(A, B; T) such that 6(C) 0 has In (C) (Tr, , 0).
If T is an interval of constant inertia for S(A,B;) we may also say that

S(A, B; T) has constant inertia or, when every matrix in S(A, B; T) is stable [semistable ],
that S(A, B; T) is stable [semistable].

DEFINITION 2.1 1. We call (A, B) a regular pair of matrices if there exists a
such that L(A + tB) is nonsingular.

PROPOSITION 2.12. If (A, B) is a regular pair of matrices, then the number of
complex numbers for which L(A + tB) is singular is at most n.

Proof. Since L(A + tB) is singular if and only if det (L(A + tB)) 0, and since
p(t) det (L(A + tB)) is a polynomial of degree at most n e, it follows that either
(A, B) is a regular pair, in which case p(t) has at most n roots, or (A, B) is not a regular
pair, in which case p(t) 0.
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COROLLARY 2.13. If(A, B) is a regularpair ofmatrices, then the number ofcomplex
numbers for which A + tB has an imaginary eigenvalue is at most n.

Proof. The claim follows from Proposition 2.5 (ii) and Proposition 2.12.
Another corollary of Proposition 2.12 is the following.
COROLLARY 2.14. (A, B) is a regular pair of matrices if and only if B, A) is a

regular pair ofmatrices.
Proof. If (A, B) is a regular pair of matrices then, by Proposition 2.12, there exists

a nonzero number such that L(A + tB) is nonsingular. Therefore, L(A/t + B) is
nonsingular, and so (B, A) is a regular pair of matrices.

Since for all complex n n matrices A, (I, A) is a regular pair, it follows from
Proposition 2.12 and Corollary 2.14 that L(A + tI) is nonsingular for all but at most n 2

complex numbers t.

3. Observations on eigenvalues and inertia. We start with an immediate observation.
OBSERVATION 3.1. Let A be nonsingular, and let be a nonzero real number. Then

the following are equivalent:

(a) -1/t is an eigenvalue ofA-B.

a2 I + tA-B is singular.

(a3) A + tB is singular.

Accordingly, we label the three equivalent conditions in Observation 3.1 (under the
assumption that A is nonsingular) as condition (a).

IfL(A) is nonsingular then, applying Observation 3.1 to L(A) and L(B), we obtain
the following equivalent conditions:

la L(A) / tL(B) is singular.

la2 I / tL(A)-L B is singular.

(la3) -1/t is an eigenvalue of L(A)-IL(B).

By Proposition 2.5(v), condition (la) is equivalent to

(la4) L A + tB is singular.

We now label the four equivalent conditions (la)-(la4) (under the assumption that
L(A) is nonsingular) as condition (la).

A third condition we will discuss is

(ie) A + tB has an imaginary eigenvalue.

THEOREM 3.2. Let A and B be n n complex matrices, let be a nonzero real
number, and assume that L(A is nonsingular. Then we have

(a)-- (ie)-- (la).

Proof. First observe that if L(A) is nonsingular then A is nonsingular, so both
conditions (a) and (la) are well defined. The implication (a) -- (ie) follows from the
trivial implication a3 -- (ie). The implication (ie) -- (la) follows from (ie) -- (la4),
which follows from Proposition 2.5(ii).

Clearly, the converses of the implications (a) -- (ie) and (ie) -- (la) do not hold
under the stated hypotheses.
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We now add three more conditions that relate to the previous eight.

(ic) is an inertia change point for S(A, B; R ).

(ns) A + tB is near stable.

(us) A + tB is not stable.

THEOREM 3.3. Let A and B be n n matrices, let be a nonzero real number, and
assume that L(A is nonsingular. Then we have

(a)- (ie) (ic) -- (la) -- (us).

(ns)

Proof. The implication (ns) -- (ie) is clear by Definition 2.3 (iii). The implication
(ic) -- (ie) follows from Lemma 2.6 (ii). The implication (ie) -- (ic) follows from
Corollary 2.13. The implication (la) -- (us) follows from (la4) (us), which follows
from Proposition 2.5 (iv). D

The converses of the implications (ns) - (ie) and (la) -- (us) do not hold. Also,
neither (a) (ns) nor (ns) - (a) holds.

Theorem 3.3 yields the following corollary.
COROLLARY 3.4. Suppose that (A, B) is a regular pair ofmatrices. Then the number

ofinertia change pointsfor S(A, B; ) is at most n2.
Proof. If (A, B) is a regular pair of matrices, then (ic) (ie) holds even if L(A)

is singular. To see that, letA’ A + t’B, where t’ e R is chosen so that L(A’) is nonsingular.
Let be an inertia change point for S(A, B; ). Obviously, t’ is an inertia change
point for S(A’, B; ). By Theorem 3.3 (applied to A’ and B), A’ + (t t’)B A + tB
has an imaginary eigenvalue. Our claim now follows from Corollary 2.13. [2]

THEOREM 3.5. Let (A, B) be a regular pair ofmatrices and let tl, tm, where
tl < < tm, be the inertia change points of S(A, B; ). Let To (-, tl), Ti
ti, ti-1), 1, m, and Tm tm, Ct3 ). Then the intervals Ti, O, m are max-
imal intervals of constant inertia for S(A, B; #) and the inertia of each matrix in
S(A, B; Ti) is oftheform (ri, ui, 0), O, m.

Proof. By standard results in analysis, T is an interval of constant inertia for
S(A, B; ,) if and only if T contains no inertia change point for S(A, B; ) and so the
first part of the theorem follows. The second part ofthe theorem follows from the equiv-
alence of (ie) and (ic) in Theorem 3.3. ff]

4. Inertia of intervals. In this section we apply the observations made in the previous
section in order to study the relation between global conditions. The global conditions
correspond to the negations ofthe local conditions in the previous section. In these global
conditions as well as in the rest of the paper T denotes an interval.

The equivalent conditions

(A1) A-1B has no eigenvalue with negative reciprocal in T.

(A2) I + tA-B is nonsingula.r for every in T.

(A3) A + tB is nonsingular for every in T.

will be labeled condition (A).
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The equivalence of the following four conditions follows from the equivalence of
(lal)-(la4):

(LA1) L(A) + tL(B) is nonsingular for every in T.

(LA2) I + tL(A)-L(B) is nonsingular for every in T.

(LA3) L(A)-L(B) has no eigenvalue with negative reciprocal in T.

(LA4) L(A + tB) is nonsingular for every in T.

These conditions will be labeled condition (LA).

We also consider the conditions

(IE) A + tB has no imaginary eigenvalue for any in T.

(CI) Tis an interval of constant inertia (Tr, ,0) for S(A,B;R).

THEOREM 4.1. Let A and B be n n complex matrices, let T be an interval, and
assume that L(A is nonsingular. Then we have

(LA) (IE) (CI) (A).

Proof. In view of Theorem 3.3 it is enough to prove the equivalence (IE) (CI).
From Theorem 3.3 and the proof of Theorem 3.5 it follows that (IE) implies that
S(A, B; T) has constant inertia. By (IE) it follows that the inertia is of type (r, u, 0).
The implication (CI) -- (IE) is trivial. 7q

By adding additional requirements, some ofthe implications in Theorem 4.1 become
equivalences, as we will show presently.

THEOREM 4.2. Let A andB be n n complex matrices, let Tbe an interval, assume
that L(A is nonsingular, and assume that A + tB is stable for some in T. Then we
have

(LA), (IE) (CI)- (A).

Proof. In view of Theorem 4.1 it is enough to prove the implication (CI) -- (LA).
Observe that under our additional assumption, (CI) implies that A + tB is stable for
every in T. By the implication (la) -- (us) in Theorem 3.3 we now obtain (LA). [3

The following theorem is found in [2] and [3] for real matrices.
THEOREM 4.3. Let A and B be n n complex matrices, and assume that A is

positive stable.
(i) If L(A)-I L(B) has no real eigenvalue, then A + tB is stable for every real

number t.
(ii) IfL(A )- L B has real eigenvalues then let r and r2 be the greatest and the

least real eigenvalues ofL A L B). Define

-, r > O,
tl rl

-, r <-O,

----, r2<0,
t2= r2

, r2>0.
Then the interval T (t, t2) is the maximal interval of constant inertia n, 0, 0) that
contains the point O.



ON THE INERTIA OF INTERVALS OF MATRICES 571

Proof. Part (i) follows immediately from the equivalence (LA) (CI) in Theo-
rem 4.2.

(ii) Observe that L(A)-I L(B) has no real eigenvalue in T1 (-oo, -1/t2), nor
in T2 (-1/tl, oo). Therefore, L(A)-IL(B) has no real eigenvalue with negative re-
ciprocal in (0, t2) or in (tl, 0). By Theorem 4.2 it follows that (tl, 0) and (0, t2) are
intervals of constant inertia (r, , 0) for S(A, B; ). Since A is stable, it follows from
Theorem 3.3 that zero is not an inertia change point for S(A, B; ). Hence, it follows
that T (t, t2) is an interval of constant inertia (n, 0, 0) that contains the point 0.
If tl 4: -oo, then it follows that -1 /t is an eigenvalue ofL(A)-I L(B), and by Theorem
4.2 t, t2) is not an interval of constant inertia (n, 0, 0). Similarly, if t2 4: oo, then it
follows that -1/t2 is an eigenvalue of L(A)-IL(B), and by Theorem 4.2, (t, t2] is not
an interval of constant inertia (n, 0, 0). The maximality of T follows. V1

DEFINITION 4.4. A square matrix A is said to have Property X if the minimal real
part of an eigenvalue ofA is an eigenvalue ofA.

For example, Hermitian matrices and Z-matrices have Property X.
THEOREM 4.5. Let A andB be n n complex matrices, let T be an interval, assume

that L(A is nonsingular, assume that A + tB is positive stable for some in T, and
assume that A + tB has Property Xfor every in T. Then we have

(CI) (LA) (IE) (A).

Proof. Since A 4- tB is positive stable for some in T, and since A 4- tB has Property
X for every in T, it follows, using continuity arguments (see Lemma 2.6(iv)) that
(A3) (IE). So (A) -’ (IE), and our claim follows from Theorem 4.2. I--]

THEOREM 4.6. Let A andB be n n complex matrices, let T be an interval, assume
that L(A is nonsingular, and assume that all eigenvalues ofA + tB are realfor every
in T. Then we have

(LA) -- (IE) (CI), (A).

Proof. The implication (A3) (CI) follows immediately by continuity (see Lemma
2.6 (iii)). So (A) -- (CI), and the claim follows from Theorem 4.1. V]

We now consider matrix intervals with the same inertia except for a finite number
of points.

First, we restate the implications (ic) -- (la) and (a) - (ic) of Theorem 3.3 in a
somewhat different form together with a partial converse.

PROPOSITION 4.7. Let A and B be n n complex matrices and assume that L(A
is nonsingular. Let G be the set of inertia change points for S(A, B; g), and let be a
nonzero number.

(i) If G, then -1/t is an eigenvalue ofL(A)-L(B).
(ii) If-1/t is an eigenvalue ofA-1B, then G.
The converses of Proposition 4.7 (i) and (ii) do not hold in general. We give a

counterexample to the converse of Proposition 4.7 (i).
Example 4.8. Consider the matrices

0
B=A=

0 -2 0 -1

Observe that L(A) is nonsingular, and that A + tB has the inertia 1, 1, 0) for all t in
[-0.5, oo except -0.5. However, it is easy to verify that L(A + B) is singular and
hence, by the equivalence of conditions (la3) and (la4), -1/t is an eigenvalue of
L(A)-L(B) also for 1.
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Proposition 4.7 does not give necessary and sufficient conditions for a point to
belong to the exceptional set G of inertia change points for S(A, B; R). However it does
lead to a finite algorithm for finding these points.

ALGORITHM 4.9. For the sake of simplicity, we assume that L(A) is nonsingular.
Step 1. Find the real nonzero eigenvalues of L(A)-L(B).
Step 2. Take the negative reciprocals l, "’", tm of the numbers found in Step 1.

The inertia change points for S(A, B; ) are those ti, { 1, ..., m }, for
which A + tiB has an imaginary eigenvalue.

Necessary and sufficient conditions for a point to be an inertia change points for
S(A, B; ) may be obtained under additional assumptions, as will be demonstrated in
the sequel.

First we consider intervals of semistability.
THEOREM 4.10. Let A and B be n n complex matrices, and assume that L(A) is

nonsingular. Let T be an interval ofsemistabilityfor S(A, B; ). Then
For T, A + tB is near-stable ifand only if q 0 and / is an eigenvalue

ofL(A )-’ L(B).
(ii) All the eigenvalues ofL(A )-1L(B) whose negative reciprocals lie in the interior

ofT have even multiplicity.
(iii) IfA andB are real, then all the eigenvalues ofA-Ia whose negative reciprocals

lie in the interior ofT have even multiplicity.
Proof. (i) If T consists of one point to then, since A + toB is semistable, it follows

by Proposition 2.5(ii) that A + roB is near stable if and only if L(A + toB) is singular
(so to 4:0 since L(A is nonsingular), which is true if and only if-1 /to is an eigenvalue
ofL(A )-1L(B). If T consists of more than one point, then it consists of infinitely many
points. By Theorem 3.3, every for which A + tB is near stable is an inertia change point
for S(A, B; ). In view of Corollary 3.4, A + tB is stable for all T except for a finite
number of t’s. Part (i) now follows immediately from the equivalence (LA) : (CI) in
Theorem 4.2.

(ii) Let X be an eigenvalue of L(A)-L(B) whose negative reciprocal lies in the
interior of T, and let m be its multiplicity. Let I’ be a disc with center at X that contains
no other eigenvalue ofL(A )-1L(B), and such that the negative reciprocals ofreal numbers
in I’ lie in T. Without loss of generality assume that A + tB is positive semistable for
every in T. Since L(A) is nonsingular, it follows that for all sufficiently small positive, L(A + 6I) is nonsingular. For such , (A + 61) + tB is positive stable for all in T.
By Theorem 4.2, the operator F(6) L(A + I)-L(B) has no eigenvalue with negative
reciprocal in T. Since F(6) is an operator on the real space ,, its complex eigenvalues
appear in conjugate pairs. Consequently, F(6) has an even number of eigenvalues in I’.
By Lemma 2.6(i) it now follows that the multiplicity of 3, as an eigenvalue ofL(A)-I L(B)
is even.

(iii) Let 6 be a positive number. IfA and B are real then C(6) (A + 6I)-B is
real, and hence the complex eigenvalues of C(6) appear in conjugate pairs. By
Theorem 3.2, if-1/t is an eigenvalue of (A + 6I)-B, then -1/t is an eigen-
value of L(A + M)-L(B). As in the proof of part (ii), for 6 sufficiently small,
L(A + 6I)-L(B) has no eigenvalue with negative reciprocal in T. Therefore,
(A + 6I)-B has no eigenvalue with negative reciprocal in T. Since the complex eigen-
values of C(fi) appear in conjugate pairs, it follows that C(6) has an even number of
eigenvalues in I’. By Lemma 2.6(i) it now follows that the multiplicity of 3, as an eigenvalue
ofA -1B is even.
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Remark 4.11. In general, if A + tB is near stable then the multiplicity of- 1/t as
an eigenvalue of L(A)-L(B) is not necessarily even. For example, take A to be an
identity matrix of odd order, and let B A. Then L(A)-I L(B) is an identity matrix
of odd order and hence its only eigenvalue, 1, has odd multiplicity. Yet, A- B is
near stable.

Next we assume that all eigenvalues ofA + tB are real for in an interval T. The
following result is essentially due to V/iliaho [7 ], where it is stated for Hermitian matrices.
It is stated here for the sake of completeness.

THEOREM 4.12. Let A and B be complex n n matrices and assume that .4 is
nonsingular. Assume that all eigenvalues ofA + tB are realfor all . Let -1 /ti,
1, m, where t < < tm, be the distinct nonzero eigenvalues ofA-B. Let To
(-or, t), Ti (ti, ti-), 1, ..., m, and Tm (t,,, ). Then the intervals Ti,
O, ..., m are maximal intervals of constant inertia for S(.4, B; ) and the inertia of
each matrix in S(.4, B; Ti) is oftheform (ri, i, 0), O, m.

Proof. As in Theorem 3.5, by standard results in analysis, T is an interval ofconstant
inertia for S(A, B; R) if and only if T contains no inertia change point for S(.4, B; ).
By Theorem 3.3, if- /t is an eigenvalue ofA-1B, then is an inertia change point for
S(A, B; ). Our claim now follows from Theorem 4.6.

5. Stable convex hull of matrices. The results ofthe previous section can be applied
in several directions. We conclude the paper by demonstrating a sample of such appli-
cations.

The following result was proved for real matrices in [1] and [2].
THEOREM 5.1. Let A and B be n n complex matrices. Then the convex hull

conv (.4, B) is stable ifand only ira is stable and L(A)-L(B) has no nonpositive real
eigenvalue.

Proof. IfA is stable, it follows from the equivalence (LA) - (CI) in Theorem 4.2,
applied to the matrices A and B A and the interval T [0, 1], that conv (A, B) is
stable if and only if L(A)-L(B A) has no real eigenvalue less than -1, which is
equivalent to saying that L(A)-L(B) has no nonpositive real eigenvalue. Since the
stability of conv (A, B) of course implies that .4 is stable, the result now follows.

THEOREM 5.2. Let A and B be n n complex matrices, and assume that all the
matrices in conv (A, B) have Property X. Then thefollowing are equivalent.

(i) The convex hull conv (.4, B) is stable.
(ii) A is stable and L(.4)-1L(B) has no nonpositive real eigenvalue.
(iii) A is stable andA-B has no nonpositive real eigenvalue.
Proof. Our claim follows from the equivalences (A) . (LA) . (CI) in Theorem

4.5, applied to the matrices A and B A and the interval [0, 1].
The following theorem is found in [4], where it is stated for Hermitian matrices.
THEOREM 5.3. Let A and B be n n complex matrices, and assume that all the

matrices in conv (A, B) have all eigenvalues real. Then thefollowing are equivalent.
(i) A is nonsingular andA-B has no nonpositive real eigenvalue.
(ii) All matrices in conv (A, B) are nonsingular.
(iii) conv (A, B) has constant inertia oftype (r, u, 0).
Proof. (i) (ii) follows from the equivalence of conditions (A) and (A) applied

to the matrices A and B A and the interval T [0, ].
(ii) (iii) by Lemma 2.6 (iii), since all matrices in conv (A, B) have all eigenvalues

real.
(iii) (ii) is trivial.
We end with an example that illustrates Theorem 5.2 and the analogue for the

convex hulls of Theorem 4.10(iii).
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Example 5.4. Let

2 -3) Br"A
-1 2

Then it is easy to show that all matrices in conv (A, B) are M-matrices and hence are
semistable. Furthermore, each matrix in conv (A, B) is stable, except for (A + B)/2.
Note that -1 is an eigenvalue of A-1B of multiplicity two. For every positive e,
conv (A + el, B) is stable, and hence, by Theorem 5.2, (A + eI)-lB has no non-
positive real eigenvalue. Indeed, the eigenvalues of (A + .11)-lB are approximately
-.8 + .8775i. Note also that every matrix in conv (A + .1I, B) has Property X, but
(A +. I)-1B does not.

Acknowledgment. The authors are grateful to Professor David Carlson for his helpful
comments, which helped to improve the presentation of the paper.

REFERENCES

S. BIALAS, A necessary and sufficient conditionfor the stability ofconvex combinations @tablepolynomials
or matrices, Bull. Polish Acad. Sci. Tech. Sci., 33 (1985), pp. 473-480.

[2] M. Fu AND I. R. BARMISH, A generalization ofKharitonov’s polynomial framework to handle linearly
independent uncertainty, Tech. Report ECE-87-9, Department of Electrical and Computer Engineering,
University of Wisconsin, Madison, WI, 1987.

[3] , Maximal undirectional perturbation bounds for stability ofpolynomials and matrices, Systems
Control Lett., ll (1988), pp. 173-178.

[4] C. R. JOHNSON AND L. RODMAN, Convex sets of Hermitian matrices with constant inertia, SIAM J.
Algebraic Discrete Methods, 6 (1985), pp. 351-359.

[5] P. LANCASTER AND M. TISMENETSKY, The Theory ofMatrices, Second Edition, Academic Press, New
York, 1985.

[6] H. SCHNEIDER, Topological aspects of Sylvester’s theorem on the inertia of Hermitian matrices, Amer.
Math. Monthly, 73 (1966), pp. 817-821; Selected Papers Algebra, The Mathematical Association of
America, Washington, DC, 1977, pp. 339-343.

[7] H. VLIAHO, Determining the inertia of a matrix pencil as a function of the parameter, Linear Algebra
Appl., 106 (1988), pp. 245-258.



SIAM J. MATRIX ANAL. APPL.
Vol. 11, No. 4, pp. 575-588, October 1990

(C) 1990 Society for Industrial and Applied Mathematics

008

AN IMPROVED METHOD FOR ONE-WAY DISSECTION
WITH SINGULAR DIAGONAL BLOCKS*

JESSE L. BARLOWf AND UDAYA B. VEMULAPATI

Abstract. Matrices arising out of the one-way dissection method for solving large sparse systems of linear
equations are considered. The systems that are considered are those that may have singular diagonal blocks.
Such systems arise in certain fluid flow problems.

Gunzberger and Nicholaides [Linear Algebra Appl., 64 (1985), pp. 183-189] proposed a method for
resolving the singularity in the diagonal blocks. This method uses the Moore-Penrose pseudoinverse. Two
improvements to the Gunzberger-Nicholaides procedure are proposed: (1) The substitution of a weighted
pseudoinverse for the Moore-Penrose pseudoinverse; (2) A more elegant implementation of the back substitution
procedure. A stability analysis of both the Barlow-Vemulapati and the Gunzberger-Nicholaides procedures is
given. Both analysis and empirical tests show that the former method has better numerical stability properties
than the Gunzberger-Nicholaides procedure. The Barlow-Vemulapati procedure is also implemented on the
Intel iPSC/l Hypercube. The improvement to the back substitution method makes the natural parallelism in
the problem easier to exploit.

Key words, weighted pseudoinverse, parallel processing, error analysis

AMS(MOS) subject classifications. 65F05, 65F20, 65F25

1. Introduction. One-way dissection is a common technique for the solution of
large sparse systems of linear equations (cf. [8], [11] ). In the literature on the numerical
solution of partial differential equations, it has also been called substructuring [4] and
domain decomposition [6 ]. However, such systems also arise in other applications, for
example, in economic models [7].

The basic problem is to solve the n n system of linear equations

(1.1) Ax=s,

where A and s have the form

B1 0 0 S
0 B2 0

(1.2) A 0 S-’(S1,S2, ,Sk,Sk+ 1) T.
Bk Sk

G Gf G F

Here Bi, 1, 2, k are m; mi matrices, F is a p p matrix, and Gi and Si are
mi X p matrices, where p + 7] = mi n Eachsi, i= 2, k is an mi-vector and
Sk/l is a p-vector. Much of the discussion of one-way dissection in the literature has
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concerned symmetric, positive definite systems. This implies that Bi, 1, 2, ..., k
and F are symmetric, positive definite, and Gi S;, 1, 2, ..., k. Instead we make
the much weaker assumption that rank (A) n, i.e., that A is nonsingular. Thus we
have that rank (Bi) l; _-< m;, 1, 2, k. Applications of such systems are given
in [14].

Gunzberger and Nicholaides [13] suggested an algorithm based on Gaussian elim-
ination with singular pivots. It uses the Moore-Penrose inverses of the diagonal blocks
Bi, 1, 2, k. The Moore-Penrose pseudoinverse of a matrix B, denoted by B+,
is the unique matrix satisfying the four Penrose conditions:

(1.3)

BB+B B,

(2) B+BB+ B+,

(3) (+)r=+,

(4) (B+B) r= B+B.

We will use the notation B (i), B (i’j), or B (i’j’lc) to denote matrices satisfying conditions
i, j, or k among those in (1.3). The procedure in 13 has a simple elimination procedure,
but a complicated back substitution procedure.

In this paper, we suggest an alternative method for resolving the singularity in the
diagonal blocks Bi, 1, 2, , k. This method is based on the weighted pseudoinverse
discussed in a fundamental paper by Elden [9 ]. We give evidence that this method is
more stable. We also give a more elegant back substitution procedure, which makes the
algorithm easier to implement on a message-passing architecture. These algorithms are
outlined in 2. An error analysis of our proposed algorithm is given in 3. Empirical
tests verifying the stability properties of our algorithm are given in 4. We also give an
implementation on Intel Hypercube(iPSC/1) in 4. The implementation is very
straightforward.

2. Description of algorithms. We first describe the elimination procedure ofGunz-
berger and Nicholaides [13] for solving 1.1 ). It makes use of the Moore-Penrose pseu-
doinverses of the diagonal blocks Bi, 1, 2, ..., k. The other elimination procedures
in this section will take a similar form.

ALGORITHM 1. Block elimination using the Moore-Penrose pseudoinverse 13 ].
Compute

k k

P= F- Z GfB?S; s’+ 1--Sk+ 1-- Z GfB-si’
i=1 i=1

f=Gf(I-B-Bi) projection of Gf onto Range (Bi).

(2) For 1, 2, kfind an mi X mi li) matrix Xi such that BiXi O. Note
that li rank (Bi). Thus Xi is a basis for the null-space ofBi. Algorithms for
finding such a basis are given by Heath [15] and Pothen [17].

We note that the terms GfB?Si, GfB[ si, 1, 2, k can be computed inde-
pendently, as can the null-space bases Xi, l, 2, k. The same is true for the
(f, l, 2, , k, but we will see later that it is not necessary to compute these matrices
at all.
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The back substitution phase ofthe Gunzberger-Nicholaides procedure is somewhat
complicated. Let x (x, x2, "", Xk, Xk+)r, where the first k block components

1, 2, ..., k are of the form

(2.1) xi=Yid-gi

where

and the vectors zi satisfy

(2.2a)

(2.2b)

y[’zi=O, i= 1,2, ,k,

Bizi=O, 1,2,’" ,k,

PZk+ =0.

Since A is nonsingular, P is also nonsingular (cf. [13]). Thus

(2.3a) Zk+ -’0,

(2.3b) Xk+ -"Yk+ 1.

Then Algorithm reduces 1.1 to the system

(2.4a) BiYi d- SiXk + Si,

k

(2.4b) , zi+ PXk+ ,= gk+ 1.

i=l

From (2.2a), (/rz Grz, 1, 2, k; thus we can replace (2.4b) with

k

(2.5) ., Grizi+ Pxk+ ffk+ 1"
i--I

Thus (f need never be explicitly computed. The system (2.4) can be written

(2.6) My g- Nz,

where

(2.7a) M=

(2.7b) N=

BI 0 0 Sl
0 B2

Bk Sk
0 0 F

Gf o
g--(SI,S2 ,Sk,Sk+

(2.7c) y=(y, ,yk,Yk+ l)T;

Z’-’(ZI, ,Zk, Zk+ l) T.
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The consistency of (2.6) and the nonsingularity of/ follow from the nonsingularity of
A. If we assume that z is known, and let

(2.8) f =(fl,f2, ,fk,fk+ )r= 5-Nz,

then a basic (nonunique) solution y is given by

(2.9a) Y/c+l =x/c+ 1-- P-IA/ 1,

(2.9b) Yi B{(f Siy/c + 1).

From 13 ], we have that y solves (2.6). Thus if we define the matrix such that

(2.10) y=f

where has the form

(2.) =
-BSp-

B -BSP-0 P-
we note the following fact about . Its proof is obvious.

LEMMA 2.1. M 1,2,4). That is, is a 1, 2, 4 )-pseudoinverse ofM.
If we combine (2.6) and (2.10) we have

(2.12) I-M Nz I- Mcb g.

Let

X diag X X2 Xk O

Thus (2.12) becomes

(2.13) Tw=g,

where T (I- M)NX; z Xw; g (1- M)g. Equation (2.13) is consistent but
overdetermined (cf. [13]). It can be solved by orthogonal factorization of T (in [13],
the use of normal equations is advocated). We assume that the dimensions of the null-
spaces of Bi, 1, 2, k are much smaller than the dimensions of the blocks them-
selves. That is, that mi [i (( mi. Thus the solution of (2.13 should be very fast compared
with the rest of the algorithm. We state the procedure as Algorithm 2.

ALGORITHM 2. Back substitution procedure [13].
Explicitlyform T (I Mb NX; g (I M g.

(2) Solve Tw g by orthogonalfactorization (or normal equations).
(3) Let z Xw and solve

y= (-Nz).

(4) The solution x y + z.

We propose two changes in Algorithms 1-2. The first is a simplification of the back
substitution procedure. This simplification uses computations arising directly out of the
elimination procedure. To describe that, we give a more specific version of Algorithm
that includes the method for computing B{, 1, 2, k. The method is slightly
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different from that given in 13 ], but uses the method for computing B given in Golub
and Van Loan 12, pp. 162-167 ].

ALGORITHM 3. Implementation of block elimination using the Moore-Penrose
pseudoinverse.

For 1,2, k perform steps 2-7.
(2) Factor Bi into

Bi Qi I U’ll U’21]o o

where Qi is orthogonal, UI is an li li upper triangular, U2 is an li
(mi li) matrix, and P is a permutation matrix. This factorization and the
determination ofrank li can be done by orthogonal decomposition with column
pivoting (cf 16, Chap. 10 ]) or some other method (cf 2 ], 5 ], 10 ]).

3 Compute (i, i) satisfying

s ll
S2 s2 Q.f(Si,si),

where S is li p and S2 is (mi li) p.
(4) Compute

UI](

(5) Compute

(2.14)

Xi is a common choicefor the null basis matrix ofBi cf 15 ], 17 ).
(6) Factor

where Zi is orthogonal and W is upper triangular and compute

o ]mi+ li

(7) Compute

(8) Compute

(Ri, ri) -Gf(Vi, vi).

k k

P=F+ Ri;g+=S+l+ ri.
i=1 i=1
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Algorithm 3 requires

2mili(mi-li)+-13i + 2mili(p+ 1)+ 12i(mi-li)+(mi-li)2 mi--(mi+ li)

+4(mi-li)mi(p-t- 1)+p(p+ 1)li+O(m 2)
flops for each 1, 2, k. Here m maxl_i_k mi. If Imi- lil =< c O(1), this
simplifies to

2
2mili(P+ 1)+l +p(p+ 1)li+O(cm 3)

for each 1, 2, ..., k. We assume here that all of the blocks in (1.2) are dense.
If we consider (2.4a) and apply the reduction from Algorithm 3, we have

(2.15a) UiYi+ sl]xk+ sl],
[2](2.15b) S2Xk+l=Si

where Ui U[ l], U21). Since (2.15) is just an orthogonal reduction ofsome rows from
Ax s, it follows that it is underdetermined but consistent. Using the null-basis (2.14)
for Bi and by letting

O GX,
2.5 becomes

k

(2.16) , Oiwi+ Px+ gk+ ,
i=1

t21 st21) r, andwhere zi Xiwi. Thus if we let S [21 (S21, Sty21) r, s[21 (si
t ((1, d), then x+l and w (Wl, w2, w)r solve the linear system

d
(2.17)

0 STM Xk+ [ S[2I

The nonsingularity ofA guarantees that (2.15 is a nonsingular system oflinear equations.
For problems arising in practice, its dimension will be small compared to the dimension
of A. It can be solved by Gaussian elimination with partial pivoting or orthogonal de-
composition. Such a reduction is much simpler than the back substitution procedure in
Algorithm 2. The values of Y and x;, 1, 2, k can be recovered from (2.9a) and
the step

(2.18) Xi--Yid-Siwi
The computation (2.9a) can be simplified into

(2.19) Yi U](S1]- sll]xk+ 1),

thereby avoiding the reuse of the orthogonal factor ai. We now formally state this pro-
cedure as Algorithm 4. This algorithm is a method for solving (2.5) and is simply a
particular implementation of Algorithm 2.

ALGORITHM 4. Improved back substitution procedure.
Solve the linear system in (2.17) for xk / and w Wl, w2, Wk) r using
orthogonalfactorization by Householder transformations.

(2) For 1, 2, ..., k do steps 3-6.
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(3) Compute

(2.20)

(4) Let

(2.21)

(5) Solve

gi= -[ I40 [U’i]-lf’]

, Im,- ,, O )Z ’i.

[ UI1]0 U2]]yi=[ ,i ]"
Here SII, S II, G1, U} II, Wi, and Zi arefrom Algorithm 3.

(6) Compute

where Xi is in Algorithm 3.

Xi Y -It- Xi wi

The back substitution procedure requires

7 p+ Z (mi--li) + 3li(mi-li)+-mT+17
i=1 i=1

+O(m)

flops. Ifmaxzizk Im lil c 0(1) then this reduces to

p+kc +-.= [l]+m]+O(cm)

flops.
The second modification to Algorithms 1-2 is to replace B{ with BI ’3)

2, ..., k, i.e., any matrix B,3) satisfying Penrose conditions and 3. For the elimination
algorithm, this is equivalent to solving (cf. [9])

min B;( V;, v) (S, s;)IIF
Vi,li)

and then computing

k

(2.22a) P= F- GirVi,
i=1

k

(2.22b) gk+ Sk+ 1-- GTi vi,
i=1

(2.22c)

It is essential that all of the columns of

(2.23) (Hi, hi) Si, si) Bi( Vi,

be vectors in the space orthogonal to the columns of Bi. It is guaranteed by the use of
BI TM. This allows us to set up (2.17) by orthogonal factorization ofBi by column pivot-
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ing or some other method to detect rank (e.g., [2], [5], [10]). When we substitute
B 1,3) for B{, we lose the property that yrizi 0, but this property is not necessary for
the algorithm to work. Again since (z; Gzi, it is not necessary to do the computa-
tion (2.22c).

The matrix B(1’3) is not unique unless Bi has full rank. In our modified algorithm,
we can choose BI 1’3)

SO as to minimize IIGfB(’31’ViillF and r (1,3)SiG B 112. As will be
shown in the next section, this leads to a new algorithm with better numerical stability
properties. Elden 9] showed that the (1, 3) pseudoinverse with this property is the
weighted pseudoinverse defined below.

DEFINITION 2.1. The G-weighted pseudoinverse of B is defined by

where

Bb=(I-(GrP)+Gr)B+,

p=I-B/B.

In [9 ], it is shown that the matrix B is the 1, 3)-inverse such that

(2.24) ]IGTBSIIF<=

for all 1, 3)-inverses of B and matrices S. The G-weighted pseudoinverses [Ba]{ need
not and should not be explicitly computed. Instead we compute the quantities

(2.25a) Ri=-G[BG][Si 1,2, ,k

(2.25b)

and then compute

r -G Ba [ si i= 1,2, ,k

k k

(2.26) P=F+ R.; g+=s++ r.
i=1 i=1

The quantities (Ri, ri) are simply the residuals of the least squares problem

(2.27) min ]lGf(Vi, vi)]lF,
(Vi,vi) TBi

where TBi is the set of minimizers of

min
Vi,l)i m (p

The computation of (Vi, vi) is not necessary. The residuals (Ri, ri) can be computed
directly. Problem (2.27) has a unique solution if

rank
G

=mi, i=l,2,’",k.

This is a direct consequence of nonsingularity of A. We now give a more detailed de-
scription of this procedure. Steps 1-4 are the Bjrrck-Golub (cf. [3]) direct elimination
procedure for solving (2.27).

ALGORITHM 5. Block elimination scheme using the weighted pseudoinverse.
(1) For 1, 2, k do steps 2-5.
(2) Same as steps 2-3 ofAlgorithm 3.
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(3) Let G G ’1, G 21) where G is a p li matrix and G : is a p
(mi- li) matrix. Compute Ji G21- GI][ull]-Iu[2 and (i, gi)
-GII[ ull]-l(si, Si). (Note that i GfXi.)

(4) Factor

where Z is orthogonal and W is upper triangular. Then compute

(Ri, ri)=Zi
o o
0 Ip--ni+l

(5) Compute
k k

P=F+ R Sk + Sk + "ql- r
i= i=

With the change that

(2.28) gi --Gl][ ul]l-lf 1]

in (2.21 ), the back substitution procedure in Algorithm 4 can be used directly after
Algorithm 5. This adds an additional lip flops for each 1, 2, k. Except for
differences in terms of O(m2), the operation count for Algorithm 5 is identical to that
of Algorithm 3. We note, however, one difference that the matrix

B(1’3) 0 -BI’3)SlP-1
B(21,3)

B(k1,3) _B(kl,3)SkP-1
L 0 p-1

is only a )-pseudoinverse of M. This can be verified easily. However, this is enough
to assure that y f satisfies (2.10). Hence we can use the back substitution procedure
in Algorithm 4.

The stability properties of these direct elimination procedures can be shown using
well known properties of methods for solving constrained least squares problems and
systems oflinear equations (cf. 12 ], 18 ]). These properties are given in the next section.

3. Error analysis of the revised algorithms. We now use backward error analysis
(cf. 18 to bound the errors in the computational versions ofthe algorithms in 1. The
general form of the reductions are

k k
T-.( 3)(3.1) P F- , G’Bll’3)Si; ffk+l Sk+ Gi 1i Si,

i=1 i=1

where B 1,3) is a 1, 3 pseudoinverse of Bi. First we need the following lemma from
on the Bjrrck-Golub direct elimination procedure, as applied in steps 1-4 of Algo-
rithm 3.

LEMMA 3.1. Let steps 2-5 ofAlgorithm 5 be implemented using Householder trans-

formations in floating-point arithmetic with machine unit . Then the factorization of
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each ofthe blocks [,], 1, 2, k satisfy

U1 U2
B 0 0 pr+(3.2a)
Gr =Y

0 W aG r

0 0

(3.2b) (S,s)=Y t2] gt2j
+(aS, as),

where Y Q1LQ2, Q1 and Q2 are orthogonal, andL is unit lower triangular. The backward
errors aB, aG, aS, and as satisfy

(3.3a) [IaBIIF <- l[ BI[FZ / O(z2),

.+O(.2),
F

(3.3c) S, s F -ss S, s F + O(z2),
where ck, cka, and Cks are modestly sized polynomials in the dimension of B, G, and
S and

tl! --1 rrt21(3.4) ra=max {]I[Ut]-Ut2IIF, max + II[u(q] (q) IIF}
lNqNl

(3.5) rs Ilatll[ U[1]] -1112,

where (q) (U(q),[l] U2qj)is the first q rows of U, U(q)’r[1] is a q X q nonsingular matrix,
and U(q) is a q x n q) matrix, q 1, 2, l.
A backward error analysis of the reduction stage of Algorithm 5 can be obtained from
this theorem by substituting I for G r.

Let (i, ?i), 1, 2, k, P, and g+ be the computed values of (Ri, ri), P,
and g+ from Algorithm 3 or 5. Then we have the computational equations

i, i Gi + Gi) T(Bi + B) (,3) Si + Si, si + si),

=F+F+ i=fl F+ i
i=1

Sk+ Sk+ "Jl" aSk+ -]- Fi=fl Sk+ + , Fi
i=1

where aGi, aBi, (aSi, aSi) are errors that can be bounded by Lemma 3.1 andfl( denotes
the floating-point computation ofthe contents. The errors aFand ask / are just the errors
in the floating-point sums. Thus from standard bounds on errors in sums we have

IIrFIIFgF# max { IIFIIF, max IIRilIF} ’-0(#2),
1.<i_k

aSk +1 [12 =< qSs # max { sk+ 112, max r 112 + O(t, 2),
1NiNk

where tF and Os are modestly sized polynomials in the dimensions of A. From the
definition of Ri and r we have

Ri G rBil’3)Si" ri GT (1,3)
iBi si =1,2,’-’,k,
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thus

(3.6)

(3.7)

Using the fact that

IIRilIF< iia (1,3)n 11211Si F,

lira Ilz IIGBI 1’3) 11211si112.

is a 1, 2, 3) pseudoinverse of Ui and (2.24), we have that

(3.8) [IGf[gS]i ll2 [Gl]][ cl]] -1112.
This gives us the following bound for Algorithm 5. Note that if the Moore-Penrose
pseudoinverse B{ is substituted for [B]i, the inequality (3.8) may be false since the
Moore-Penrose pseudoinverse does not satisfy (2.24). The following theorem summarizes
our results.

THEOREM 3.1. Let Algorithm 3 or 5 be implemented using Householder transfor-
mations in floating-point arithmetic with machine unit t. Let the backward substitution
phase be done using Algorithm 4. Then the computed solution Y satisfies

where

(A + 6A)Y= s+ iSs,

IIA IIF OA’ [IA IIF + O(z=),

IIsl12 s’A IIslI2 + o(=),
’A=max{ max [[Gll[uI]]-II[2, max [[GiBI’3)[[2)

_i<=k <=i_k

and CbA and 4s are modestly sized polynomials in the dimension ofA.
We now give a corollary that gives stronger stability results for Algorithm 5. It is a

straightforward consequence of Theorem 3.1 and equation (3.8).
COROLLARY 3.1. Let Algorithm 5 be implemented using Householder transfor-

mations in floating-point arithmetic with machine unit #. Then 6A and 6s in Theorem
3.1 satisfy

where

IldiA [IF (A’r(IIAIIF + O(z-),

"re max IIG]’[U’] -’
.<i<k

and CkA and Cks are modestly sized polynomials in the dimension ofA.
The bound zG arise out of the Bj6rck-Golub procedure. The factors [IG[B]i[]2,
1, 2, k arise out of the condition of each of the problems of the form (2.27).

We note that the bound in Corollary 3.1 is smaller than that in Theorem 3.1. The Moore-
Penrose inverse does not satisfy the inequality (3.8) and we know of no error bound as
good as that in Corollary 3.1 for Algorithm 3.

Thus the error bounds obtained by this analysis are better for Algorithm 5 than for
Algorithm 3. In the next section, we give numerical tests that seem to indicate that
Algorithm 5 will give more reliable answers.
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4. Tests and conclusions.
4.1. Stability tests. We implemented Algorithms 3 and 5 in FORTRAN single

precision on the SUN3 with the back substitution procedure in Algorithm 4. The two
algorithms differ only in their computation of B1,3), 1, 2, k.

The matrix A is generated randomly. Rank one singularities are introduced
into each diagonal block by replacing the last row of each such block by the sum of its
other rows. Then the fight-hand side is formed by making the known solution vector
(1, 1,..., )r. We then calculated the relative error in the solution. The results are
shown in Table 1. Here the experiments clearly suggest that Algorithm 5 has better
numerical stability properties than Algorithm 3. Thus we see that the use ofthe weighted
pseudoinverse rather than the Moore-Penrose pseudoinverse gives us a better method
of resolving the singularity in the diagonal blocks.

4.2. Hypercube implementation. To simplify the implementation on a Hypercube,
it is assumed that each diagonal block B; and F are of equal size, i.e., m; p, 1, 2,, k, and that p k + 1, i.e., the size ofeach diagonal block is also equal to the number
ofdiagonal blocks. It then follows that p2 n. The number ofprocessors in the hypercube
is denoted by P (numbered from to P). It is further assumed that the number of
diagonal blocks k + is at least as large as the number of processors (P).

The blocks Bi, 1, 2, , k are equally distributed among the first P- processors,
along with the corresponding Si and Gi matrices. And the matrix F is processed by the
node P. A brief description of the algorithm emphasizing the flow of data between the
processors follows.

4.2.1. Host program.
generate matrix A and the vector s
compute the number of the blocks that each node numbered from to P- gets
for/:= toP-

send appropriate blocks of B, S, G, and s to node
send F to node P
wait for the solution parts to arrive from all the nodes

4.2.2. Node program.
if it is not the last node (P) then

receive the matrix blocks B, G, S, and s
diagonalize each Bi and solve the LSE problem as described in Algorithm 3
send the matrices i and S21 along with s21, R;, and r; to node P (cf. Algo-
rithm 5
wait for xk /1 and w vectors to arrive from node P
complete the solution process to get xi
send xi’s to the host

else
receive F from the host
receive the matrices G and S2], s2], Ri, and ri sent by all other nodes
solve the system (2.17
broadcast Xk + and appropriate blocks of wi to all the other P nodes
send Xk+ to host

The above Algorithm was implemented in FORTRAN on an Intel hypercube
(iPSC/1 at the ACRF facility at Argonne National Laboratory, and Table 2 shows the
timings results from these experiments. The matrix in each case was a p2 p2 matrix.
For a fixed value ofp, the problem was run on cubes ofdifferent dimensions to determine
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TABLE
Error in Algorithms 3 and 5 for random matrices.

Estimated
n k + condition no. Error: Alg. 3 Error: Alg. 5

2 2 2.0E02 0 0
4 2 1.0E01 9.0E-6 6.0E-7
10 2 4.0E01 3.0E-6 2.0E-6
10 3 1.0E02 4.0E-6 2.0E-6
20 4 3.0E02 9.0E-6 3.0E-6
40 5 8.0E02 2.0E-4 4.0E-5
60 6 9.0E02 8.0E-5 7.0E-6
80 8 2.0E03 1.0E-4 2.0E-5
100 10 2.0E04 2.0E-3 5.0E-5

the speedup. The time shown is elapsed time in secondsfrom the moment the host starts
sending the data to the nodes till thefinal solution is returned to the host.

It appears from the results that by increasing the number of processors by a factor
of j, one would get a speedup by a factor of j/2. The main reason is that the back
substitution process has a bottleneck--the other nodes must remain idle while node P
determines xk+l and w.

4.2.3. Complexity of the parallel algorithm. It is assumed that the time required
to transmit a message of N words from one node to another is (c + N)d, where c is
the start-up time for the message and/3 is the time required to send one word after the
initial message is set up and d is the distance between the nodes.

The only communication required in the parallel algorithm described above is the
transmission of i, S2], s[2], Ri, and ri to node P and vectors x, w from node P
to nodes to P 1. Since the size of Ri is much larger than other matrices and since
the maximum distance between any two nodes on the hypercube is log P, it is easily
seen that the upper bound on the communication complexity of the algorithm is
O([Pa +/3(p2 + Pn)] log P).

The computational complexity is easier to bound because all the computational
work except the solution of (2.17) is done in parallel, and hence it is divided equally
among P processors. However, the matrix in system (2.17) is of the order p +
27--1 (mi li) and hence only (p + Z 7--1 (mi li)) are not done in parallel.

TABLE 2
Timings results on Intel hypercube.

Size of each block No. of processors
(p) (P) Time in seconds

8 8 1.22
8 4 1.46
8 2 2.64
16 16 5.36
16 8 7.86
16 4 11.46
32 32 34.12
32 16 48.62
32 8 71.94
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AN ALTERNATING PROJECTION ALGORITHM FOR COMPUTING THE
NEAREST EUCLIDEAN DISTANCE MATRIX*
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Abstract. Recent extensions of von Neumann’s alternating projection algorithm permit an effective nu-
merical approach to certain least squares problems subject to side conditions. This paper treats the problem of
minimizing the distance from a given symmetric matrix to the class ofEuclidean distance matrices; in dimension
n 3 we obtain the solution in closed form.

Key words, alternating projections, distance matrices, matrix cones, normal cones
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1. Introduction. The purpose of this paper is to propose an efficient computational
algorithm for solving the following problem:
(I) Given a real symmetric matrix F Rn n, find the Euclidean distance matrix/3

R that minimizes

Here, matrix norm means the Frobenius norm and D di } e x is a Euclidean
distance matrix if

(i) dO. i,
(1.1) (ii) d, O,

(iii) there exist points P, P in r (F H such that

d, Pi P (1N i,j N n ).

Our goal is to place Problem (I) in the setting of minimizing a quadratic functional
over the intersection of a finite collection of convex sets (in the ambient space construct
the respective projection maps onto the convex sets) and apply the alternating projection
method of Dykstra [7 ], which guarantees convergence to the solution of (I).

This problem is a special case, indeed the easiest, ofthe more general ones offinding
the minimum in (I) over the class ofEuclidean distance matrices for which the embedding
points P, ..., P lie in a Euclidean space of dimension r, the case r 3 being ofprime
concern. The major diculty in studying such lower rank problems is that one loses
convexity of the constraint set, so there looms the computationally dicult issue of
distinguishing local and absolute minima.

Such problems arise in the conformation ofmolecular structures from nuclear mag-
netic resonance data. One wishes to determine a molecular model in N whose generated
Euclidean distance matrix minimizes the distance to the given data matrix 13]. Other
applications arise under the general title of multidimensional scaling. A discussion of
four types of multidimensional scaling, with references to specific applications from the
social and behavioral sciences, geography, and genetics, may be found in de Leeuw and
Heiser [5]. A broader review of scaling, with applications and algorithms, is given in
Young [20]. The book by Meulman [15] gives additional related applications in mul-
tivariate analysis.
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Although this paper makes no direct contribution to solving the lower rank version
ofProblem (I), we do develop basic geometry, optimality conditions, and possible initial
starting points that should aid the further development of algorithms.

2. Notation and background. We consider real n n matrices A, B and define their
inner product by

n

A,B) , aobo;
i,j=l

AII (A, A)1/2 is the Frobenius norm and the distance between matrices A and B is
IIA BII. In addition to the notion of a Euclidean distance matrix defined in 1.1 ), we
shall refer to D R"" as a predistance matrix if(i) and (ii) of 1.1 are satisfied.

Schoenberg gave the first modern characterization of Euclidean distance matrices
17 ]. He showed that the predistance matrix D e R(" + 1) )< (. + 1) is a Euclidean distance
matrix if and only if the n n symmetric matrix A defined by

(2.1) aa=1/2[do+do-do] (l <=i,j<=n)

is positive semidefinite (A >_- 0). Furthermore, r rk(A) is the minimum imbedding
dimension, that is, the lowest dimensional Euclidean space in which there exist points
that satisfy (iii) of 1.1 ). And, finally, if one considers the spectral decomposition

A UAU"
and defines C by C UA 1/2, then A CCT and the columns of CT furnish coordinate
choices for Po O, P1, P2, Pn. Independently, and three years later, Young and
Householder [21] published the same results.

Evidently, whether a predistance matrix is a Euclidean distance matrix is unaffected
by shifting the origin to the centroid ofan embedding configuration. This is accomplished
by bordering D with d00 0 and

(2.2) Clko dok= dkj n2 ? dij (l<k<n)
/’/j "=1

Gower [9], [10], (see also [14]) in his work on multidimensional scaling, gave a simple
matrix formulation ofthis process: start with a predistance matrix D, border it according
to (2.2), and apply the Schoenberg transformation (2.1). The resulting matrix A in (2.1)
is given by

where

(2.3) P=I--eer,
n

2A=P(-D)P

is the orthogonal projection onto the subspace

(2.4) M={xn:xTe=O}.
Thus the predistance matrix D is a Euclidean distance matrix if and only if

(2.5) P(-D)P>-_O.

Obviously (2.5) is equivalent to requiting that -D be positive semidefinite on M.
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For our purposes it will be convenient to replace the projection P in (2.5) by the
Householder matrix

2
(2.6) Q=I-v--vvvr, v=[1,1, ,1,1 +Vn] r.

Given any matrix F Fr 6 Rnn there is a unique matrix
such that

(2.7) QFQ=
fr

In [12], two of the present authors show that

(2.8) F>_-0 on M if and only if />_-0.

In particular, a predistance matrix D e N is a Euclidean distance matrix if and
only if

(2.9) Q(-D)Q=
dr 6

and that the minimal embedding dimension is r rk(). The precise relation between
(2.5) and (2.9) appears once it is observed that

0 0
(2

and hence that

[- 0]P(-D)P= Q
0 0

Q"

The advantage of formulation in (2.9) over that given in (2.5) is that it provides
the basis for the construction of a projection map essential to the implementation of
Dykstra’s algorithm.

3. Matrix cones,, Recalling that M { x Nn: eTx 0 }, we define

(3.1) K={A’A6Nxn,A=A r, and xrAx>=O forall xeM}
and

(3.2) K2 ={A’AeN’x’,A=A r, and aii=O,i =1,2,...,n}.
In the inner product space of real symmetric n n matrices, K1 is a closed convex cone
and K2 is a subspace. Clearly D K1 f’l K2 if and only if-D is a Euclidean distance
matrix. Moreover, the matrices in K1 are characterized by (2.7) and (2.8). Thus, the
approximation problem (I) is a special case of the following problem:
(II) Given F FT Nnn,

min F-All.
A K! f’lK2

The minimizing matrix A for (II) is uniquely characterized by the condition

(3.3) (Z-J,F-J) <-_O (ZeKl l")g2)
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which says, in effect, that F- A must belong to the normal cone to Kl f) K2 at A (see
8 or 16 ]). In general, ifK is any convex set in N and a e K, the normal cone to K at
a is the closed convex cone

(3.4) OK(a)={yeRn:(z-a,y)<-_O forall zeK}.
Let A e K2. Since K2 is a subspace it is clear that

3.5 OK2(A) OK2 (0) B" B diag bl, b, bn }.
To find the normal cone OK1 (A) at A e K1, we first use (2.7) to write A in the form

a](3.6) A=Q

along with the spectral decomposition

(3.7) A=UAUr=U
0 0

Ur

where A > 0.
THEOREM 3.1. If A K1,

(3.8) OKI(A)= :B Q M Q,
0 0

Proof. Let Z Kl and B OKI (A) be written in the form

2 z
Q;2>_0 B=Q

br {3
Q"(3.9) Z=Q zr

Then (Z A, B) _-< 0 by (3.4) and, since Q is orthogonal,

(QZQ, QBQ)<=(A,B).
Using the representations in (3.9), we arrive at the inequality

(3.10) ( 2, ) + 2zrb + wB <- (A,B).
For fixed 2, i >_- 0, the matrix Z in (3.9) remains in K as z varies over Rn- and
o varies over N l; hence, in view of (3.10), b 0 and/3 0. Following Fletcher [8, p.
496 ], let/} V ft Vr be the spectral decomposition of/ with V orthogonal and let ft
diag [w, o2, con_ ] be the diagonal matrix of eigenvalues. From (3.10),

n--1

(A,B)>- (2, JO)=(vT2v, f)=(C,f) cjjooj
j=l

where C Vr2V may be any positive semidefinite matrix, that is, c11, cn-l,n-l
may be any sequence of nonnegative numbers. Thus wj =< 0 -< j _-< n and/ =< 0.
Therefore, every B OKl (A) has the form

(3.11) B=Q
0 0

Q’ <=0.

From 3.11 and (3.9), (Z, B) _-< 0 for all Z s K1 and, since (Z A, B) =< 0,

<A,B> <= sup <Z,B> <=O<-<A,B>;
Z
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whence

(A,B) =0.

Using (3.6) and 3.11 ), this implies that

and, aided by the spectral decomposition of zi from (3.7), that

j=l

where F UryU <= O. Inasmuch as hj > 0 and fj.j =< 0 for =< j =< r, we conclude that
J 0 for _-< j _-< r. Being negative semidefinite, F has the form

r n-r-1

n-r-l,

Thus

h=u
0

and B has the structure of (3.8). Conversely, it is easy to see that every such B does, in
fact, belong to OKl (A ). U]

THEOREM 3.2. IfA K fq K2,

(3.12) O(K f’)KE)(A)=OKI(A)+OKE(A),

that is, if Kl f’) K2 is written in the form (3.6), and F F n, then solves
problem (II) ifand only if

-[(3.13) F-A =Q

or

(3.14)

U

F=Q U Ur a Q+B
aT ot

where, A > 0, M =< 0, and B diag b, bn].
Proof. According to 16, p. 223 ], (3.12) holds for any two convex sets whose relative

interiors have a point in common, a hypothesis clearly satisfied in the present setting"
any i K f3 K2 in the form (3.6) that has zi > 0 belongs to the relative interior of both
K and K2.

In the context ofproblem (II), equations (3.13) and (3.14) simply state that a given
AK fqK2 solves (II) if and only if F-A satisfies (3.13), that is, F-A6
O(K f3 K2)(A). V1

Whatever the application, the computational success of Dykstra’s algorithm depends
crucially upon the computational complexity of the relevant projections. In our setting
we need the projections P onto K and P2 onto K2. Since K2 is the subspace consisting
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of all real symmetric n n matrices with zero diagonal,

(3.15) Pz F) F- diag F)

that is, P2 maps F to the matrix obtained by replacing each diagonal element by zero.
Given F FT e Nnxn, P(F) is the unique solution to the problem

min F-A 1].
AK

To compute P1 (F), we use the representation

UAUT f QF=Q
iT

from (2.6) and decompose the diagonal matrix A into its positive and negative parts:
A A + A-, A + >= 0, A- >= 0. According to [12, Thm. 2.1],

(3.16) P,(F)=Q
fT

Q"

4. The method of alternating projections. The minimization problem treated here
is one of a broad class of problems, conveniently posed in a real Hilbert space H, which
ask for the pointf in the intersection of a finite number of convex sets C1, C2, Cm
that minimizes the distance from a given point f; thus

(4.1) [[f-f[[= min []f-g[[.
g rq n= Ci

The fundamental idea of the algorithm presented here traces its origin to yon Neumann
[19] who, in 1933, showed that if S and $2 are closed subspaces of H and P, P2 are,
respectively, the orthogonal projections onto S and 32, then the sequence of alternating
projections

(4.2) P,f, P2Pf,P P2P,f, P2P1P2Pf,

converges to Pslns2 f, the orthogonal projection onto the intersection of S and $2.
Deutsch [6] showed that the rate ofconvergence on (4.2) depends on the "angle" between
the two subspaces, decreasing with the angle.

Cheney and Goldstein 3 analyzed (4.2) in the case that the subspaces are replaced
by closed convex sets C and C2, and P1 and P2 represent, respectively, the projections
(proximity maps) onto C and C2. They showed that if one ofthe sets is compact or one
is finite dimensional and the distance between them is attained, then

lim (PzP,)U= f,
k---

a point in the fixed-point set ofP2P which, it turns out, is the set of points in C_ nearest
C. In generalf need not be the near point to f in C rq C2. For example, consider the
convex sets C1 {(x, x2)" x + x _-< 1} and C {(x, x2)" x 0, x2 =< 2} in 2
and let f (3, 4). As Han points out in [11], algorithm (4.2) stops at PzPf (0, )
whilef (0, ). As one would expect, von Neumann’s alternating method cannot be
applied successfully to problem (II) for general n. However, as we shall see in 6, it does
converge to the near point solution of problem (II) in dimension n 3.

Dykstra’s algorithm [7] (which, of course, solves (II) in all dimensions) is based
on an ingeniously simple modification of (4.2). Given a pointf, closed convex sets C,
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C2, Cm, and the corresponding projection maps PI, P2, Pm, the algorithm sets

yO) y(O) y(mO) O, X(mO)=f

and in each iteration computes 2m vectors

as follows: set Xto x- for 1, 2, m, k 1, 2,

(4.3) xlk Pi( z)

yk) z-- ei( z).

Then, for 1, 2, m, x) f as k ,f being the solution of (4.1).
This notation is adopted from Han 11 who discovered the algorithm independently.

Algorithm (4.3) differs from (4.2) in that at each step the preceding outward-pointing
normal y-. ) is added to x before applying the projection P. This operation has
the effect of forcing the z iterates toward the normal cone of f= Ci at the solution f.

As Dykstra and Boyle point out in ], the term y) may be suppressed at any step
that precedes projection onto a subspace. In our setting, in which we have a closed convex
set K, a subspace K2, and projections P and P2 given by (3.15 and (3.16), algorithm
(4.3) takes the following form:

Let Fo= F

(4.4) For k=0, 1,2,

Fk + Fk + P2P (Fk) P (Fk) ].

Here F plays the role of z in (4.3). We shall refer to (4.4) as the modified alternating
projection algorithm (MAP). Using the Boyle-Dykstra convergence result [1, Thm. 2],
we have the following theorem.

THEOREM 4.1. Given F F ,x, and the sequence {F} generated by (4.4),
both { PF } and { P2PF } converge in the Frobenius norm to the unique solution A of

min F-All,
AK1 OK2

5. Numerical results and comparisons. Other algorithms that address problem (II)
and its lower rank versions consist of fixed-point iteration based essentially on the relation
in (3.13).

Since Qe , see (2.3) and (2.6)) it follows in 3.13 that

(F-)e Be= b, b2, b,] r

so that the diagonal matrix B has for its elements the difference of the row sums of F
and A. For any matrix A x n, let

D(A) diag aj, a,j],

the diagonal matrix whose entries are the row sums of A, in row order. Then we may
write (3.13) in the form
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or

(5.2)

where

(5.3)

F- D(F) + D(fil) Q [U

aT ot

is as in (3.6) and (3.7). An application of the projection map P from (3.16) yields

P(F-D(F)+D())=.
Hence the solution A of (II) is a fixed point of the map G defined by

(5.4) G(A P (F- D(F) + D(A )).

THEOREM 5.1. For each F Fr e ’, the map G has a uniquefixed point .
K rq K2 that is the solution of II ).

Proof. As we have just shown, for each F FT 6 nn the solution of (II) is a
fixed point of the map G.

Conversely, suppose A 6 K f’l K2 is a fixed point of the map G. Because P applied
to F- D(F) + D(A) must yield A and since A has the form (5.3), it follows that F-
D(F)+ D(A)isvenby(5.2);henceF-Ahastheform(5.1)sothatAsolves(II). E:]

A similar argument shows that the map G defined by

(5.5) G(A) el (tzzl ---( G)(F-D(F)+ D(A)))(0-< a <

has a unique fixed point A K f-I K2, and A is the solution of (II).
One ofthe key algorithms in multidimensional scaling can be based on (5.5). How-

ever, researchers such as de Leeuw, Takane, and Browne [5], [18 ], [2] approach the
solution of (II) by computing the gradient of F- A 11, and finding that

(F-A D(F) + D(A ))PAP 0

is a necessary condition for minimality. A description of the algorithm in our setting
requires a new operation called Fix.

IfF FT n" has the form

P f]QF=Qfr

then, keeping P fixed, there are unique replacements f for f and ( for " that yield a
matrix with zero diagonal. We denote this matrix by Fix (F). Thus

(5.6) Fix(F)=Q
fr = Q

wheref and " can be calculated from

= + diag Q
0
Q e=0’ c=-l/n’

where (diag (A))e is the column vector whose entries are the diagonal elements ofA in
row order. We observe that if F e K, then Fix (F) e K1 /2.
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Elegant Algorithm (E)
Given F Fr I"x", choose a, 0 < a < and let F1 Fix PI(F). For k 1, 2,

Fk+ l=Fix PI((1-a)Fk)+ a(F-D(F)+D(Fk)).

At each stage Fk K1 n K2 SO if Fk -- A as k -- oo, then, clearly, A K1 n K2 and

(5.9) A=Fix PI((1-a)A)+a(F-D(F)+D(A)).

Furthermore, A must also be a fixed point of 5.5 and, accordingly, the solution of (II).
To see this note that the row sums of a)A + a(F D(F) + D(A)) and A are
identical. Thus, because Oen -el n, the nth row and column of

S=Q((1-a)A)+a(F-D(F)+D(A))Q and QAQ

are identical. But since Fix acts only on the last row and column of QSQ, we conclude
that P1S A. Thus Fix is irrelevant and (5.9) implies that G,(A A.

For a 2 /(n z n > ), this algorithm is due to de Leeuw 4 and its convergence
is discussed in Takane 18 ]. Because convergence is slow for small a, Browne 2 proposed
using a 1/2 as long as Fk + Fll < Fk Ell and then reducing a by a factor of 1/2 at
failure and continuing with this criterion as required. He termed this modification ELE-
GANT STAR (ES) and reported a vastly improved convergence rate. To further improve
the rate of convergence, Browne added a penalty function to the iteration in (5.9) and
introduced an intermediate Newton-Raphson step (NR). Our numerical computations
support his claim that NR converges more rapidly than ES.

Table compares the ES, NR, and MAP algorithms, using 11Fk +1 Fk < 10 -5 as
a stopping criterion. All three algorithms converge to essentially the same values with
maximum distance between final elements of NR and MAP on the order of 10 -5 and
on the order of 10 -3 for ES and MAP. On two test matrices ES stopped prematurely,
requiting a restart to eventually reach an acceptable solution.

The numerical tests were performed on each of four randomly generated predistance
matrices of order 4, 8, 16, 32, 64, 100 with values uniformly distributed between 10 -5

and 10. The average number of iterations, the average CPU time, and the standard
deviation (in parentheses) are reported. All data was obtained on an IBM 3090-300E at
the University of Kentucky’s Center for Computational Science. All computations were
done in double precision with a machine epsilon of approximately 10 -15.

TABLE

ES NR MAP

n NI CPU NI CPU NI CPU

4 18 .12 21 .17 26 .16
8 31 .25 17 .29 19 .22
16 71 1.94 16 1.62 30 .78
32 175 32.0(.05) 14 17.64(2.3) 36 5.01(.08)
64 367 2189.4(5.23) 14 232.23(17.4) 56 53.46(2.9)
100 708 3095.0(540) 13 948.11 (529.8) 68 241.56(16.0)

NI: Average number ofiterations.
CPU: Average CPU time in seconds.

): Standard deviation in CPU time.
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Although the number of iterations ofNR actually decreased with size, it consumes
more CPU time than MAP roughly in the ratio 4:1. Moreover, an attempt to fit a power
function (y axb) to CPU time versus n for MAP relative to a larger data set yielded a
best fit ofCPU .00025 In358. This is perhaps better than expected since the eigenvalue
decomposition on each upper block constitutes about 16 (n )3 work.

6. The case n 3. Despite its failure in higher dimensions, von Neumann’s alter-
nating projection algorithm provides an explicit solution of Problem (I) in the case of a
3 3 predistance matrix. Specifically, we suppose that

(6.1) D= c 0 3’

put F -D, and write

(6.2)

where l >-- 0 > k2 and

F--Q U ,, Q

a b c]Q=bac,
C C C

with

(6.3) c=-l/f,b=-l/(3+ V),a l+b.

Notice, Problem (I) is trivial ifboth ofthe eigenvalues, X1 and k2, in (6.2) are nonnegative
since, then, D itself would be a Euclidean distance matrix.

THEOREM 6.1. Let D and F be given by (6.1) and (6.2) with 3,1 >= 0 > k2 and let
l + )2/3. Then the solution A to Problem (I), namely,

min ]IF-All
A KI f’)K2

is A 0 if , <= 0; otherwise

(6.4) A=Q U o Q

wheref Ifl, f2 IT and are computed by the Fix operation (5.6) and (5.7).
We shall only outline our rather tedious proof. First, let ,I l) 1, ,1) ,2 and

consider the case , ,l + ,2/3 >- 0. With von Neumann’s algorithm in the form

F F, Fz PzP1F Fk + PzP1Fk,
a lengthy but straightforward calculation shows the principal 2 2 submatrix 0+l of
QF+ Q has the spectral decomposition

(6.5) U
0 X(+ 1) U
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where

=a2 /2 (k=1,2,...).

Because X >= 0, each X})>- 0 and

)k} k) "- X + X2/3, X)0 as k .
Using the result of Cheney and Goldstein [3], it follows that the sequence F, k

1, 2, converges to a matrix A of the form

(6.6) Q U
0 Q,

where the border is computed by the Fix operation. That A is actually the unique near
point to F in K1 K2 follows from the inequality

(Z-d,F-d)ZO
that holds for all Z e K K.

In the case remaining, Xl + 2/3 < 0, the iteration proceeds as before except
that X}) in (6.4) eventually goes negative at some index k’ 2, after which the eigenvalues
of the principal submatfix of QF+ Q follow the pattern

+ +
and, accordingly, tend to 0. Consequently, we conclude in this case that the near point
isA =0.

To illustrate, we find that the Euclidean distance matrix that best approximates the
predistance matrix

[0,1]D 0 9
9 0

in the Frobenius norm is given by the Euclidean distance matrix

0 S S]s=So .

Note added in prooL The following reference was recently brought to our attention
by N. Gaffke and R. Mather [A cyclic projection algorithm via duality, Metrika, 36
(1989), pp. 29-54 ]. A new proof of the Dykstra-Boyle-Han result is given and several
applications, including the Euclidean fit ofdistance matrices in data analysis, are presented.
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Abstract. Let T, (ti_ j) ,j-- (n -> 3 be a real symmetric Toeplitz matrix such that T,_ and T have
no eigenvalues in common. The evolution of the spectrum of T as the parameter t_ varies over
-o, oo is considered. It is shown that the eigenvalues of T associated with symmetric (reciprocal) eigenvectors

are strictly increasing functions of t, while those associated with the skew-symmetric (anti-reciprocal) eigenvectors
are strictly decreasing. Results are obtained on the asymptotic behavior of the eigenvalues and eigenvectors at

+oo, and on the possible orderings ofeigenvalues associated with symmetric and skew-symmetric eigenvectors.
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Following Andrew [1 ], we will say that an m-vector

is symmetric if

or skew-symmetric if

X-[Xl,X2,

Xj Xm-j + 1, <-j <- m,

Xj --Xm-j+ 1, <-j<=m.

(Some authors call such vectors reciprocal and anti-reciprocal.) Cantoni and Butler [2]
have shown that if

Tm ti-j),j=

is a real symmetric Toeplitz matrix of order m, then Rm has an orthonormal basis con-
sisting of m m/ 2 symmetric and m/2 skew-symmetric eigenvectors of Tm, where
[x] is the integer part of x. A related result of Delsarte and Genin [4, Thm. 8] is that if
X is an eigenvalue of Tm with multiplicity greater than one, then the X-eigenspace of Tm
has an orthonormal basis which splits as evenly as possible between symmetric and skew-
symmetric X-eigenvectors of Tm. For convenience here, we will say that an eigenvalue X
of Tm is even (odd) if Tm has a symmetric (skew-symmetric) X-eigenvector. The collection
S/( Tm)(S-(Tm)) of even (odd) eigenvalues will be called the even (odd) spectrum of
Tm. From the result of Delsarte and Genin, a multiple eigenvalue is in both the even
and odd spectra of Tm.

This paper is motivated by considerations that arose in connection with the inverse
eigenvalue problem for real symmetric Toeplitz matrices. Although we do not claim that
our results provide much insight into this problem, they may nevertheless be of some
interest in their own fight.

The inverse eigenvalue problem for real symmetric Toeplitz matrices is usually
stated as follows: Find a real symmetric Toeplitz matrix Tm with given spectrum

S Tm) kl k2 km }
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For our purposes it is convenient to impose an additional condition, namely, that Tm
have even and odd spectra S/(Tm) and S-(Tm), containing, respectively, rn [m/2]
and m/2 given elements (counting repeated eigenvalues according to their multiplicities
of S. We will say that S/(Tm) and S-(Tin) are interlaced if whenever hk and ht are in
S/(Tm)(S-(Tm)) and k < l, there is an element h in S-(Tm)(S/(Tm)) such that
hk h hl. Delsarte and Genin [4] showed that if m =< 4 then the inverse eigenvalue
problem always has a solution (regardless of the numerical values of hi, h2, h3, and h4)
if S/(Tm) and S-(Tm) are interlaced; however, if they are not, then the existence or
nonexistence of a solution depends on the specific numerical values of the h;’s. They
also argued that this negative consequence of noninterlacement of S/(Tm) and S-(Tm)
holds for all m > 4; that is, if the two desired spectra are not interlaced, then the inverse
eigenvalue problem fails to have a solution for some choices of desired eigenvalues.

Delsarte and Genin [4] formulated the (still open) conjecture that the inverse ei-
genvalue problem always has a solution (for arbitrary m) provided that the desired even
and odd spectra are interlaced. (This was apparently misinterpreted by Laurie [6 ], who
cited a real symmetric Toeplitz matrix for which S/(Tm) and S-(Tm) are not interlaced
as "a counterexample.., to the conjecture of Delsarte and Genin that the eigenvectors
of a symmetric Toeplitz matrix, corresponding to eigenvalues arranged in decreasing
order, alternate between reciprocal and anti-reciprocal vectors.")

In numerical experiments reported in 7 we computed the eigenvalues ofhundreds
of randomly generated real symmetric Toeplitz matrices with orders up to 1,000. (Since
then we have considered matrices of order 2,000.) The even and odd spectra of these
matrices are certainly not necessarily interlaced, but they seem to be "almost interlaced,"
in that we seldom saw more than two or three successive even (or odd) eigenvalues. In
unsuccessfully trying to formulate a definition of a measure of interlacement that would
be useful in connection with the inverse eigenvalue problem, we were led to study the
problem considered here; namely: If

to tn_2"]
!

T,_x= tl: t.0 t,..-3[,[
tn’-2 tn’-3 t’0 .!

is a given real symmetric Toeplitz matrix of order n 1, then how does the spectrum
of the nth order matrix

to tl tn-2

Itx to tni_ tn72

!
tn_2.., tx to .J

evolve as varies over (-, )?
We impose the following assumption throughout.
Assumption A. n >= 3 and Tn-2 and Tn- have no eigenvalues in common.
Assumption A and the Cauchy interlace theorem imply that Tn-2 and Tn-1 have

no repeated eigenvalues. Let

O/1 < 0/2 ( <O/n_

be the eigenvalues of Tn_ 1, and let

(t) <-,2(t) -<...
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be the eigenvalues of Tn(t). The Cauchy interlace theorem implies that

i(t)<=oi<=i+l(t), 1-<i<=n-1, -<t<c.

It is also convenient to introduce distinct names for the even and odd eigenvalues of
Tn 2 and Tn(t). Define

r=n-[n/2] and s=[n/2];

thus r s if n is even and r s + if n is odd. Denote the even and odd eigenvalues of
Tn-2 by

/1 </2 <

and

respectively, and let

(2)

and

(3)

"y1 <’y2< <’Ys- ,

#(t) <=#2(l) <= <=#r(t)

v(t)<=v2(t)<-- <=vs(t)

be the even and odd eigenvalues, respectively, of T(t).
Now define

pj.(,) det (Tj.- M), <=j<-n- 1,

and

p,( X, t) det (T,(t) M,).

As observed by Delsarte and Genin [4], a result of Cantoni and Butler [2] implies that
p,(,, t) can be factored in the form

p,(,t) =p+ (,t)p(,t),
where pn+ and p are of degrees r and s, respectively, in X,

(4) p+n(ti(t),t)=O, <=i<=r, -o <t<o,

and

(5) p(u(t),t)=O, <=j<=s, -o <t<o.

Moreover, an argument of Delsarte and Genin [4, pp. 203, 208] implies that the even
(odd) eigenvalues of Tn- 2 separate the even (odd) eigenvalues of T,(t), i.e.,

(6) t.ti(t)<=i<=izi+ (t), <=i<=r- 1,

and

(7) vi(t)<=yi<=vi+ l(t), <=i<=s 1.

It now follows that (2) and (3) can be replaced by the stronger inequalities

(t)</(t)<... < #r(t)

and

u(t)<uz(t)<""" < s(t).
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To see this, suppose, for example, that #i() ui+ () for some and . Then (6) implies
that/3i, an eigenvalue of Tn- 2, is a repeated eigenvalue of Tn(). Cauchy’s theorem then
implies that/3i is also an eigenvalue of T,_ , which violates Assumption A.

Since p+ ,, t) and pa ,, t) have distinct roots for all t, 4 )- 7 define # (t),
Ur(t) and v (t), "", vs(t) as continuously differentiable functions on (-m, m ). However,
(4) and 5 do not provide convenient representations for the derivatives of these func-
tions. The next two lemmas will enable us to find such representations.

LEMMA 1. Suppose that Assumption A holds, and let Ol <= <= n be an ei-
genvalue of T,_ . Then there is exactly one value T oft such that ai is an eigenvalue oj:
T(ri). Moreover, Ol is in fact an eigenvalue ofT(ri) with multiplicity two, and r,
rn_ are the only values oftfor which T(t) has repeated eigenvalues.

Proof. By an argument of Iohvidov [5, p. 98 ], based on Sylvester’s identity, it can
be shown that

t t2 t tn-2 12
(8) pn(,,t)Pn_2(,)=pZn_(X)- to . t.1 t.z ;.. tn73 tn72

t+’_ t+’_+ t+’_+ to- X t’x
for all and t. Expanding the determinant on the fight in cofactors of its first row shows
that (8) can be rewritten as

(9) p,(h,t)Pn__(X)=p2_ l(k)__ [(__ )n+ lpn_2(h) + kn_ 2(X)]2,
where k,-2(,) is independent of t. Therefore, p,(ai, zi) 0 if and only if

(-1)nkn_2(oti)
7-i--

Pn- 2( Oti)

Obviously, ai is a repeated zero of the polynomial obtained by setting zi on the fight
of (9), and therefore ai is an eigenvalue of Tn(zi) with multiplicity rn > 1. To see that
rn 2, suppose to the contrary that rn > 2. Then either u(zi) ut+ (z) ai or
ut(zi) u+ l(ri) ai for some l. But then (6) and (7) imply that ai fit or ai 3’z for
some l, which contradicts Assumption A; hence, rn 2. To conclude the proof, we
simply observe that a repeated eigenvalue of T,(t) must be an eigenvalue of T,_ .

This lemma is related to Theorem 3 ofCybenko 3 ], who also considered questions
connected with the eigenstructure of Tn(t) regarded as an extension of Tn- 1.

Now define

q,(,, t)

The next lemma can be proved by partitioning Tn(t) M, in the form

T,(t)-M,=[ to-X
U,_(t)

where Un-(t) is defined below in 11 ). (For details, see the proof ofTheorem of[7].)
LEMMA 2. Ifk is not an eigenvalue of T,_ 1,/et

X,_(X,t)=

Xl,n-l(X,t)
X2,n-!(X,t)

Xn-l,n-l(X,t)
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be the solution ofthe system
T._ -M_ 1)Xn-l(h, t) U.-l(t),(10)

where

(11) Un_l(t)

Then

t,1

tn i 2

q.(X, t) to- X- Urn_ l(t)Xn-1 (X, t);

moreover, ifq.(A, t) O, then the vector

Y.(X,t)=
X._ l(X,t)

is a -eigenvector of T.(t); hence

Xn--l,.-l(X, t) (-1)o+ l,(12)

where

0
q=

ifX is an even eigenvalue ofT,

ifX is an odd eigenvalue ofT, ).

We will call q the parity of the eigenvalue .
Now suppose that X(t) is one ofthe functions #l(t), #r(t) or ,1 (t), ,s(t).

Lemmas and 2 imply that

to- X(t)- Urn_ ,(t)Xn- ,(X(t), t) 0,

where J is any interval which does not contain any of the exceptional points r,
rn- defined in Lemma 1. Differentiating this yields

(13)
(1 + Urn l(t)Xn- l(X(t),t))X’(t)+ OgTn-l(t)Ot

Xn-l(X(t),t)

0
+ UTn l(t)T.Xn-,(X(t), t) 0.

ol

However, if X is any number which is not an eigenvalue of Tn_ l, then

(14) UnT- l(t)= XnT- (,,/)( Tn-l- Xln-1)

see 10 )), and differentiating 10 yields

(15)

and

(16)

Tn-1- Xln-1)O-Xn l(X,t)=Xn (h, t)

0
Tn-1-- Xln-1)-Xn (X, t) = U._ l(t)

Ot Ot
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(see 11 )). Setting X X(t) in 14)-(16) and substituting the results into (13) yields

(1 + [ISn_(X(t),t)l[2)X’(t)+2x_,n_a(X(t),t)--O
(Euclidean norm); therefore, from (12),

(--1)q2
(17) ’(t)

/ IlXn_,(X(t),t)[] "
Because of (12) we can write

(18) Xn-,()(t) t)=[Png(x(t)’t)
1)q+l

where q is the parity of k (t) and ), k (t), t) is symmetric if q 0 or skew-symmetric
if q 1; then (17) becomes

(--1)q2
(19) X’(t)

2 / ilY;n_2(X(t),t)ll 2

which is valid for 4 zi, -< <- n 1. This formula does not yet apply at these exceptional
points, simply because the vectors n-2(X(’ri) l’i) n-2(Oi, "ri), < =< n are as
yet undefined. This is easily remedied; by Lemma 2,

(20) (Tn(t)-X(t)I) _2(X(t),t) =0
(--1)q +1

for all 4: zi, =< =< n 1. This and imply that

l tn- 2

(21) (T,__X(t)i,_z)p,_(X(t),t) t.2 +(_l)q tn73
tn- 2

for all 4: i, _-< _-< n 1. However, this system has a unique solution when ’i,

since the matrix T-2 X(-i)I-2 T-2 aiI-2 is nonsingular by Assumption A.
Defining this solution to be ’ 2 (7"i), 7i) extends ), 2 (t), t) so as to make it
continuous on (-, ). Since ’(t) is also continuous for all t, (19) must hold for
all t.

For future reference, note from (12) and the continuity of x,_ ,_ (X(t), t) that
the parity q;(t) of i(t) is constant on any interval J which does not contain any of the
exceptional points -, -_ .

THZORZM 1. The even eigenvalues u(t),’", Ur(t) are strictly increasing on
(-, and the inequalities (6) can be replaced by the strict inequalities

(22)

moreover,

#i(t)<ii<#i+(t), - <t<, <=i<-r 1;

and

(24) lim #i(t)
f/i- 1, 2<=i<=r,

t-- I, --, 1.

limc #i(l)-- {I i, <= --< r- 1,
(23

cx3, i-- r,



SYMMETRIC TOEPLITZ SPECTRAL EVOLUTION 607

Proof. Setting q 0 in 17 shows that # (t), ,/-r(t) are strictly increasing for
all t; therefore, (6) implies (22). For convenience, define/r OO and suppose that

(25) lim ui(t) ’i <

for some in 1, r}. Since fli- < ’i </3i, the system

t

(Tn_2_iln_2)i= 1.2 ..t_ (_ q

In’-- 2

tn 2

tn

t

has a unique solution, and, from (21) with X (t) =/2i(t),

lim ’n- 2(/-ti(t), t) ’i.
t---

Consequently, (19) implies that

2
lim u(t) > 0,

and therefore limtoo i(t) oo, which contradicts (25). This implies (23). A similar
argument implies (24).

The proof of the next theorem is similar to this.
THEOREM 2. The odd eigenvalues u(t),..., Us(t) are strictly decreasing on

(-oo, oo and the inequalities (7) can be replaced by the strict inequalities"

vi(t)<Ti<vi+(t), -m<t<m, l=<i-<s-1;

moreover,

(26) lim vi(t) I "Yi-l’ 2<--i<=s’
t--,- ( -oo, 1,

and

lim v;(t)= {"Yi, <=iNs- 1,
(27)

t’-- ( 00, i= s.

The remaining theorems deal with the asymptotic behavior of the vectors
2n 2 (X(t), t) (see 18 )) and with the orders of convergence in (23), (24), (26),
and (27).

THEOREM 3. Let

ai),
A a 2

a(n’)2
be the fl-eigenvector of Tn_ which is normalized so that

ai) (i)t,, 2 + t,,_a2 + + hai-2 1.

Then

)-2(#i(t),t)
(28) lim =Ai, < i<-_r 1,

t--



608 WILLIAM F. TRENCH

and

2(1 +o(1))
(29) #i(t)=3i i[AiilEt

t-o, l<-_i<-_r -1.

Also,

),-2(ti(t),t)
(30) lim Ai- l, 2 <-_ <= r,

and

2(1+o(1))
(31) u,.(t)=,_-IIA,._][2 t-*-oz, 2<-_i<=r.

Proof. It is easy to verify that the vector

is the last column of T,, iln -1. Setting X #i(t) in (10) shows that

x,_ (.i(t), r_l-.(tlI_ l-u_ l(t/

for tl sutficiently large. Therefore, (ll), (23), and (24) imply (28) and (30). From
19 with X (t) i(t) and 28

2( + o( ))
(32) u;(t) [[Aill2t2

t--,-c, <-i<=r 1.

Similarly, (19) and (30) imply that

(33) #(t)
2(1+o(1))

t--, 2 <-i<=r.

Since (32) and (33) imply (29) and (31), the proof is complete.
A similar argument yields the following theorem.
THEOREM 4. Let

Bi

b (ni)- 2

be the 3,i-eigenvector of Tn-2 which is normalized so that

b]i) bt2i) (ni) -1tn-2 + tn-3 + + tib 2

Then

)n-2(vi(t),t)
lim Bi- , 2 <- <= s,

and

2( + o( ))
v(t)=’yi-+ iiB,_ll_t t--c, 2<=i<=s.
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Also,

f2n-2(vi(t),t)
lim Bi, <= <= s- 1,

t--

and

2( + o( ))
gi(t)--’yi-I-

Hni[[2
t---oo, <=i<=s 1.

Theorems 3 and 4 provide no information on the asymptotic behavior of the ei-
genvalues which tend to infinite limits as -- + oe. The next theorem fills this gap.

THEOREM 5. Let

t tn 2

(34) rq’-" t.z +(-1 )q tn-3

ln’- 2 tl

Then

+o (t)
2t

(36) #l(t)=t+to+
[IFl[2 ()2t

+o (t-- c)

(37) lim t)n_Z(#r(t),t) lim t)._2(#l(t),t)=-ro,
t-- g--

2--- + o (t--- c),

39 ,(t) -t + to 2t - o (t-- -oe ),

and

(40) lim tJ,_2((t),t) lim tP,_2(s(t),t) r.
t--- l-

Proof. We will prove 35 and 38 and verify the first limits in 37 and (40); the
proof of (36) and (39) and the verification of the second limits in (37) and (40) are
similar. Let X(t) zr(t) and q 0 or X(t) (t) and q 1. We know from Theorems
and 2 that

(41) lim

From 21 and (34),

(I ,(t)l- IlT,-z[l)ll2,-2(x(t),t)ll <= [Irll;
therefore, (41 implies that

lim ll2,- 2(x(t), t)II 0.



610 WILLIAM F. TRENCH

From this and (19),

lim ,’(t)=(-1 )q,

and therefore

,(t)
lim (- )q,

by l’Hrpital’s rule. Now (21 implies that

(42) lim t_2(X(t),t)=(-1)q+ 1rq,

with F as in (34). This verifies the first limits in (37) and (40). Since the first component
of the vector on the left of (20) is identically zero,

(43) X(t)-to+[tl,t2, ,tn-2]fn-2(,(t),t)+(-1)+ it=0.

From 35 and (42),

[tit2, tn-2]Jn- 2(X(t) t)=(-1)q+l[tl’t2’’"’tn-2]Fq’"t +0()
=(-1)q+l [’I’q’]_____2_ (1)2t 7"

Substituting this into (43) and solving for )(t) yields

:k(t) to+( 1)q[t+ ’[Fql.2, +o(1)]
which proves (35) and (38).

We conclude with a comment on the possible orderings ofeven and odd eigenvalues
of T.(t). Let the eigenvalues of T._ 2 be

Define

O) 092 (O)n_2

{091, ,(.On-2}--{/11, ,itr-I }U{’l, ,"Is- }.

Qo [q(w),q(oo2), ,q(60n-2)],

where q(ooi) is the parity ofwi. Suppose that the elements -, zn- ofthe exceptional
set discussed in Lemma are distinct and ordered so that

(44) Ti < Ti2< <Tin .
Let

(00 Til)

Til_ Ti,),

(Tel o0),

l l,

2<=l<-n-1,

l-’Ft.
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The eigenvalues of Tn(t) satisfy the strict inequalities

X(t)<X2(t)<.." < ,(t)

for all in each interval Jl, Jn-1. Recalling that the parities of hi(t), h,(t)
are constant on each Jr, we can define the n-vectors

Qt qtl qt2, qtn], l<=l<-n,

where qo is the parity of hj.(t) on Jr. Since hi(t) =< O/i hi+l(t) for all and ai is an
eigenvalue with multiplicity two of T,(7"i), we must have hi(7"i) hi+ (7"i) ci. Therefore,
a is in both the even and odd spectrum of T,(7"i). From the monotonicity properties of
the even and odd eigenvalues of T,(t), it follows that h;(t) changes from even to odd
and hi+ l(t) changes from odd to even as increases through 7"i. This and (23), (24),
(26), and (27) imply the following theorem.

THEOREM 6. IfT"1, 7"n- satisfy (44), then

and, for < <= n 1,

(45)

and

(46)

QI [O, Qo, 1], Q,, [1, Qo,O],

qi,! + qi, if 4 it and 4 it + 1,

qit, 0, qit + 1,t 1, qit, + 1, and qit + 1,l + O.

From (45) and (46), Qt +1 is obtained by interchanging the zero and one which
must be in columns it and it/l, respectively, of Qz.

The assumption that 7"1, , 7",- are distinct was imposed for simplicity. Theorem
6 can easily be modified to cover the exceptional case where 7"1, 7"n-I } contains
fewer than n distinct elements.
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POSITIVE SEMIDEFINITE PATTERN DECOMPOSITIONS*

DANIEL HERSHKOWITZ"

Abstract. It is shown that every positive semidefinite matrix in a block tridiagonal form with square
diagonal blocks can be written as a sum of positive semidefinite matrices with complementary off-diagonal
block patterns. A similar result holds for completely positive matrices and, under a certain condition, for doubly
nonnegative matrices.

Key words, positive semidefinite matrix, pattern, doubly nonnegative matrix, completely positive matrix

AMS(MOS) subject classifications. 15, 05

1. Introduction. In this paper we discuss complex square matrices .4 that have the
block pattern

(1.1) XXO)X X X
0 X X

where the diagonal blocks are square, and where X denotes a possibly nonzero block.
The notation and definitions for this paper are presented in 2.
In 3 we show that ifA is positive semidefinite, then .4 can be written as a sum of

two positive semidefinite matrices E and F that have the patterns

X X O )......X. ...X. ...0....
0 0 0

O O O)......0. ..X.. ..x......
0 X X

respectively. IfA is real, then E and F can be chosen to be real. These results, as well as
the results of the following sections, can be extended to block tridiagonal forms. However,
we show that these results cannot be generalized to general block patterns.

The case that A is a doubly nonnegative (nonnegative positive semidefinite) matrix
is discussed in 4. In general, in this case we cannot choose the matrices E and F to be
doubly nonnegative, too. However, if the second block in the diagonal of the form 1.1
is a block, then E and F must be doubly nonnegative.

Section 5 is devoted to a subclass of the doubly nonnegative matrices (that is, com-
pletely positive matrices). It is shown that ifA is completely positive then E and F can
be chosen to be completely positive. This result is applied in proving a result on completely
positive graphs, originally proven in [3].

2. Notation and definitions.
Notation 2.1. For a positive integer n we denote by (n) the set 1, ..., n }.
Notation 2.2. For a set c we denote by ]al the cardinality of a.
DEFINITION 2.3. Let x be an n-dimensional vector. The set { (n):xi 4:0 is

called the support of x.
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Notation 2.4. Let A be an n n matrix, and let c and/3 be subsets of (n). We
denote

A a I/3] the submatrix of A whose rows are indexed by c and whose

columns are indexed by/3 in their natural order;

A [a 1/3) A[a](n)\3] (granted that

A[]= A[I].

DEFINITION 2.5. A positive semidefinite matrix is said to be doubly nonnegative if
it is nonnegative entrywise.

DEFINITION 2.6. A doubly nonnegative matrix A is said to be completely positive
if there exists a (not necessarily square) nonnegative matrix B such that A BB r.

DEFINITION 2.7. Let A be a square matrix in a 3 3 block form (Aij)3 with square
diagonal blocks, and such that A3 0, A3 0. Let A E + F, where E and F are
block matrices (partitioned conformably with A ), such that the blocks ofE and F satisfy

(2.8) E3,E23,E33,E31,E32=O; FI,F2,F13,F2,F3 =0.

Then A E + F is said to be a pattern decomposition ofA. If E and F are real, then
A E + F is said to be a real pattern decomposition ofA.

Remark 2.9. Obviously, the matrices E and F in Definition (2.7) satisfy

EI=A, El2 =A12, E2 =A21,

F23 A:z3, F32 A39_, F33 A33,

E22 -- F22 A22.

DEFINITION 2.10. Let A be a positive semidefinite matrix in a 3 3 block form
(Ao)3 with square diagonal blocks, and such that A3 0.

(i) A pattern decomposition A E + F of A is said to be a positive semidefinite
pattern decomposition ofA ifE and F are both positive semidefinite.

(ii) A positive semidefinite pattern decomposition A E + F of A is said to be
doubly nonnegative pattern decomposition ofA ifE and F are both doubly nonnegative.

(iii) A doubly nonnegative pattern decomposition A E + F ofA is said to be a
completely positive pattern decomposition ofA ifE and F are both completely positive.

Notation 2.11. For a (directed) graph G we denote by E(G) and V(G) the arc set
of G and the vertex set of G, respectively.

DEFINITION 2.12. A graph G is said to be a subgraph of a graph G2 if E(G
_

E(G2) and V(G) V(G2).
DEFINITION 2.13. A graph G is said to be the union G t.) G2 of graphs GI and G2

ifE(G) E(GI) tO E(G2) and V(G) V(GI) tO V(G2).
DEFINITION 2.14. Two graphs are said to be essentially the same if they have the

same arc set. For example, the graphs

1.--.2 .3 and 1.---.2

are essentially the same.
DEFINITION 2.15. Let A be an n n matrix. The graph G(A) ofA is defined to be

the graph with vertex set (n), and such that there is an arc from to j if ao 4: O.
DEFINITION 2.16. A graph G is said to be completely positive if every doubly non-

negative matrix A with G(A) G is completely positive.
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We remark that the completely positive graphs are characterized in [3].
Convention 2.17. By "positive semidefinite matrix" we mean "complex positive

semidefinite Hermitian matrix."

3. Positive semidefinite pattern decompositions. In this section we prove that every
positive semidefinite matrix that has the block form (1.1) has a positive semidefinite
pattern decomposition. This result can be extended to block tridiagonal forms. However,
we show that it cannot be generalized to general block patterns.

THEOREM 3.1. Let A be a positive semidefinite matrix in a 3 x 3 block form
(Agj)3 with square diagonal blocks, and such that A13 O. Then A has a positive semi-

definite pattern decomposition. Furthermore, if A is real then A has a real positive

semidefinite pattern decomposition.
Proof. First we consider the complex case. Let a,/3, 3" be the subsets of (n) such

that All A[a], A22 A[3], and A33 A[7]. Since A is positive semidefinite, it follows
that there exists a complex n X n matrix B such that A BB*. Let B1 B[a](n)],
B2 B[/3[ (n) ], B3 B[ 3" (n) ]. We have B1B a3 0. Let Vbe the row space of
B3, and let Vl be the orthogonal complement of V in C n. Clearly, every row of B2
can be written as a sum of a vector in V and a vector in V’. Accordingly, we write
B2 C1 + C2 where the rows of C are elements of V and the rows of C are elements
of V +/-. We have CCf 0 and CzB 0. Also, the equality B3B 0 yields that
CB* 0. Consequently, we have

(3.2) BB* =CzB BzB2 --C1C Ar-CzC2 BzB3 =CB3
Now, let A1 be the n X n matrix defined by Al[a[(n)l B,, A[3[(n)] C2,

A[3"[(n)l=0, and let A2 be the nn matrix defined by A2[a[(n)]=0,
Az[3[(n)] C,, Az[3"[(n)] B3. In view 0f(3.2) we now have

B1B2 0 BB* BC2 0
A BB*= B2B B2B BB C2B C,C + C2C

0 B3B2 B3B3 0 B3C B3B

BIC2 0 0 0 0
C2B * C2C 0 + 0 C1C* CiB =A1A*
0 0 0 0 B3C B3B3

+A2A2

E0=0, {i,j){k); F0.=0, {i,j){k,...,n}.

Furthermore, ifA is real then the matrices E and F can be chosen to be real.
Proof. Let o0, wp be the subsets of (n) such that Aii A[wg], (p). Let

a tOi wi, 3 oak, and 3’ tO?=k+ w;. Partition A in a 3 3 block form (A0)3,

The positive semidefinite matrices E AA*l and F A2A 2" satisfy conditions
(2.8), and hence A E + F is a positive semidefinite pattern decomposition ofA.

If A is real then, as is well known, there exists a real n n matrix B such that
A BB y. The proof continues as in the complex case, where we take n instead
ofC.

We obtain the following result concerning tridiagonal pattern decompositions, as a
corollary.

COROLLARY 3.3. Let A be a positive semidefinite matrix in a p p block tridiagonal
form with square diagonal blocks, and let k (p . Then A can be written as a sum
ofpositive semidefinite block tridiagonal matrices E andF (partitioned conformably with
A ), where the blocks ofE and F satisfy
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where 111 A[c], A22 A[], and A33 A[3’]. Observe that A13 0. In view of Re-
mark 2.9, our claim follows immediately from Theorem 3.1. Vq

Theorem 3.1 and Corollary 3.3 raise the following natural question concerning
general positive semidefinite pattern decompositions: Let A be a positive semidefinite
matrix in an r r block form with square diagonal blocks. Can we write the matrix A
as a sum of positive semidefinite block matrices E and F (partitioned conformably with
A), where E and F are not block diagonal, and where the blocks of E and F satisfy

(3.4) Eij =/= O =e Fij O Fa :/: O Eij O je ( r) Cj

In general, the answer to this question is negative, as demonstrated by the following
example.

Example 3.5. Let A be the matrix

1 1,0,1 O\
i...i....i..i...i...i....6..ii...6...\

oo a/

The matrix A is permutationally similar to a matrix discussed in Example 3.12 in [1].
As is shown in ], A is positive semidefinite. We now refer to A as a 5 5 block matrix,
and we assume that A can be written as a sum of positive semidefinite block matrices E
and F (partitioned conformably with A), where E and F are not block diagonal, and
where the blocks ofE and F satisfy (3.4). Then necessarily E and F are nonnegative and
hence doubly nonnegative. Furthermore, since E and F are not block diagonal, it follows
from the pattern of A that each of E and F is (permutationally similar to) either a
tridiagonal matrix or a direct sum of doubly nonnegative matrices of order less than or
equal to 4. By [1] and [2], the matrices E and F are completely positive, and therefore
A is completely positive. On the other hand, the matrix A is shown in [1] to be not
completely positive. This contradiction yields that the assumption that A can be written
as a sum of E and F with the above properties is false.

A related question is whether the graphs of the matrices E and F in the pattern
decomposition in Theorem (3.1) are subgraphs of the graph of A. In other words, do
we have

(3.6) ea#0 and/or f#O= aij=/=O, for all i,je(n).

We conclude the section with an example showing that the answer to this question too
is, in general, negative.

Example 3.7. Let A be the same matrix as in Example 3.5, and let us write A in a
3 3 block form, where the diagonal blocks are of size 2, 2, and 1. Let A E + F be
any positive semidefinite pattern decomposition ofA. It is easy to verify that, since F is
positive semidefinite, we have f33, f44 >= 0.5, and hence e33 --< 1.5, e44 -< 2.5. Also, since
E is positive semidefinite, it follows that e33, e44 >- 1. Assume now that e34 e43 0.
A calculation shows that, under these conditions, the determinant of E[ { 1, 2, 3, 4 }]
is less than or equal to -0.75, which contradicts the fact that E is positive semidefinite.
Hence, our assumption that e34 e43 0 is false, and we have e34 =/= 0 although a34
0. Therefore, (3.5) does not hold.

4. Doubly nonnegative pattern decompositions. Unlike the case of positive semi-
definite pattern decompositions, not every doubly nonnegative matrix, which has the
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form 1.1 ), has a doubly nonnegative pattern decomposition. To see this we remark the
following.

Remark 4.1. In case of a doubly nonnegative pattern decomposition, since both
matrices E and F are nonnegative, the implication (3.6) always holds.

Now we take the matrix A used in Example 3.7. Observe thatA is doubly nonnegative.
It is shown in Example 3.7 that for every positive semidefinite pattern decomposition
A E + F ofA, the implication (3.6) does not hold. In view of Remark 4.1, A does not
have a doubly nonnegative pattern decomposition. However, we do have the following
theorem.

THEOREM 4.2. Let A be a doubly nonnegative matrix in a 3 3 block form
(Aij)3 with square diagonal blocks, and such that A2 is a block andA3 O. Then
every positive semidefinite pattern decomposition ofA is a doubly nonnegative pattern
decomposition.

Proof. Let A E + F be a positive semidefinite pattern decomposition of A, and
let A22 (akk). Observe that for every pair (i,j)4 (k,k) we have either e0= a0,
f 0, orf ao, ei 0. Also, since E and F are positive semidefinite, it follows that
ekk, fk >= O. Therefore, since A is nonnegative, it follows that E and F are nonnegative
and thus doubly nonnegative.

As an immediate corollary ofTheorems 3.1 and 4.2 we obtain the following theorem.
THEOREM 4.3. Let A be a doubly nonnegative matrix in a 3 3 block form

(Aij)31 with square diagonal blocks, and such that A22 is a block andA13 O. Then
A has a doubly nonnegative pattern decomposition.

The proof of the following corollary is identical to the proof of Corollary 3.3, using
Theorem 4.3 instead of Theorem 3.1.

COROLLARY 4.4. Let A be a doubly nonnegative matrix in a p p block tridiagonal
form with square diagonal blocks, and let k (p ) be such thatA is a block.
Then A can be written as a sum ofdoubly nonnegative block tridiagonal matrices E and
F (partitioned conformably with A), where the blocks ofE and F satisfy

Eo=O, {i,j}(k); Fij=O, {i,j}{k, ,n}.

5. Completely positive pattern decompositions. In this section we prove that every
completely positive matrix that has the block form 1.1 has a completely positive pattern
decomposition. This result, together with a result from the previous section, is applied
in proving a characterization of certain completely positive graphs.

THEOREM 5.1. Let A be a completely positive matrix in a 3 3 blockform (Ai)31
with square diagonal blocks, and such that A13 0. Then A has a completely positive
pattern decomposition.

Proof. Let a,/3, 3’ be the subsets of (n) such that All A[a], A22 A[/3], and
A33 A[’y]. Our proof is similar to the proof of Theorem 3.1. Since A is com-
pletely positive, it follows that there exists an integer m and a nonnegative n m matrix
B such that A BB r. Let B1 B[ a [(m) ], B2 B[3 (m) 1, B3 B[3’1(m) ]. Since
A13 BBr 0, and since B and B3 are both nonnegative, it follows that the union w
of the supports of the rows ofB and the union r of the supports of the rows of B3 are
disjoint. We now write B2 as a sum of two nonnegative matrices C and C2, where

Cl[fllr]- B2[/31r], C1 [31r)- 0,

C2[/3]r)-- G[I] =0.
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Observe that C1B r 0, C1C" 0, and C2B 0. Therefore, (3.2) holds and so we can
continue exactly the same way as in the proof of (the real case in) Theorem 3.1. Since
the matrices AI and A2, as defined in that proof, are now nonnegative, it follows that the
matrices E and F are completely positive.

Let A be a completely positive matrix in the block form 1.1 ). We remark that not
every positive semidefinite pattern decomposition ofA is a completely positive pattern
decomposition. Not even every doubly nonnegative pattern decomposition of A is a
completely positive pattern decomposition, as demonstrated by the following example.

Example 5.2. Let A be the matrix

l 1 0 1 0 0\
1 241 0 0,0\

""i" i’"i"’ i’"’i"iS""|.
1 0!0 4 l i0]
0 011 1

""6" 6" "6 6 i 7""I
Observe that A B + C + D, where B, C, and D are the matrices

1 1 0 1 0 0\ /0 0 0 0 0 0\ /0 0 0 0 0 0\
1 21 0 0,0\ [0 00 0 0,0.\ /.0 0,0 0 0,0.\" i- / /’ i il i’ 11 0i0 3 0i0 / |0 0i0 1 li0/’|0 0i0 0 0!0|’
0 010 0 010 ] \ 0 011 1 2i0 .1 \....0.. ..0....j.....0.. ..0. .1.....[....1.....]"" 6 6 6/ \ 6 6 "/ \0 0 0 0 1 1/

respectively. It is easy to verify that B, C, and D are doubly nonnegative. Furthermore,
they are of order essentially less than or equal to 4. By [2 ], the matrices B, C, and D
are completely positive, and so A is completely positive. Now write A E + F, where

1 1 0 1 0 0\ /0 0 0 0 0 0\
1 2,1 0 0,0..\ /.0 0 0 0 0,0./
I i i --I ii i
l1 0i0 3 1 i0J’ 0 0i0 1 0i0]"
\.0 Oi 1 1 2i0., ] \.0 010 0 1 il.].. . . . . .../ -- . . ...)

Observe that E is essentially the doubly nonnegative matrix A discussed in Example 3.5.
It is easy to check that F is doubly nonnegative. Thus, A E + F is a doubly nonnegative
pattern decomposition of A. However, it is not a completely positive pattern decom-
position since E is not completely positive.

The proof of the following corollary is identical to the proof of Corollary 3.3, using
Theorem 5.1 instead of Theorem 3.1.

COROLLARY 5.3. Let A be a completely positive matrix in a p p block tridiagonal
form with square diagonal blocks, and let k (p ). Then A can be written as a sum
ofcompletely positive block tridiagonal matrices E and F (partitioned conformably with
A ), where the blocks ofE and F satisfy

Eij=O, {i,j}C_(k); Fo=O, {i,j}C-{k, ,n}.
Remark 5.4. In a case of completely positive pattern decomposition, since both

matrices E and F are nonnegative, we always have the implication (3.6).
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The implication (ii) (i) in the following theorem is originally proven in [3]. It
now becomes a nice corollary of Theorem 4.3. The implication (i) (ii) is a corollary
of Theorem 5.1.

THEOREM 5.5. Let G be a graph, and let G and G: be subgraphs ofG such that
G G t3 G2 and V(G) f) V(G2)[ 1. Then thefollowing are equivalent:

The graph G is completely positive.
(ii) The graphs G and G2 are completely positive.
Proof. (i) (ii). Let V(G) f) V(G:) { k }. LetA andA2 be doubly nonnegative

matrices with graphs G and G2, respectively. We have to show that A and A2 are com-
pletely positive. Let IV(G)[ n. We define a doubly nonnegative n n matrix B by

(A)ij, i,j_ V(G1), (i,j)g=(k,k)

(B)o x, (i,j)=(k,k)

O, {i,j}C.V(GI)

where x is chosen to be the minimal number such thatB is positive semidefinite. Similarly,
we define a doubly nonnegative n n matrix B2 by

(A:)o, i,jc_ V(G2), (i,j)q=(k,k)

(B2)ij Y, (i,j)=(k,k)

O, {i,j}V(G:)

where y is chosen to be the minimal number such that B2 is positive semidefinite.
Since (A) >- x (B) and (Az)kc >= Y (B2)kk, it is enough to prove that B and
B2 are completely positive. Let A be the doubly nonnegative matrix B + B:. We have
G(A) G. Since G is a completely positive graph, it follows by Theorem 5.1 that
there exist completely positive matrices E and F with graphs essentially G and G: such
that A E + F. We now claim that E and F are exactly B and B:, respectively. Observe
that all we have to prove is that e x andJ y. This follows immediately from the
minimality of x and y.

(ii) (i). Let A be a doubly nonnegative matrix with G(A) G. To prove (i) we
have to show that A is a completely positive matrix. By Theorem 4.3, A can be written
as a sum of doubly nonnegative matrices E and F, where the graphs of E and F are
essentially G and G2, respectively. Since G and G: are completely positive graphs, it
follows that E and F are completely positive matrices, and hence A is completely
positive.

We remark that the implication (i) (ii) in Theorem 5.5 follows immediately
from Theorem 2 in 3 ], also without the condition V(G1) V(G2)I 1. However,
we preferred to provide a direct proofin this case. The implication (ii) (i) in Theorem
5.5 does not hold in general without the condition V(G f) V(G2)] 1, as demonstrated
by the following example.

Example 5.6. Let G be the graph with vertex set {1,2, 3} and arc set
( 1, ), 2, 2), 3, 3 ), 1, 2), 2, 3
and arc set { (1, 1), (3, 3), (4, 4), (5, 5), (3, 4), (4, 5), (5, 1)}. Since each of these
graphs has less then five vertices, it follows by [2] that both are completely positive.
However, the graph G G LI G2, satisfying

V(G) { 1,2, 3,4, 5 }
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and

E(G)= {( 1, 1), (2, 2),(3, 3), (4,4),(5, 5), (1,2),(2, 3),(3,4), (4, 5), (5, 1)),
is known to be not completely positive, e.g., Example 3.12 in [1] (see Example 3.5 ).

Acknovledgment. We are grateful to Natalia Kogan and Abraham Berman for their
helpful comments.

REFERENCES

A. BERMaN AND D. HERSHKOWITZ, Combinatorial results on completely positive matrices, Linear Algebra
Appl., 95 (1987), pp. 111-125.

[2] L. J. GRaY AND D. G. WILSON, Nonnegative factorization ofpositive semidefinite nonnegative matrices,
Linear Algebra Appl., 31 (1980), pp. 119-127.

3 N. KOGaN aND A. BERMaN, Characterization ofcompletely positive graphs, to appear.



SIAM J. MATRIX ANAL. APPL.
Vol. 11, No 4, pp. 620-631, October 1990

(C) 1990 Society for Industrial and Applied Mathematics
012

THE YOUNG-EIDSON ALGORITHM:
APPLICATIONS AND EXTENSIONS*
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Abstract. In this paper it is assumed that the point (or block) Jacobi matrix B associated with the matrix
A is weakly 2-cyclic consistently ordered with complex, in general, eigenvalue spectrum a(B) lying in the interior
of the infinite unit strip. It is then our objective to apply and extend the Young-Eidson algorithm in order to
determine the real optimum relaxation factor in the following two cases: (i) In the case of the successive
overrelaxation (SOR) matrix associated with A when (B) lies in a "bow-tie" region, and (ii) in the case of the
symmetric SOR (SSOR) matrix associated with A. In the latter case a number of numerical examples are given.
It is noted that as a by-product of (ii) both the relaxation factor for the SSOR matrix corresponding to a "bow-
tie" spectrum a(B) and the optimum pairs ofthe relaxation factors for the unsymmetric SOR (USSOR) matrix
associated with A are also obtained.

Key words, successive overrelaxation (SOR), symmetric successive overrelaxation (SSOR), unsymmetric
successive overrelaxation (USSOR), optimum relaxation factor(s)

AMS(MOS) subject classification. 65F10
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1. Introduction and preliminaries. In 1970 an algorithm for the determination of
the real optimum relaxation factor for the successive overrelaxation (SOR) matrix as-
sociated with a weakly 2-cyclic consistently ordered Jacobi matrix B (see, e.g., 12 ], 15 ],
4 ], or 9 whose eigenvalue spectrum a(B) was complex, was developed and proposed
by Young and Eidson [17] (see also [15 ]). To the best of our knowledge, so far, the
powerfulness and the simplicity of the Young-Eidson algorithm has been explored by
few researchers (see, e.g., 2 ], 3 ], ], etc.). So, problems, which could have been solved
by the aforementioned algorithm in a much simpler, clearer and more efficient way, have
been attacked with more complicated methods while others have simply remained un-
solved. Here we mention (i) the problem of the optimum SOR parameter when a(B)
lies in a "bow-tie" region obtained by Chin and Manteuffel [5] (see also [7 ]) and (ii)
the "unsolved" problem ofthe optimum relaxation factor for the symmetric SOR (SSOR)
method.

It is the purpose of this paper to strictly follow the reasoning behind the Young-
Eidson algorithm and "extend" it in order to give the solutions to both aforementioned
problems (i) and (ii). These problems are solved under the assumption made in the
beginning, that is, the Jacobi matrix B is weakly 2-cyclic consistently ordered and that
a(B) S, where

1.1 S:= zC:l Rezl < ).
They are presented in 3 and 4, respectively. As a by-product ofour analysis the optimum
relaxation factor for the SSOR matrix for a "bow-tie" a(B) and the optimum pairs for
the relaxation factors of the unsymmetric SOR (USSOR) method are also obtained in
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5. Meanwhile in 2 we give a synopsis ofthe background material on which the Young-
Eidson algorithm is based, so that the interested reader can follow its extensions in the
later sections with not much difficulty.

2. Presentation of background material. Assume that

(2.1) A’=D-L-U

is a 2-cyclic consistently ordered matrix with nonsingular corresponding diagonal (or
block diagonal) part D and strictly lower and upper triangular parts L and U. Denote
by

(2.2) B’=D-’(L+ U)

and

(2.3) .q,,,’=(D-wL)-l[(1-w)D+wU],

where o (0, 2) is the relaxation factor, the Jacobi and the SOR matrices associated
with A. Let H be the smallest convex polygon symmetric about the axes such that
r(B) c H and let P(aj., j), j )s, be its vertices in the first quadrant, in increasing
order of magnitude of their abscissas. Obviously our basic assumption (B) c S im-
plies H S.

Now let Ep denote an ellipse passing through the point P, in the first quadrant of
S, symmetric about the axes and contained in S. Also let int Ep and int Ep denote the
interior and the closure of the interior of Ep. Then an analysis based on the Young’s
famous relationship 14

(2.4)

which connects the two sets of eigenvalues z a(B) and 2 r(), shows the following
(see [15, pp. 191-200]). If a and b are the "real" and the "imaginary" semiaxes of an

E passing through the vertex P ofH and are such that r(B) (and H) int Ep, then the
parameter w and the spectral radius of &t’, o(&t’), are given by the expressions

w=2/(1 +(1-a2+b2)/2),
(2.5)

o=(a+b)/(1 +(1-a2+b2)/2).
Out of the infinitely many ellipses Ep that satisfy H int Ep, j )s, there exists a
unique "optimum" one/ for which 0 is a minimum. For s > 2 the optimum ellipse is
determined by means of the Young-Eidson algorithm. The latter is, in turn, based on
the optimum results for s and 2. For s 1, let P(a,/3) P(a,/3). Then we can
find out that 0, in (2.5), as a function of a [a, ], strictly decreases in [a, d] from
to and strictly increases in d, from to 1. The optimum value for o, , is the unique
root of

(2.6) ((1 +p2)/(2p))2/30t2/3+(( 1--p2)/(2p))2/3t2/3-- =0

in (0, ), where it is noted that (2.6) is equivalent to a cubic equation (see, e.g., [3]),
while the optimum values for a and b, d and/, are given by

(2.7) d (2t3c2/( + h_))/3, b=(2/(1_2))/3.
Finally, the optimum values and o(&t’) are obtained through 2.5 by using 2.7 ).

In the very special cases/3 0 and c 0 the well-known results

(2.8a) o=2/(1+(1-02(B))/2), o()= g-
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due to Young [14] and

(2.8b) d 2/(1 +(l .-].-p2(B))l/2), p(ooo3)

a special case of Kredell’s result [10 ], are easily recovered.
For s 2 let Ep,p2 be the ellipse symmetric about the axes that passes through both

vertices P and P2. Its semiaxes a,2 and b,2 are given by

(2.9) a ,2 o 2 o t / 2 2 b ,2 o o 2:z / o o 2

The optimum ellipse/ for H (and (B)) is obtained after an analysis based on the
previous arguments takes place (see [15 ]). If/p. is the optimum ellipse corresponding
to P and dj, bj its semiaxes (j 1, 2), then/ can be determined by the following simple
algorithm given in pseudocode:

ALGORITHM 1.
Determine E.pp2 (a,2);
Determine Ep(d);
if d2 =< a,2 then/ =- p2; stop;
else Determine/p (d);

if a,2 _-< d then p; stop;
else Epp; stop;
endif;

endif;
end of Algorithm 1;

The Young-Eidson algorithm is an ingenious systematic extension of Algorithm
to s _>- 3 (see [17] and [15 ]). It is taken into consideration that two distinct ellipses
symmetric about the axes cannot have more than one common point in the first quadrant.
Thus by virtue of the analysis presented so far the optimum ellipse/ is the one out of
the Epj s, j s(- 1, for which H cint/pj, provided such an ellipse exists. In case it
does not exist, it is the ellipse Epjpk out of Eppks, j s( 1)2, k j 1( 1)1 satisfying
H c in-- Epjp, which corresponds to the smallest
readily follow. For an H with any finite number of vertices the Young-Eidson algorithm
is given below. (s(>-2) denotes the number of vertices of H in the first quadrant and
is used to denote the real semiaxis of an ellipse passing through two points in the first
quadrant.)

ALGORITHM 2.
Void as Pold 1;
again: Vnew :=

forj s- 1(-1)1 do
Determine Epsp.( as,.i)
if Pnew > as,j then

k j; Pnew as,k;
endif;

end do;
Determine/, (ds);
if ds < Vow0 or ds > Vnew then

Determine Os,k O corresponding to
if ps,k < polo then

polo ps,;r’= s; q := k;
endif;
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else

if k then
Determine/1 (all);
if 1 Pnew then--= p ; 1; stop;
else

J’ Eprp ) ".-- Pold; stop;
endif;

else
s := k; Pold :’-" Pnew; goto again;

endif;

/--/ps ; := 3s; stop;
endif;

end of Algorithm 2;

3. Optimum relaxation factor for a bow-tie region. In a recent paper Chin and
Manteuffel 5 determined, after a rather complicated analysis, the optimum SOR factor
when a(B) lies in a bow-tie region R c S (see Figs. 1, 2, and 3). A solution to the same
problem was provided by Eiermann, Li, and Varga [7] by applying asymptotically optimal
hybrid semi-iterative methods. Here we present a solution based on a strict reasoning of

(1,0)

[P1
P.

(,

FIG.

(1,0) (1,0)

FIG. 2 FIG. 3
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the Young-Eidson algorithm. As we can find out it is less complicated and easier to
understand.

For the algorithm to be applied we must consider the union of all possible convex
polygons H, defined in the previous section, whose vertices V in the first quadrant are
any arbitrary points of the arc PooPs, with abscissas a strictly decreasing from aoo to a.
The coordinates (a, ) of each vertex V satisfy the equation

(3.1) (x- )2
__
y2 C2 (Fig.

or

3.1 ’) X2 + y C) 2 (72. Figs. 2, 3

First it is noted that the optimum ellipse/ for the aforementioned infinite set of
vertices V cannot be an ellipse passing through two vertices V2 and V since then the
arc V2V 5 in--- E. Consequently,/ must be an optimum ellipse passing through one
vertex only. Apparently this leaves us with three possibilities:/ is either of ;, /;,,
passing through the end point-vertices P or P, or the osculating ellipse that is tan-
gent to the arc PoP, at a point V of it, and is, at the same time, the/,.

In the case of Fig. 1,/p is excluded since it is the line segment [-2c, 2c], c < 1/2,
and H /p. To examine the possibility of the optimum osculating ellipse, if such an
ellipse exists, let d, b be its semiaxes and (&, ) the coordinates of the point of contact
V. Substituting (&, ) for (a,/3) in (2.6)-(2.7) and recalling that/, and (3.1) have a
common tangent at (&, ) defined by

(3.2)
&x y
d---+-= and (&-c)(x-c)+y=c

it is obtained that

(3.3) d2 &2c/(& c), b c.
Hence by using expressions 3.3 and the fact that (&, if) lies on 3.1 ), and then equating
the two roots of the two equations (2.7) in the interval (0, ), namely,

( (_C)3)1/2 ( (_C)3 )1/2(3.4a) 3 - &2c-
and

(3.4b) 32 & 3c3 + & 3 c3 +

we obtain

1/2

(3.5) = c(1+(5-4c2)/2)( 2c )2(1-c2) (5-4cZ)/-

Therefore if a =< &, the optimum ellipse for H is/,. Using (3.5) in (3.3) and also in
one of (3.4) and then the resulting expressions in (2.5), we have that the values of 3,, and o(&t’), in terms of c, are obtained. It is checked that either of (3.4) coincides
with (3.34) in 5 and that (2.6) yields (3.35b) in 5 ], where in the latter the sign in the
constant term should be minus instead ofplus. If, on the other hand, c < a, the optimum
ellipse for H is/p and all the optimum parameters associated with it are obtained from
(2.6), (2.7), and (2.5), with (a,/3) (a, fl).
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In the case of Figs. 2 and 3,/p, is excluded since it is the line segment [-2ic, 2ic]
and H 5/p,. The possibility of an osculating ellipse must be examined only in the case
of Fig. 2 and this is what is done very briefly in the sequel. The analysis almost duplicates
the one made previously, where, instead of (3.1), (3.1 ’) is used. Thus we can obtain

x+ ty
(3.2’) d--2 -= and &x+([-c)(y-c)=c2,

(3.3’) d- =/c, b2 [32c/({3 c),

(3.4a’) l 33 /33
1/2

(3.4b’) 2 (26,-)3 1/2

+ (//2+)3 1/2

and finally

(3.5’) /= c(1+(5+4c)1/2)( 2c )2(1 +c2) =(5-k-4-i 1/2-

Consequently, if/3o =< , the optimum ellipse for H is/,. So the values for 3, &,
and p(&t’) are derived in exactly the same way as before, where, however, the corre-
sponding primed expressions are used. It is again checked that either of (3.4’) coincides
with (3.49) in [5] and that (2.6) yields (3.50b) in [5]. It should be mentioned that the
numerator in the last fraction under the last square root in the denominator should read
4 instead of 1. If/ </3o or if we are in the case of Fig. 3,/po is the optimum ellipse for
H. The associated optimum parameters are obtained from (2.6), (2.7), and (2.5) with
(, ) (, t).

4. Optimum relaxation factor for the SSOR matrix.
4.1. Development of the basic theory. As is stated [15],

(4.1) S.,’=(D-wU)-I((1-w)D+wL)(D-wL)-I((1-w)D+wU)
is the SSOR iteration matrix associated with A in (2.1), where w (0, 2) is the relaxation
factor. For A 2-cyclic consistently ordered the sets of eigenvalues tz 6 a(B) and ), a(S)
are connected through the relationship

(4.2) (X--(1--Oa)2)2=OO2(2--OO)2/.t2X
due to D’Sylva and Miles 6 and Lynn 11 (see also 13 ). However, as was proved in
[8], when we make the substitution 0’ w(2 o) 6 (0, 1], there exist values of w’, at
least in the neighborhood of zero, for which p(S) < if and only if a(B2) lies in the
interior of the parabola P := y2 -4x + 4, the latter requirement being equivalent to
a(B) c S (the infinite unit strip). On the other hand, the aforementioned substitution
transforms (4.2) into

(4.3) (X+w-

where primes have been dropped to simplify the notation. This is nothing but (2.4), and
consequently the problem of the determination of the optimum o0 is exactly the same as
the one solved in 2 with the only exception being that the new oa is now restricted to
values in (0, ]. This, in turn, implies that for the convex polygon H, defined there, with
one vertex P(a,/3) in the first quadrant out of all the ellipses Ep, such that H c int Ep,
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only those with a <- b, equivalent to w (0, ], must be considered. Consequently, having
in mind the analysis in 2 and especially how o varies with the semiaxis a varying in
c, ], we can state the main result in the form of a theorem.

THEOREM (Determination of the optimum SSOR factor). Given the 2-cyclic con-
sistently ordered matrix A of( 2.1 with B of(2.2 being weakly cyclic ofindex 2. Let H
be the smallest convex polygon symmetric about the axes such that a(B c H. Assume
further that H has one vertex P(a, in thefirst quadrant ofS defined in 1.1 ). Thenfor
the determination ofthe optimum SSORfactorfollow the steps:

(a) Determine the optimum ellipse p, as in 2, by means of(2.6) and (2.7).
(b) (i) If d <= b, then find (=<1) through (2.5). The two zeros dl, 2 of

o4 2 oo) go are the optimum values for the original oo in the SSOR
matrix (4.1).

(ii) Ifd > b, then and the circle centered at the origin and passing
through P gives the optimum "ellipse"for the SSOR problem. In this case
(a -"02"-- 1. V]

The above theorem can be directly applied to the cases of (i) a(B) real with 0(B)
< and (ii) r(B) purely imaginary to yield well-known results (see, e.g., 8]). So, we
have the following corollary.

COROLLARY. Under the assumptions ofthe theorem
If r( B is real with o(B) < 1, then d o(B > 0 D implying that

(4.4) g)= 1, o(S) o2(B).

(ii) If r( B is purely imaginary, then d 0 < o(B D giving that

p(B) -( + pZ(B))l/2
(4.5) 1,2 __+ P(Scal) P(Sd2)+(1 + p2(B))l/2’ +(1 + p2(B))l/2"

Observing the way the Young-Eidson algorithm was developed to determine the
optimum ellipse E, based on the analysis of the special cases when the convex polygon
H had one or two vertices in the first quadrant, we can see in a quite analogous way that
an extension of the Young-Eidson algorithm can be developed to cope with the SSOR
case. In the sequel we give first the algorithm in the case where H has two vertices and
then the algorithm in the general case, where H has any finite number of s (>_-2) vertices
in the first quadrant. The basic assumptions and the various notations are the ones used
so far except that the pair (u, () is used to denote the semiaxes of an ellipse passing
through two points in the first quadrant.

4.2. The two-point algorithm.

ALGORITHM 3.
Determine Epp u, ();
Determine Ep2 (d2, b2);
if u > ( then

if d2 > b2 then/- p; stop;
else -= p2; stop;
endif;

else
if d2 --< v then/ -=/p; stop;
else Determine/p (l, b );

if d >= then
if d > b then/-= p ;stop;
else/ p stop;
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endif;
else/ ’1; stop;
endif;

endif;
endif;
end of Algorithm 3;

4.3. The s-point algorithm (s >= 2).

ALGORITHM 4.
Pold Os, Pold 1,
again://new := 1; new := O;

for j:=s- 1(-1)1 do
Determine Epspj(//j, j);
if//new >//j then

k := j;//new
endif;

end do;
Determine/vs(ds, bs);
if Vnew > new then

if ds > bs then
Determine c(
if 3c </9old then

(p; /3": t3c; stop;
else

Epr,q; := polo; stop;
endif;

else

else

if ds >= Vold then
/-/p,; t3 s; stop;

else
=- Eprpq; := Polo; stop;

endif;
endif;

if ds < //old or d > //new then
Determine/gs,k /9 corresponding to E,,k);
if P,k < /9o10 then

/9o10 /gs,k’ r S; q k;
endif;
if k then

Determine/pl (all, bl);
if d /)new then

if d > b then
Determine 3c radius of the circle (,);
if t3c < polo then-= (pl; 3 t3c; stop;
else

J’ " J’PrPq; ) :’-- /9old; stop;
endif;

else
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else

else

/ /Pl := 1; stop;
endif;

else
F Eprpq Pola; stop;

endif;

s k; Pold Pnew; goto again;
endif;---- /ps; / s; stop;

endif;
endif;

end of Algorithm 4;

4.4. Differences between Algorithms 3, 4 and Algorithms 1, 2. For the interested
reader, who is already familiar with Algorithms and 2 (Young-Eidson), the following
two points, in connection with the new Algorithms 3 and 4, must be made: (i) Whenever,
in Algorithm 3 (and/or Algorithm 4), a one-point optimum ellipse is found, which is
also the optimum ellipse for H, such that d _-< b, then this ellipse gives the solution to
the SSOR problem. If, however, d > b then the solution to the SSOR problem is given
by means of the circle, symmetric about the axes, passing through the point in question.
This circle is considered to be the optimum ellipse for H. (ii) Whenever a two-point
ellipse is considered and it so happens that for this ellipse a _-< b, then the ellipse in
question is treated in exactly the same way as in Algorithms and 2. However, if a >
b, this ellipse is ignored and the algorithm proceeds on to the next step.

4.5. Numerical examples. In this section a number of numerical examples, coveting
the two- and the s-point (s > 2) cases are presented. These examples have been selected
from those worked out in Examples 8-12 of 17]. In each one ofthem the set of vertices
Pj.( aj.,/3j), j )s, ofH in the first quadrant, in increasing order ofmagnitude of their
abscissas, as was described in 2 and 4.1, is given. For the determination ofthe optimum
SSOR parameter both Algorithms 3 and 4 were used when s 2 and only Algorithm 4
when s > 2. The optimal values d, b, obtained from the corresponding algorithm were
subsequently used to determine through (2.5) and then 1 (--< =< 2) as the smallest
zero of the equation 0(2 o) . The latter value is considered to be the theoretical
one for of the SSOR method. Next, and for each example, the s s Frobenius matrix
B (see 12, Ex. 4, p. 48 ]) with eigepvalues the s numbers #j a; + ibm, j )s, and

0Bthe weakly 2-cyclic matrix B [90] were constructed. Together with B (’= L + U) the
associated SSOR matrix

S,o’:(I-wU)-((1-w)I+wL)(I-wL)-((1-w)I+wU)
was considered for all w 0.001 (0.001) 1.999. Using a Sequent Symmetry Computer
and a FORTRAN program (single precision) with calls from LINPACK and EISPACK
the values for w g for which p(S) is minimized were found within an accuracy of
three decimal places. As we can see from the self-explanatory Table 1, the theoretical
values for (and g2) obtained by using our algorithms and the experimental ones
obtained by minimizing p(S) are almost identical, a fact that supports the theory de-
veloped in this paper. We simply note that some slight discrepancies between the theo-
retical values for d, b, (S1) (=(S2)) and the ones given in [17] are mainly due to the
accuracy used but might be due to a "bug" that was present in one of the programs in
the original version of 17 16 ).
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TABLE

Theoretical values Experimental values

Set of Semiaxes of the o(S:o,) go1 p(Sa,,)
Example eigenvalues/2j optimum ellipse g0, [=o(S2)] (z) [=o(S,)]

/2 .3 + .55i d .8171625 1.
/22 .75 + .25i b .6296909

2 /21 .7 + .55i d .7847299
/22 .75 + .25i b 1.216860

3 #1 .5 + .55i d .8171625
/22 .75 + .25i b .6296909

.6068593

1.000
.6250000 (1.000) .6250000

.607 .7159067
.7159068 (1.393) (.7159057)

1.000
.6250000 (1.000) .6250000

/21 .25 + .875i d .7395588
/22 .5 + .6i b .9297315 .7376715 .6040523 .737 .6042088
/23 .7 + .3i (1.263) (.6042085)

.1983810 .9373946 .198 .9373845
5 /21 .3 + 3i d .8519320

/22 --.5 -]" 2i b 4.565933
/23 .78654

+1.75432i
/24--" .8 q’-.li

(1.803) (.9360802)

5. Applications. The analysis and the optimum algorithms presented in the previous
section will be applied: (i) to the SSOR matrix corresponding to the "bow-tie" spectrum
B of 2, and (ii) to the unsymmetric (US) SOR matrix associated with a special type
block 2-cyclic consistently ordered matrix A in (2.1).

(i) The observation made in 2, that is the optimum ellipse/ for the SOR matrix
cannot be an ellipse passing through two vertices of the "convex polygon," still holds for
the SSOR matrix. In the case of Fig. we note that has doo p(B) 2c > 0 boo.
This simply implies that and the problem is solved. In the case of Figs. 2 and 3
we have for either v (& < c < ) or p (koo < c < Joo). In view of(2.7) it is implied
that either d < b or d doo < boo b, respectively. Therefore obtained from (2.5) with
(a, b) (d, b) provides us with the two values 1, 2 of the optimum SSOR factor
through the formulas

(b2-d2) 1/2

(5.1) 1,2 1+ +(1-dz+b2) /2"

(ii) Let A in (2.1) be 2-cyclic consistently ordered matrix of the following block
form:

(5.2) A D1 O] -L-U,0 D2

where D, 02 are square nonsingular matrices. If, in (2.1), D diag (D1, O2), then the
USSOR matrix associated with A in (5.2) is defined by

(5.3) Cwl,oa2:=(D-oozU)-l(( -oo2)D+oozL)(D-oolL)-l(( Wl)D + o01U)

and as is proved in [15, pp. 476-478] the eigenvalues of C,, are the same as those of
&t’ with

(5.4) w :-- o) -1
t- 092 091092
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On the other hand, necessary conditions for p(COl,O)2) < are

5.5 0 < 021 "}- 092 091(-02 " 2.

So, if there is no further restriction on Wl, 002, then the algorithm of Young and Eidson
will provide us with an optimum 02 g) (0, 2) and (5.4) will give us optimum pairs
(02, w2) (g), g)2) lying on the hyperbola

5.6 g) q- 2 1)2 ).

If, however, we impose a further restriction on 02, 022, as for example in the case of the
SSOR method where 02 022, this may restrict the interval for 02 from (0, 2) to, say,
I c (0, 2). In such a case new restrictions will be imposed on the semiaxes (a, b) of the
ellipse/p passing through the point P( a,/3), which considered together with the behavior
of p as a function of a will lead to slight modifications of the basic algorithms of the
SSOR case. For example, suppose that 02, and 022 satisfy

(5.7) 02-022 + 1;

then (5.4) and (5.5) are equivalent to

(5.8) 0 < 02"’- --0222-}- 022- <2,

which give 022 e (( 1/) / 2, + V)/ 2). This implies that 02 I’= (0, ] c (0, 2),
and from (2.5) we have

(5.9) aN 16+b2
In view of the restriction (5.9) the only changes we must make in Algorithms 3 and 4
are the following: In Algorithm 3 replace the two statements

"v > " and "d2 > b2"
by

v> -+ and d2> -+b22
respectively, and in Algorithm 4 replace the three statements

/tnew>’new" and "d> ," j=s, 1,

by

Pnew " --- 2ne and 4> +ba2.

respectively. Since the output of either algorithm will be again t3, d, b, the opti-
mum 02, g)e(0, ], will be obtained from (2.5). So, in general, two values for
)2 (( /)/2, -I- V)/2) will be obtained from (5.8) and two values for &l from
(5.7). However, if g) 45-, then 2 1/2 and &l .
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ESTIMATING THE SENSITIVITY OF THE ALGEBRAIC
STRUCTURE OF PENCILS WITH SIMPLE EIGENVALUE
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Abstract. The sensitivity of the algebraic (Kronecker) structure of rectangular matrix pencils
to perturbations in the coefficients is examined. Eigenvalue perturbation bounds in the spirit of
Bauer-Fike are used to develop computational upper and lower bounds on the distance from a given
pencil to one with a qualitatively different Kronecker structure.

Key words, matrix pencil, controllability, sensitivity, distance to uncontrollability, linear dy-
namical systems, Kronecker canonical form

AMS (MOS) subject classifications. 15A22, 15A21, 93B05, 93B40, 65F30

1. Introduction. In this paper, the sensitivity of the algebraic (Kronecker)
structure of rectangular matrix pencils to perturbations in the coefficients is exam-
ined. Eigenvalue perturbation bounds in the spirit of Bauer-Fike are used to develop
computational upper and lower bounds on the distance from a given pencil to one
with a qualitatively different Kronecker structure. A note on notation: All norms I1"
used in this paper are the vector or matrix 2-norm, as appropriate.

The main goal of this paper is to present some results regarding matrix pencils, of
the form A- AB, where A is a free parameter and A, B are n p matrices with n > p.
In the classical theory of matrix pencils [8], [11], it is well known that any pencil is
equivalent to its Kronecker Canonical Form (KCF), which is a pseudodiagonal matrix
with diagonal blocks of the form L, LT, and/or J, where

L-[0,...,0] +A I

is a matrix with one more row than column, and J is a square matrix in Jordan
Canonical Form. We call L a "tall-thin" K-block, LT a "short-fat" K-block, and J
the "regular" part.

In this paper, we deal exclusively with tall-thin pencils. Such pencils always have
at least n-p tall-thin K-blocks. In [3], we showed that the set of all tall-thin pencils
with only tall-thin K-blocks is open and dense in the set of all pencils of the same
shape. Hence, given a tall-thin pencil, the question we attempt to address is if it has
any other types of K-blocks, and if not, what is the distance to the nearest pencil
which does. In [15] and [10], algorithms were proposed that compute the complete
KCF for a given pencil guaranteed to be exact for a pencil close to the original given.
pencil (backward stable). If the KCF computed in this way has only tMl-thin K-blocks
(the "generic case"), then one is still left with determining how far it is from a pencil
with other types of K-blocks. In this paper, we attempt to estimate this distance from
both above and below. A detailed algebraic analysis for square pencils was given by
Waterhouse [17], but beyond that surprisingly little has been found in the literature
on this topic.
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We use the following characterization of the Kronecker structure of a pencil.
DEFINITION 1. A matrix pencil A-B is said to be deficient if there exists some

A for which it is not full rank, where A is a complex number or "infinity." If A- AB
is always full rank for any value of A, then it is said to be nondeficient.

All tall-thin pencils have at least one tall-thin (L) K-block. The condition that
the pencil be deficient is equivalent to the existence of at least one value A and vector
x such that (A- AB)x 0, and it corresponds to the existence of at least a regular
part (J) or a short-fat (LT) block. We call such a vector x a right annihilating vector
of the pencil associated with the annihilating value A. These are also a generalized
eigenvector and value, respectively, if they are associated with the regular part, or if
there is no short-fat part. If there is a short-fat part, then every complex number
(including infinity) is an annihilating value, but only a finite number of these can be
generalized eigenvalues as well. The eigenvalues, if any, will be exactly those values
of A at which the matrix A- AB has a rank less than the overall maximum rank.

The work in this paper was motivated by the many roles matrix pencils play in
control systems theory. We give one example below. Matrix pencils also play roles in
the theory of transmission zeros and in the theory of differential algebraic equations.

Consider a time-invariant linear system

(1) +/- Fx + Gu; y Hx + Du.

A classical result from control theory is the Popov-Belevitch-Hautus (PBH) test (see,
e.g., [11]), which states that the system (1) is controllable if and only if the matrix
pencil

(2) pT() [AI- FIG I-FIG A [-I 0]

has full rank for any complex value of A. From a numerical point of view, one may
say that if pencil (2) has a small singular value for some value of , then a small
perturbation to the coefficients to (1) can yield an uncontrollable system [12].

We mention the main results from the perturbation theory of eigenvalues that we
use in this paper. The most important result is the modified Bauer-Fike theorem,
which gives bounds on the changes of the eigenvalues under perturbations in the
underlying matrix.

PROPOSITION 1 (modified Bauer-Fike theorem [6], [9]). We are given an n x n
matrix A with a complete set of eigenvalues A1,..., An and corresponding left and
right eigenvectors wl, wn, vl, vn. Let V := [v,...,vn] be the matrix of
eigenvectors. Let A be another arbitrary n n matrix, and let be any eigenvalue of
A + A. Then for at least one , 1 <_ g n, the following bound holds:

where

n ) Iw v,I(4) K _= rain IIVll" IIV- l[, with
IIw ll, IIv ll"

On (4) we remark that maxi s- <_ IIV[I. IIV- ll +,,, + n. maxi s-[18, pp. 88-89], so that these quantities are closely related. We use this definition for
Ki instead of just IIVI[. I[V-II as in the original Bauer-Fike theorem because for some
this may yield a somewhat tighter bound. The bounds will be noticeably tighter

only for those for which si is much larger than some other sj, j - i, if there are any.
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We also use the following results regarding the changes to the eigenvectors under
perturbations to a matrix A. We quote three different, but related, bounds in the
following proposition and compare how they fare in the context of our matrix pencil
problem.

PROPOSITION 2 (Stewart [14], Boley (Appendix), Demmel [4], [5]). Let A be some
arbitrary n x n matrix, which we assume for simplicity has distinct eigenvalues. Let
vi, 1,...,n be the eigenvectors of A, all of unit length. Let A + A be another
arbitrary matrix, and let e be some eigenvector of A + A. Let 0 be the angle between, and v, for i= 1,...,n. Finally, define isePA(A [14] as I1(R22- I)-111, where
R22 is the trailing (n- 1) (n- 1) block in the the Schur decomposition of A"

pHAp=R-- [ARI2 10 R22

Then i3[ IIAII is small enough to satisfy the condition given below for all i, then the
tangent of at least one angle Oi can be bounded by the corresponding expression. We
have three closely related bounds:

(a) (Stewart [14]) If for all

(5)
1

II xll < 4. isePA(A (1 + I[AI[. isePA(,))

then for at least one

(6a) isePA(Ai) [IA[[
tan Oi _< / --= 1 2. isePA (’ki)II A I1"

(b) (See Appendix) If for all

(5b)
1

lsePA()i (1 + Ki)

then for at least one

(6b) tan Oi _< /b isepA(A)llmll
1 -isePA()i)llAIl(1 + Ki)"

Note that (5b) means that (6b) applies whenever the denominator is positive.
(c) (Demmel [4], [5]) /f for all

(5c)
4. isePA (/i)" s-

then for at least one

(6c) tan 0i < ,),e 4. isePA(A

1 4. isePA()i II/kll V/s- 1

In each case above, r can be scaled so that for some

I1 - v ll sin 0 <
V/(’/)2 + 1



ALGEBRAIC STRUCTURE OF PENCILS 635

where " is defined by (6x), x=a,b,c, whenever these formulas apply.
Asymptotically as IIAII goes to zero, all three bounds are the same, at least

qualitatively, but we mention all three because each may yield the tighter bound for
different values of IIAII. For example, it is evident that (6a) is tighter than (65)
when they both apply according to (ha) and (5b); but when (6a) does not apply, (6b)
may still apply and hence be the tighter bound. Likewise, since the limit (5c) is the
largest, the bound (6c) applies over the widest range for IIAII; it can, however, be less
tight than (6a) and/or (65) when they all apply. The numerical examples below will
illustrate how one bound is best in some cases and another bound is best in other
cases, but qualitatively they are all similar. As the anonymous reviewers pointed out,
all these bounds can, and should, be further refined.

The rest of this paper is organized as follows. First we examine a method for
computing whether or not a given pencil is deficient. Next we develop an upper
bound for the distance to the nearest deficient pencil, and finally we develop a lower
bound for this distance, using the eigensystem perturbation theory outlined above.
We end with some numerical examples and conclusions. In the Appendix, we briefly
sketch the derivation of the eigenvector bound (6b).

2. Find pencil rank deficiency. In this section we address the problem of
determining whether a given rectangular pencil is deficient or not. Specificaily, given
an n p pencil A- B, with n > p, determine whether or not A- B loses rank for
any A, including possibly A infinite. This is equivalent to asking whether or not the
pencil has any short-fat K-blocks or regular part. If B has full column rank, and the
pencil never loses rank for any finite value of A, then there are no short-fat blocks and
no regular part.

Consider an n p pencil A-AB with n > p. Choose arbitrary n (n-p) matrices
C, D. We can then examine the square n n generalized eigenvalue problem

(7) [A, C]v A[B, D]v.

We partition the vector v as VT [xT,yT], where x is a p-vector, and y is an
(n- p)-vector. It is then a simple matter to derive the following proposition.

PROPOSITION 3. Given an n p pencil A- ,B with n > p, and given arbitrary
full-rank n (n- p) matrices C, D, the following are equivalent:

(a) A- B is a deficient pencil.
(b) Equation (7) has an annihilating vector vo whose last n-p components yo

are zero. Call the corresponding annihilating value o.
Furthermore, we have the following:

(c) If B has full column rank, then all the annihilating vectors Vo and correspond-
ing values o are ezactly the generalized eigenpairs for the regular part of the
pencil.

Proof. Both (a) and (b) are equivalent to the following statement:
(d) There is an n-vector x and scalar Ao which satisfies Ax AoBx, or else

Bx 0. In the latter case, we say Ao . If B has full column rank, then
there can be no short-fat blocks. Hence it follows that there is a regular part,
and that the Ao’s are exactly the eigenvalues of that regular part. Otherwise,
there is no regular part.

Based on this proposition, we have a simple procedure for computing the existence
of a regular part or short-fat block in a pencil. Given a tall-thin n p pencil, choose
the n (n- p) augmentation matrices C, D to obtain the square eigenvalue problem
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(7). If there are any annihilating vectors of (7) whose last n-p entries are zero, then
there is a regular part or short-fat block; otherwise, there is not.

In the special case that B [I, 0]T, choose D [0, I]T to turn (7) into an or-
dinary eigenproblem, and the annihilating vectors above into ordinary eigenvectors.
If the last n-p entries of any of those eigenvectors are zero, then the correspond-
ing eigenvalues are exactly the eigenvalues of the regular part of the original pencil.
Otherwise, there is no regular part.

However, this method gives no hint as to the sensitivity of the result to pertur-
bations in the coefficients. Therefore, in the next sections, we develop some bounds
that indicate whether a given pencil is "numerically close" to a deficient pencil.

3. Upper bounds. In this section, we examine the problem of computing an
upper bound on the distance to a deficient pencil. Specifically, consider a nondeficient
n p pencil A- AB. In this case, we know that B has full rank. We would like to
estimate the size of the perturbation E to the matrix A that is needed to obtain a
deficient pencil A + E- AB. This perturbed pencil will have a regular part, but no
"short-fat" blocks. In this section we develop a simple upper bound for IIEII.

In [7] and [12], it was shown that the smallest perturbation E can be obtained by
solving the minimization problem

(8) min amin(A- sB),
8

where amin(M) denotes the smallest singular value of the matrix M, and s varies over
the entire complex plane. If we denote by a* and s* the minimum in (8) and the
value of s achieving that minimum, respectively, then IIEII-- a*. In [3], we discussed
an expensive descent method that would often converge to the minimum (8). In this
section, we would like to address a much simpler scheme that can be used to obtain
an upper bound, which often not only provides a good estimate for IIEII, but also
provides an estimate for that value of s that yields the minimum in (8).

We start with the n p pencil A- AB. Choose some arbitrary full-rank n (n-p)
matrices C, D. And, in the case B --[I, 0]T, choose D [0, I]T. Let

(9) Ai,vi --- 1,...,k

be the generalized eigenvalues and vectors for (7), where xi denotes the first p com-
ponents of vi. For each i, we have the equation [A,C]vi Ai[B,D]vi. We can
rewrite this as (AiB- A)xi (C- AiD)yi. We define the residual for each by
ri (A- AiB)xi, and the perturbation Ei to be

rx/T (iB A) xix" y x"(10)
iix ll 2 iix ll 2

(C- AiD)[Ixll IIx ll"
Then A + Ei AB is a deficient pencil, losing rank exactly at A Ai, for each i. Let
hi, ui, wi be, respectively, the smallest singular value and the corresponding left and
right singular vectors of A- AiB, for each i. Then E "= -aiuiw" is another smaller
perturbation yielding a deficient pencil.

By taking norms of (10), we obtain a bound for these perturbations" ][EI _<
[IEill <_ I[(C-AD)yil[/llxi[[,. If E denotes that perturbation with smallest norm
yielding a deficient pencil, then E satisfies

[[El[ a* _</2 m.in I[Ell-- minamin(A- AiB)
(11)

</1 min [IEi][-- min
II(C AiD)y/I[

IIx ll
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Regarding the two bounds 1, 2, we remark that 1 can be computed directly from
the solution to the eigenproblem (7), whereas 2 requires computing the singular
value decomposition (SVD) at some extra expense. We can summarize the result in
the following proposition.

PROPOSITION 4. Let A- AB be an n p pencil, with n > p. Let C,D be two
arbitrary full-rank n (n- p) matrices. Then the smallest perturbation E such that
A + E- ,B is a deficient pencil satisfies the bound (11), where , v, 1,..., k are
the eigenpairs o] the generalized eigenproblem (7), and y are defined by (9).

Proof. This follows from the above discussion. All we must note is that from
Proposition 3, if the pencil A- AB is already deficient, then E 0 automatically
satisfies (11). In fact, if B has full column rank, one of the y should be zero by
Proposition 3, so the bound will be hard.

One question is how to choose C, D. One goal is to make the augmented square
eigenproblem as well conditioned as possible So far, the only requirement we have
stated is that C, D have full column rank. To keep the condition number as low as
possible, it is best to choose C, D to each have orthonormal columns. Two possible
choices are (a) orthonormal basis of a random space, and (b) orthonormal basis of
the space orthogonal to the columns of A and B. This last choice has the effect
of limiting the increase to the condition numbers of [A, C] and [B, D] with respect
to inversion, and hence is a heuristic attempt to obtain a reasonably low condition
number with respect to the eigenproblem. In any case, the algorithms are intended
to provide a posteriori estimates for a given pencil, and in that context it is easy to
check that the condition number of the resulting eigenproblem is reasonably small.
Most of the numerical examples below were carried out with choice (b). We note that
in the special case B [I, 0]T, we choose D [0, I]T to turn (7) into an ordinary
eigenproblem.

4. Lower bounds. In this section, we show how to extend the results of the
previous section for the special case of pencils A- AB, such that B [I, 0]T, to obtain
some lower bounds and to obtain a disk in the complex plane in which the value s,
achieving the minimum in (8), must be located. The first lower bound is based just on
the Bauer-Fike theorem whereas the other lower bounds are based on the eigenvector
perturbation theorem (Proposition 2). It will be seen that the first lower bound is not
as tight as the others, but it is much simpler to derive and much cheaper to compute,
since it does not require the "isep" function.

Let s* be the complex value achieving the minimum in (8), and let a* be the
smallest singular value of A- s* B. Augment A- sB as before with extra columns C
and D [0, I]T, obtaining the square matrix [A, C], so that (7) becomes the ordinary
eigenproblem for the matrix [A, C]. Then the smallest singular value - of [A, C]- s*I
satisfies T _< a*, since augmenting with extra columns can only reduce the smallest
singular value [9]. So s* is an exact eigenvalue of [A, C] + TA, for some matrix A
such that IIAII 1. Denote the eigenvalues of [A, C] by A,..., .n. Then, for at least
one such eigenvalue, the modified Bauer-Fike theorem implies that I s* <_ TK,
where K is defined in (4).

Next, let c be the smallest singular value of A- AB. Then

(12)

From this formula, we can draw two conclusions. One is that a _< a* (K + 1), yielding
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the lower bound on a*"

(a) * > >
Ks+l Ks+l’

where/2 is the upper bound/2 defined in (11).
The other conclusion from (12) is

(14)

We can summarize this in the following proposition.
PROPOSITION 5. Given a pencil A- sB, where B [I,O]T, and an arbitrary

(full-rank) augmentation of this pencil to a square matrix [A, C] as in (7), then
(a) The value of s that achieves the minimum in a* =_ minsamin(A- sB) is

located within a disk in the complex plane whose center is on an eigenvalue
As of Q and whose radius is bounded by (14), for some i.

(b) A lower bound on a* is provided by (13).
By using the eigenvector bounds in Proposition 2, we can derive some tighter

lower bounds on a*. We base our development on (ha) and (6a), but by analogy
the exact same development goes through with (55) and (65) or with (5c) and (6c).
Given a pencil A- sB with B [I, 0]T, the eigenvectors (9) of the augmented matrix
[A, C] are defined. If A + E- sB is a deficient pencil, then the matrix [A + E, C]
must have at least one eigenvector of the form r [T, 0IT, where is partitioned as
in (9). That is, the square matrix [A, C] must be perturbed to a matrix which has an
eigenvector whose y part is zero. But then the bounds (ha) and (6a) directly yield
a lower bound on the norm of the perturbation to [A, C] so that an eigenvector of the
resulting matrix has the indicated form. The resulting lower bound is

(1ha)
(i)

a* _> 5a min min (ii)

[isepl (As)] 2

4(isepl(A) +
iseP[A,C] (AS)(1 + 2rh)

where

Yi

Bounds (i) and (ii) come from (ha) and (6a), respectively. Alternatively, we can use
part (b) of Proposition 2 (this always satisfies the limit (5b))"

(15b) a* > 5b= min i

iseP[A,C](As)(1 + r/s(1 + Ks))

or part (c) of Proposition 2"

(15c)

We note that the backward stability of these methods depends on the backward
stability of the method used to obtain the eigendecompositions. If the eigenvalue
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method is backward stable, then these bounds will be exact for a pencil numerically
close to the original pencil, and the residual from the eigenvalue method will indicate
how far from that original pencil we have strayed. But in the cases we have tried, the
size of this residual was never more than 1E-11, much less than the computed bounds
themselves.

5. Numerical examples. We illustrate the bounds with the examples taken
from [3]. Each example represents a time-invariant linear system of the general form
+/- Fx / Gu, from which we form the pencil (2). Example 1 is defined by

011 ] and G=F=
0

1

In Example 2, we start with a single-input system already in staircase form [13], [15],
with G [1,0,...,0]T, and

-i -i -i -i -1 -i 7
1 -i -i -i -i -I 6
0 1 -i -1 -i -i 5
0 0 1 -i -i -i 4
0 0 0 1 -1 -1 3
0 0 0 0 1 -1 2
0 0 0 0 0 1 1

Example 3 is one with a particularly ill-conditioned eigenvalue problem. The system
is defined by

F= -50 180 -9 and G= 1
-154 546 -25 1

The poles (eigenvalues) for this system are 1, 2, and 3.
The staircase algorithm [13], [1] applied to a single input system (i.e., G has

only one column) transforms F into an upper Hessenberg form, with G a multiple
of el. The pencil (2) has a regular part if and only if a subdiagonal element of the
Hessenberg form is zero, so an obvious upper bound is simply the magnitude of the
smallest subdiagonal element. This is the second column of Table 1. In the third
column are shown upper bounds obtained by the expensive experimental descent
method described in [3]. In the last column of Table 1 are lower bounds from the
theory in [2], which was based on using the product of the subdiagonal elements.

We report in Table 2 the upper bounds computed using the formula (11). It is
seen that the bound/2 is always tighter than/1 and is in fact fairly close to the
"optimal" upper bound reported in Table 1. In Table 3 we report the various lower
bounds. For reference, we copied the tightest lower bound found for each example
to Table 2 to show the spread between the upper and lower bounds. It is seen that
the best lower bound is obtained from formula (15a) (ii) when it applies; otherwise,
the tightest bound is obtained from (15b). We note that upper bound 1 and lower
bound 0 take only O(n / p)3 work to obtain, so the computation is relatively fast.
Upper bound 2 requires computing the smallest singular value at some extra expense,
but we do not address here possible ways to speed this up. The other lower bounds
would also be fast to obtain, except for the computation of the rather expensive "isep"
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function. Note that the upper bounds from [3] in Table 1 are tighter, but are much
more expensive to obtain.

In Table 4, we give the eigenvalue Ai of the augmented matrix at which the upper
bounds were taken, together with the radius (14) about this value within which the
minimum in (8) is located.

TABLE 1

Bounds from older methods.

Example Upper bound Upper bound Lower bound

# staircase [1] from [3] from [2]
1 1.0 6.6144E-01 1.2500E-01
2 1.0 6.7690E-04 4.3654E-08
3 1.1610E-02 4.3715E-03 8.5774E-07

Example

#

TABLE 2

Upper bounds from formula (11).
Upper Upper Best lower

bound 1 bound 2 bound from

/31 /2 Table 3

1 7.2561E-01 7.0545E-01 3.7272E-01 (15b)
2 8.8790E-04 7.3074E-04 6.5105E-04 (15a)
3 1.1507E-02 4.6607E-03 1.0313E-03 (15b)

TABLE 3

Lower bounds from methods in this paper. Bounds from equation

(15) come from (ii) except those marked "*".
Example

#
Lower Lower Lower Lower
bound 0 bound a bound b bound c

(13) (15a) (15b) (15c)
3.1480E-01 *1.9409E-01 3.7272E-01 1.7264E-01

7.2095E-05 6.5105E-04 6.4726E-04 1.6279E-04
8.6385E-04 *1.7989E-05 1.0313E-03 2.6339E-04

TABLE 4

Values of ,k at which upper bounds in Table 2 were obtained.

Example A achieving min in Radius about

mini amin(A AiB) 2 given A
(11) (14)

1 1.6899E-01+1.1509E+00i 8.7545E-01
2 /1.9998E+00+6.5937E- 16i 6.6758E-03

3 /2.4534E/00/0.0000E+00i 2.0485E-02

When the staircase algorithm is applied to Example 3, we obtain (items in paren-
thesis are close to the machine epsilon) the following:

Fnew Gnew
2.8300E/02 6.9026E/02 -1.3400E/02 -1.7321E+00
-1.1458E+02 -2.7946E+02 5.4837E/01 (-2.5339E-16)
(-1.6584E-15) -1.1610E-02 2.4570E/00 (4.2062E-16)
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In Table 5, we illustrate the effect of using a different way to augment the matrix
rather than an orthonormal basis to the space orthogonal to the column space of A.
These numbers were obtained with Example 2. The first two lines were obtained using
an orthonormal basis for two different random spaces. The third line was obtained by
using random columns, not orthonormal, but with elements uniformly distributed in
the interval [-1, 1]. The fourth line was obtained by adding a random perturbation
to A of norm 1E-5 and then following the original prescription used for Tables 2 and
3. The fifth line was copied from Table 2 for comparison. Generally, the bounds from
Table 2 are at least as tight, except for the SVD-based upper bound/2 (11), for which
using a random set of orthonormal columns was better.

TABLE 5

Bounds on Example 2 using different random schemes.

Example

#
Upper Upper Lower Best lower

bound 1 bound 2 bound 0 bound, all

/1 (11) f12 (11) (13) from (15a)
Rand 7.6641E-04 6.8228E-04 6.5806E-05 6.4203E-04
Rand 2 7.6697E-04 6.8038E-04 6.5224E-05 6.3977E-04

Non-ortho 8.9135E-04 6.8256E-04 6.3614E-05 6.0989E-04

Perturbed 8.8983E-04 7.3232E-04 7.2426E-05 6.5245E-04
Table 2 8.8790E-04 7.3074E-04 7.2095E-05 6.5105E-04

6. Conclusions. We have given a scheme for estimating the distance from a
given pencil to the nearest pencil of different Kronecker structure. In the context of
dynamical systems, this yields estimates of the distance to the nearest uncontrollable
system. Unlike the staircase-type algorithms, the scheme presented here does not
depend on the recursive computation of the singular values of small matrix subblocks,
so it is less sensitive to the particular choice of zero tolerance. Though there is no
a priori guarantee that the bounds obtained using the methods from this paper will
be good, the spread between the upper and lower bounds will automatically give a
measure of the quality of the bounds themselves. Furthermore, since we also have
localized the location of the minimum in (8) to within certain small disks, we also
have good values with which to start an iterative procedure to refine the estimate of
the location of this minimum (for example, using the experimental descent method
proposed in [3], for which a good starting value is critical for successful convergence).

Appendix. We briefly sketch the derivation of the bound (6b). Let A be a
matrix with a simple eigenvalue and associated eigenvector v, with Ilvll 1. We
can then find a unitary matrix P whose first column is v such that

(A1) pHAP=R- [AR12JO
where R22 is an (n- 1) (n- 1) matrix, none of whose eigenvalues equals A. The
eigenvector of R corresponding to A is el -= [1, 0,..., 0]T. We examine how this eigen-
vector changes under perturbations E to R. Let E be a (small) perturbation matrix
and let be any eigenvalue of R + E, with corresponding eigenvector f [1, xT]T,
partitioned conformally with (A1), and which is scaled to have first component equal
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to 1. If 0 is the angle between el and f, then Ilxll tan 0. We then have the relation

(A) 0 (R + E- AI)f- A -l- ell A RI2 + El2_
E21 R22 q- E22 AI

where

ell El2 ]E21 E22

is partitioned as in (A1). Define the (n- 1) x (n- 1) matrices M R22 AI,
and -N E22 + (A- )I, and note that M is nonsingular. If [IM-1N[I < 1, then
(M- N)-1 exists and can be bounded by II(M- N)-lll < I[M-111/(1 -IIM-1NII)
[9]. Then the last n- 1 equations of (A2) can be written as just (M- N)x -E21,
yielding the bound

(A3) Ilxll pos(1- IIM-11I(IIEI[ + IA- 1))’
where "pos" is a function defined by pos(r) r for r > 0, and pos(r) 0 for
r < 0. The "pos" function simply expresses the fact that (A3) always holds, but only
vacuously if the denominator is not positive. For example, this would occur if f is
orthogonal to el. We summarize the above in the following lamina.

LEMMA A1. Let the upper triangular matrix R be partitioned as in (A1), A, el
be a simple eigenpair for R, M R22 AI, E be some arbitrary matrix, and , f be
any eigenpair for R + E. Then f can be scaled so that the difference el f satisfies
lie1 f[[ sin 0, where tan 0 _= [[x[[ satisfies the bound (A3).

We note that if one expands (A3) in a power series in [[E[[, the first-order term will
be identical to the first-order bound in [16]. Since R and A are related by a unitary
transformation, this lemma leads directly to a corresponding bound for the change in
the eigenvectors for an arbitrary matrix A. We can apply the modified Bauer-Fike
theorem directly to the lemma to obtain the following proposition. We define the
inverse "separation" function (following [14]) to be isePA(A)= [[(R22- AI)-l[[.

PROPOSITION A1. Let A be some arbitrary n n matrix with all distinct eigenval-
ues, and denote by V the matrix of eigenvectors of A. Let A + A be another arbitrary
matrix, and let A, r be any eigenpair for A + A. Let Oi denote the angle between r and
the i-th unit eigenvector vi of A, 1,...,n. Then for some we have the bound

(A4) tan0i _< @ isepA(A)ll/Xll
poe(1 -isePA(A)llAIl(1 + Ki))"

Furthermore, can be scaled so that we have the bound on the distance to some
eigenvector v{ of A, for some i"

(A5) IIv -  11-- sin 0i _<
V/1 +("/ib) 2

Note that this gives a nonvacuous bound as long as IIAI[ is small enough to make the
denominator in (A4) positive.
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INCREMENTAL CONDITION ESTIMATION FOR SPARSE
MATRICES*

CHRISTIAN H. BISCHOF?, JOHN G. LEWIS’:, AND DANIEL J. PIERCE

Abstract. Incremental condition estimation provides an estimate for the smallest singular
value of a triangular matrix. In particular, it gives a running estimate of the smallest singular
value of a triangular factor matrix as the factor is generated one column or row at a time. An
incremental condition estimator for dense matrices was originally suggested by Bischof. In this paper
this scheme is generalized to handle sparse triangular matrices, especially those that are factors of
sparse matrices. Numerical experiments on a variety of matrices demonstrate the reliability of this
scheme in estimating the smallest singular value. A partial description of its implementation in a
sparse matrix factorization code further illustrates its practicality.

Key words, incremental condition estimator, restricted pivoting schemes, updating condition
estimates

AMS(MOS) subject classifications. 15A18, 65F35

1. Introduction. Incremental condition estimation is a technique that allows
one to compute an estimate for the smallest singular value of a triangular matrix.
Its primary application is in providing a running estimate of the smallest singular
value of a triangular factor matrix as it is generated one row or column at a time.
It was introduced by Bischof [2] and has been used successfully for developing a
rank-revealing dense QR factorization algorithm for distributed-memory machines [3]
and shared-memory machines with a memory hierarchy [1]. It is also immediately
applicable to matrices that are Cholesky factors.

For definiteness and without loss of generality, we will assume, throughout the
remainder of this paper, that we are generating a lower triangular matrix L one row
at a time. For upper triangular matrices generated one column at a time we would
simply transpose the matrix, since a matrix and its transpose have identical singular
values.

Given an approximate singular vector x of a lower triangular matrix L and a new
row (wT, ’5,) by which L is augmented, the incremental condition estimator for dense
matrices allows us to obtain an estimate for the smallest singular value of the resulting
lower triangular matrix

wT 3’

without accessin9 L again. As will be seen, the computational work involved con-
sists only of computing the inner product wz, scaling z and computing the largest
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eigenvector and associated eigenvector of a two-by-two symmetric eigenvalue problem.
In order to compute an incremental condition estimator for sparse matrices, it

will be necessary and sufficient to show how to compute an estimate for the smallest
singular value and vector of

L 0 0

0 0 L., 0

where we are given lower triangular matrices L1,..., Lp, estimates for the smallest
singular value and corresponding right singular vector of each Li, and a new row

T ) This paper generalizes the dense incremental condition estimator to(WT Wp
handle such cases, again without accessing any of the Li.

The outline of the paper is as follows. Section 2 briefly reviews the dense incre-
mental condition estimator and motivates its unsuitability for sparse matrices. The
next section generalizes the dense condition estimator technique to handle sparse ma-
trices and shows how it can be computed inexpensively. In the next section we provide
a partial understanding of the success of the estimator by relating it to the secular
equations for T. In 5 we report on numerical experiments on a variety of matri-
ces that demonstrate the reliability of the suggested scheme. In 6 we describe how
the data required by the estimator can be acquired during the process of a sparse
QR or Cholesky factorization. Lastly we summarize our contribution and outline
applications of this scheme.

2. An incremental estimator for dense matrices. A common idea under-
lying condition estimators [6], [7], [14] is to exploit the implication

1 IIL-idll2nx d == IIL-1112 >amin(L) ]Id]2

by generating a solution x having large norm for a right-hand side d having norm of
moderate size and then to use

ldII2min(n) Ilxl12
an estimate for ffmin(L). The hope is that x will be an approximate singular vector

corresponding to the smallest singular value and that, a consequence, min(L) will
not be too much of an overestimate of ffmin (L). An incremental condition estimator
is one that allows us to eily update our estimate min L is augmented with a new
row. In particular, the previously generated L should not be accessed in updating
our estimate. Accessing L would imply O(n2) flops at every step of our condition
estimation algorithm, which is too great an expense. More precisely, given a good
estimate min(L), defined by a large norm solution x to Lx d, and a new row
wT, 7), by which L is augmented, the estimator should obtain a large norm solution
y to

Y= wT 7 Y
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without accessing L again. Bischof [2] suggested the following approach: Given x such
that Lx d with Ildl12 1, find s and c with c2 + s2 i that maximize IlYlI2, where

solves

(1) ( L 0

A formal forward substitution shows that

")/211ylI22 (8, c)B

where

(2) B= ( ’’l’2xTx-" (wTx)2 --wTx )--wTx 1

It follows that B is a positive definite symmetric matrix. Thus, maximizing
is equivalent to

(3) max(s,c)B ( s

subject to c2 + s2 1.

The pair (s, c) that solves (3) is a normalized eigenvector of B corresponding to
the largest eigenvalue of B. The optimal (s, c) can be computed easily (see [2]), and
the new approximate singular vector y defined by (1) is then

( ,x )
The resulting estimate for the smallest singular value amin(/:) of is

&min()

From this description it is clear that this condition estimator satisfies our con-
straints. Given a current L, we only need to save the current solution x and its norm

Ilxl12 to arrive at an estimate for rmin(). Furthermore, the calculation is inexpen-
sive. For a k x k matrix L we need only 3k flops (a dot-product and a scaling of a

vector) to arrive at an estimate for amin (/:). Experimental results on the suite of tests
suggested by Higham [15] are reported in [2], and they show this condition estimator
to be reliable in producing good estimates.

However, this condition estimator breaks down for sparse matrices. To illustrate
the issue, consider the matrix

(4) f_., ( Lll
0 L22

0 )
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where Lll is n x n and L22 is n2 x n2. During the first n steps, the incremental
condition estimator computes an approximate singular vector x of LI. On encoun-
tering the first row of L22, we will have w 0 and in (1) is the (1, 1) entry of
L22. So wTx in (2) will be zero, and we will choose either (xl, 0)T or (0, 1/’)T as n
approximate singular vector for

0 7

If (0, 1/7) is chosen the approximate singular vector, all informagion on L con-
tained in will be lost. Conversely, if (1,0) is chosen, the new row corresponding
to will have been completely ignored. Instead, he estimate for

(5) min (( Lll 0

should be found by computing two independent estimates, () and ().
We should ignore while computing an approximate singular vector z for L.
Then 1/mx(llll, I111) will be a good estimate for (g).

It may appear that (4) represents an unusual and trivial special ce. In fact,
magrices of his structure appear frequently drin9 the factoriation of sparse matrices

(see, for example, [9], [10], [11]), where they represent leading principal minors of the
matrix being factored. In such cases the indices of the rows in 11 correspond
nodes in one subtree of the elimination tree [19], and the indices of the rows in
correspond to another, independent, subtree.

The more interesting question is how to compute the singular value estimate when
the first common ancestor of the nodes corresponding o 11 and is encountered.
This first common ancestor will be a node in the elimination tree that has more than
one child. The submatrix corresponding to this first common ancestor and all of
its descendations in the elimination tree will be a matrix in block-bordered diagonal
form. In the ce of two children, the matrix is

0 0)() c= 0 0
/al la

where 7 is the parent of the last node of 11 and of the last node of in the
elimination tree. The question then is how to merge Zl and z upon encountering the
border row at the ancestor . This is the topic of the next section.. An neremenal condition estimator for sparse matrices. In this sec-
tion we generalize the dense incremental condition estimator to integrate singular
vectors of submatrices into an approximate singular vector for the whole matrix. The
resulting technique makes incremental condition estimation applicable to sparse tri-
angular matrices, in particular, triangular factors of sparse matrices.

Our generalization to the dense algorithm depends on recognizing two special
forms. We begin with the augmented lower triangular matrix

wT

where the vector w may have known zero entries. If can be symmetrically permuted



648 C.H. BISCHOF, J. G. LEWIS, AND D. J. PIERCE

to the block diagonal form

L1 0 0)= 0 L2 0
0 ?T

we reduce the problem to the smaller active matrix

while separately preserving the approximate minimum singular vector from L1.
We then apply one of two algorithms to the active matrix. If the matrix is

symmetrically permutable to block-bordered diagonal form, as in (6), we apply the
generalized incremental condition estimator described below. Otherwise, we apply
the standard dense algorithm.

The issue of recognizing whether a general sparse triangular matrix is permutable
into either of the special forms is not addressed in this paper. We are concerned with
sparse triangular matrices that are either Cholesky or QR factors. In these cases
the special structures are plainly exhibited by any permutation that is a postorder
traversal of the corresponding elimination tree. Further, the elimination tree provides
a simple characteristic to distinguish whether to apply the standard or the generalized
incremental step--the standard step is used when the corresponding node of the
elimination tree has one (or zero) children, while the existence of two or more children
implies block-bordered diagonal form and use of the general step.

The block-bordered diagonal form problem has the following structure. Assume
that we have lower triangular matrices L1,..., Lp and their corresponding approx-
imate singular vectors Xl,..o,Xp. Thus, x is a large norm solution to Lx d,
where Ildill2 1 for 1, 2,... ,p. We now want to find a vector y (2,... ,2p, )T
such that IlYlI2 is maximized subject to

L 0 0 ad
0 ". ". +

(7) y ... ... ... y where a
0 0 L 0 apdp

i=1

w w +1

It easily follows from (7) that

i OiXi, i 1,... ,p

Z-" 1 (p-bl- EiP__-l(i(wTiXi))

The problem of maximizing [lyl122 can be restated as

subject to V’P+I 2 1z..i--10i

This problem is equivalent to

max aTBa(8) subject to [[a[[2 1,
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where

)Ta (o Op+

and B (bij) is defined as

(9)

The solution to (8) is a normalized eigenvector corresponding to the largest eigen-
value, #max, of B and in particular max ILY1122 To efficiently compute the largest
eigenvalue and corresponding eigenvector of B, we take advantage of structure in (9).
Define

(o) wTi x )
1,...,p,

z (,...,p,-1)T
D diag (5,..., 5p, 0).

Then we may write B as

B D2 + zzT RRT,

where

1 TR (D 4- -Zep+)

and ep+l is the (p / 1)st canonical unit vector. Notice that B is a scaled symmetric
rank-one update to the diagonal matrix 02. Following [4], [5], [12], the roots

of the secular equation

(11) g(#) 1 + - i=1

determine the eigenvalues of B. In particular,

2
]-1,max O’max(R

and the vector a is the left singular vector of R corresponding to amax(R). It is shown
in [4], [5] how the roots of g(#) can be computed cheaply using rational approxima-
tions of g(#). Moreover, the technique in [4] allows one to compute only the largest
eigenvalue. Once #max has been computed, a is obtained by

1
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where

h (D2 maxI)-lz.

The corresponding estimate for the smallest singular value of/2 is

rmin()

However, it should be noted that in [4] the vector a is computed simultaneously with
[

The cost of applying this incremental condition estimator to a sparse factor con-
sists of three parts. One is access to the entries in the matrix, each of which is used
once in an inner product. This is essentially the cost of a forward solve, O(nz) oper-
ations, where nz is the number of nonzeros in L. Scaling the singular vector x would
appear to require n2/2 operations overall. However, explicit scaling is not required,
as will be seen in 6; the real requirement is a small constant number of operations
per row. Finally we have the cost of n small eigenproblems, most of which require
finding the largest solution of a quadratic equation.

4. The estimator as approximation of secular equations. In this section
we examine the relationship between our estimator and the secular equation of the
matrix z;T/2. In particular, we show that our estimator finds the smallest root of
the secular equation truncated to (p / 1) terms. This truncated secular equation
also corresponds to the exact secular equation of a submatrix of 12. We begin by
considering the singular value decompositions

L UiSVT

of Li. Further, assume that incremental condition estimation was exact and computed

1 v(i)(12) xi rmin(Li

where m
(i) is the right singular value of L corresponding to the smallest singular value

7min(Li). In particular, then

U1 S1 V1
U S V.

u; v;
1 yT y2

T y’ 7 1

where
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Hence the singular values of are those of

The secular equation, f, of/T/ is given by

(13) f(A)
= a2(Li)

where yJ) is the jth entry of y. The roots

P

i--1

of f determine the singular values of L: in that

a(L:) x/, 1,..., n.

It is the goal of our estimator to approximate An, the smallest root of f. A natural
approach to such an approximation would be to take, say, k terms of f, forming ] and
use the roots of ] to approximate some of those of f. Since we seek to approximate
An, we should take those terms in f which "contribute" to the root An. For example,
let

l11 1 1 1

Then the secular equation for T is given by

1 1 1
-+ +f(x)
x (x- 1) (x- 2)

Note that the smallest root of

1
1

and even more so the smallest root of

1 1

x (x- 1)
-1

(x-3)

are close approximations to the smallest root of f.
natural choice for f would be to take from each inner sum in (13) that term with
smallest cr(L)in the denominator. Then ] is given by

Along this same line then,

P min 2 ,),2=’ (Y
-+1,(14) z_., 2 (L)-A A

i-- 10"min
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where l.min is used as a shorthand for (n) the last entry of y Note that ](A) is the
secular equation of the matrix TT, where

(min(L1)
(:rmin (L2)

ynin ynin
ffmin (Lp)

mln

p

which is a submatrix of S. Our condition number estimator finds the reciprocal of
the smallest singular value of T. This is seen algebraically by using (10) and (12) to
obtain

P T (i))2(Wi Vmin

i=1 O’min (ii)

By substituting # 1/2, we have

-](,).
Hence the largest root of g is the reciprocal of the smallest root of f, which in turn
is the square of the smallest singular value of T. This shows that our incremental
condition estimation scheme can be viewed as approximating the smallest root of
the secular equation by a truncated form of the secular equation or equivalently as
approximating the smallest singular value of f. by that of the smallest singular value
ofT.

As an example, consider the 7 x 7 matrix

-3.7303 0 0 0 0 0 0
2.2246 -3.5687 0 0 0 0 0
0.5444 -0.3719 3.0423 0 0 0 0
0 0 0 -3.2895 0 0 0
0 0 0 -2.0722 -2.5597 0 0
0 0 0 1.3312 0.2539 5.7006 0

-1.6300 2.3245 0.4369 -1.5376 -2.5385 1.0620 -1.3614

The singular values of L1 are 5, 3, and 2.7; the singular values of L2 are 6, 4, and 2.
The square of these values and A 0 are the poles for f(A). Since we are concerned
only with the smallest singular value of , Fig. 1 is only for the interval [0, 10]. In
this figure the poles of f are shown as dashed lines, and f (which is the upper curve)
has four roots, f (which is the lower curve) has all three roots in the interval. We see
that the smallest roots of f and ] lie close together.

Our estimator is computed by an a priori choice of p + 1 terms to approximate
the complete secular equation. Equivalently, we have chosen a principal submatrix
of order p + 1 whose singular values are approximations to the singular values of the
larger matrix. The use of fewer than p + 1 terms, or a submatrix of order less than
p + 1, is unreasonable because it would necessarily ignore some diagonal block(s).
Hence our estimator uses the "fewest" possible terms. We can use the submatrix
formulation of this approximation to show an optimality result for this particular a
priori choice--this is the only choice of p + 1 terms that is guaranteed to provide an
estimate that is always at least as small as the smallest singular value from each block,
that is, is consistent with the information from the diagonal blocks of the matrix.
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20

15

10

0

-10

o15

-2 0 2 4 8 10

FIG. 1. Approximation of f by ] for the matrix 2 in (4).

The triangular structure implies that TTT is a diagonal block of pqTpT for a
suitably chosen permutation matrix P. As a result, the singular values of T interlace
with those of S. Further, the same argument applies to each diagonal entry of T itself
to show

(i) prmin( O’min(T min tamik=, 3’

The terms over which the minimization is taken are precisely the least singular values
(or more generally, our estimate thereof) of each of the diagonal blocks, independent
of the values of the yi’s. Thus, our estimate is consistent and decreases, as does the
least singular value of the augmented triangular matrix. Clearly no other a priori
choice of a principal submatrix of order p + 1 can have all of the entries

(i) v }tO’min }i=1,

on its diagonal, and so cannot guarantee to show consistency for all values of y,
particularly for the case y O.

5. Numerical experiments. To assess the numerical reliability of the sug-
gested scheme, we performed a suite of tests using PRO-MATLAB [18]. We generated
block-diagonal matrices (where each diagonal block is lower triangular) of order 100
and added one dense column with random values from the uniform distribution on
[-1, 1]. For each matrix, we varied the number and size of the diagonal blocks: we
either generated fifty 2 2 matrices, ten 10 10 matrices, two 50 50 matrices, or
varied the size of the blocks as shown in Fig. 2. We experimented with several singular
value distributions for the diagonal blocks: A random distribution, where the singular
values were random numbers from the uniform distribution on [-1, 1], an exponential
distribution, where

a# ay, j 1,..., ni and a 10-6/n
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FIG. 2. Lower triangular matrix with diagonal blocks of varying size.

1500

1000 949

500

0 109 3. 2 0 ,1
0 5 10

0 0 ,1 1.1 0
15 20 25

FIG. 3 Overall distribution of mi.,(L)
amin (L)

and a sharp-break distribution, where all singular values are 1 except for the smallest,
which is 10-6. For each singular value distribution, we generated a diagonal matrix
containing the desired singular values and then multiplied this matrix from the left and
right with random orthogonal matrices generated using the method of Stewart [20]. A
lower triangular matrix with the same singular value decomposition was then obtained
by performing a QR factorization with and without pivoting of the resulting matrix
and transposing the triangular factor so obtained. For each class of matrices, we
performed fifty tests, resulting in a total of 1200 examined matrices.

Figure 3 shows a histogram of the overestimate of the smallest singular value
that our scheme produces. We see that in 949 cases, we overestimated the smallest
singular value at most by a factor of two and in no case did we overestimate the
smallest singular value by more than a factor of 18.

The distribution of the singular values of the diagonal blocks and the size of
the diagonal blocks had some influence on the accuracy of the estimate, whereas the
other factors played no significant role. For the sharp-break distribution, we never
overestimated the smallest singular value by mbre than a factor of two. The same was
true when the sizes of the diagonal blocks were 2 and 10, respectively. The results
for the random and exponential distributions are shown in Fig. 4. The structure of
g(#) in (11) is quite different for these two cases. If the singular value estimates for
the individual blocks were exact, g(#) would have only two roots for the exponential
distribution, since the smallest singular values of all diagonal blocks are identical.
We can infer that the g(#) actually computed will have p roots that are very close.
In contrast, the roots of g(#) should be well distributed in the case of the random
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distribution. We see that our estimator performs well in both cases.
As for the influence of the size of the diagonal blocks on the quality of our estimate,

the situation for diagonal blocks of size 50 and diagonal blocks of varying size is shown
in Fig. 5. It is not surprising that the estimate deteriorates somewhat as the sizes of
the diagonal blocks increase. This results when the incremental condition estimation
scheme described in 2 becomes less accurate as the size of the matrix increases.

6. Implementation for sparse problems. In this section we show how our

estimator can fit naturally into algorithms for computing triangular factorizations of
sparse matrices. Here we examine the particular case of a Cholesky factorization, but
the same ideas apply to a QR factorization. A particular issue that we face in the
context of sparse factorizations is that the sparse factor L is usually not stored by
rows. Column storage of one form or other is typical, as in [8], [10], [11], yet our
estimator appears to depend on access to the rows of L in order to compute the inner
products wTx. Our solution to this dilemma uses the recursive block structure that
is found in sparse factor matrices, together with a key property of the updating of
our estimator.

It will suffice to consider the Cholesky factorization for a symmetric positive
definite matrix 4 of the form

Az A39. A3z

where A is ni by hi. This form suffices because it, together with the obvious gen-
eralizations to bordered forms with p diagonal blocks is the form that appers as
the active submatrix when the node corresponding to the first row of A33 has more
than one child in the elimination tree for some larger sparse matrix. Note that the
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Cholesky factor of ,4 is of the form

/: L22
L31 L32 L33

We can compute the Cholesky factorization Lll for All

AI L11L1T1
and the entries in L31,

L31 A31Li-T

by some form of a block Cholesky algorithm or by inner or outer product factorizations
of the first n columns of ,4. Concurrently we compute an approximate minimum
singular vector, xl, for All. We use these to compute the vector

tl L31Xl

The entries in this vector represent all of the nonzero inner products between later
rows of/ and the current value of xl. Note that t can be computed as the sum of a
set of sparse vectors in cases where L31 is stored by columns. We save tl and Ilxl II 22"
As will be seen shortly, we have no further need to access x, Lll, or L31.

Similarly, we compute the Cholesky decomposition of the second block column,
computing L22 and L32 by

A22 L22L2T2
L32 A32L2T.
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In the standard way, we compute an approximate minimum singular vector X2. Again,
we compute and save Iix21122 and the vector t2 n32x2.

It is necessary to use the general form of the condition estimator when the first
diagonal element dll of A33 is encountered. At this point, wT of (9) is the first row
of L31 and w2

T of (9) is the first row of L32. The estimator requires only the inner
products of these rows with xl and x2, respectively, and the norms of Xl and x2. The
norms were saved and the inner products are given by the first components of t and
t2, respectively:

1) WITxl and 1) W2Tx2.
We have sufficient information to compute the triple (CI, C2, Cg3), tLS required by our
general estimator. The last entry of the new minimum singular vector is given by

1 ( altl)3

Had we saved the singular vector approximations from the leading subblocks, we
would have a new approximate minimum singular vector

O/lXl /(1) O/2X2

We will use the structure of (1) to compute minimum singular value and, implicitly,
vector approximations for the remaining rows in L33.

In computing the entries corresponding to the second and later rows of L33, we
use the dense condition estimator, generating 2 x 2 eigenproblems, implicitly given
approximations to singular vectors (i) and scaling factors s(i) and c(), i 2,..., n3.
The dense estimator applies the same multiplier s(i) to all previous entries in the
approximate minimum singular vector. This will allow us to recover the necessary
inner products from t and

For example, the computation of the entry corresponding to the third row of L33
requires the values of I1(2) 1122 and

where L31 and L32 are the third rows of L31 and L32, respectively, and L is the
third row of L33, excluding the diagonal. But

The determination of O and c2 essentially changes the separate singular vector esti-
mates from the first and second blocks into a single vector, namely,

X
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Similarly, the vectors of inner products t and t2 can be coalesced into a single vector

t altl -}- a2t2.

Then the inner products required by the estimator can be found by repeatedly apply-
ing the scaling factors s(i) to t, and from/ and {s(i), c(i)}.

Thus we are able to avoid any references to L31, L32, xl, or x2 by computing
the vectors t and t2. In practical cases the block-bordered form of/: appears as a
subblock of a larger sparse matrix; there are other nonzero blocks corresponding to
Lii. In these cases the inner product vectors t are longer, but all entries are subject
to the scaling operations. The key issue is that the inner product vector that results
from L33 must be modified to account for the yet unused rows of the inner product
vectors from L and L22. We leave it to the reader to fill in the details for one level
of recursion, which will suffice to show the general algorithm.

We note that this sparse implementation does not require ever saving the approx-
imate singular vector x. At each block step, it uses only information which is either
from the current block column or is given recursively. Moreover, the recursive infor-
mation, the inner product data corresponding to each block column, has a particularly
clean interpretation in the data structures of a multifrontal Cholesky factorization [8],
where storage for this data can be found simply by augmenting each frontal update
matrix with a single column. An equally clean interpretation can be found for QR
factorizations, using the row merge scheme of Liu [17] or the multifrontal Householder
scheme of Lewis, Pierce, and Wah [16].

7. Conclusions. Incremental condition estimation is a technique that allows one
to maintain cheap estimates of the smallest singular value of a triangular matrix as it
is generated one column or row at a time. In this paper, we generalized incremental
condition estimation to handle arbitrary, and particularly sparse factor, matrices. The
computation requirements are similar in cost to other condition estimation schemes
for sparse matrices [13], but our scheme provides a Euclidean norm estimate. In
addition, it is not necessary to reaccess the previously generated triangular matrix
when a new row or column is added, making the scheme attractive in parallel or out-of-
core environments. We showed how our scheme can be interpreted as approximating
the secular equations determining the true singular values. Numerical experiments
indicate that the scheme is reliable despite its small computational cost. Moreover,
we demonstrated its applicability in a sparse setting, thus making our estimator both
practical and effective.

Acknowledgments. The first author would like to thank Andreas Griewank for
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