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SUBSTRUCTURING METHODS FOR COMPUTING THE
NULLSPACE OF EQUILIBRIUM MATRICES*

R. J. PLEMMONSt AND R. E. WHITE?

Abstract. Equations of equilibrium arise in numerous areas of engineering. Applications to
electrical networks, structures, and fluid flow are elegantly described in Introduction to Applied
Mathematics, Wellesley Cambridge Press, Wellesley, MA, 1986 by Strang. The context in which
equilibrium equations arise may be stated in two forms:

Constrained Minimization Form: min(z” Az — 22T) subject to Ex = s,

Lagrange Multiplier Form: EA-'ETA=s—- EA~lr and Az =r — ET ).

The Lagrange multiplier form given above results from block Gaussian elimination on the 2 x 2 block
matrix system for the constrained minimization form. Here A is generally some symmetric positive-
definite matrix associated with the minimization problem. For example, A can be the element
flexibility matrix in the structures application. An important approach (called the force method
in structural optimization) to the solution to such problems involves dimension reduction nullspace
schemes based upon computation of a basis for the nullspace for E. In our approach to solving such
problems we emphasize the parallel computation of a basis for the nullspace of E and examine the
applications to structural optimization and fluid flow. Several new block decomposition and node
ordering schemes are suggested and reanalysis computations are investigated. Comparisons of these
schemes are made with those of Storaasli et al. for structures and Hall et al. for fluids.

Key words. substructuring, force method, discplacement method, structural optimization, fluid
flow, dual variables, reanalysis, parallel algorithms
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1. Introduction. The purpose of this paper is to develop some parallel schemes
for computing a basis of the nullspace of an equilibrium matrix with m rows and n
columns, having full row rank. Upon aggregation and then scaling, an equilibrium
matriz (or incidence matriz) E can generally be assumed to have entries 0 and +1.
Such matrices arise in a variety of applications in science and engineering (Strang
[20], [21]). Methods of finding a sparse or structured basis of the nullspace of E has
been the subject of extensive study over the past few years. Our objective here is to
consider parallel algorithms for such computations.

In general, there exists a product of elementary matrices G such that

(1) GE = [Ry, Ry] = Ri[l., Ri ' Ry)

where R; is nonsingular. Consequently, the nullspace of GE, and hence E, is gener-
ated by the columns of the block matrix

-1

R

@ p=[ B,
—In-m

We will emphasize the parallel computation of a basis for the column space of B and

how it is then used in the solution of problems associated with equilibrium equations.
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An excellent general discussion of equilibrium matrices can be found in Strang
[20], where applications to electric networks, structures, and fluid flow are described
in detail. The context in which equilibrium matrices arise may be stated in two forms.

Constrained Minimization Problem:
(3) min(zT Az — 22Tr) subject to Ex = s.

Lagrange Multiplier Problem:

2 ERINE

All matrices and vectors considered here and elsewhere in this paper are real. The
matrix A is generally some symmetric nonnegative definite matrix associated with
the minimization problem. For example, A is the element flexibility matrix in the
structures application.

In this paper we will examine the applications to structural analysis and fluid flow
computations. The structures problem of computing the system forces, displacements,
and associated stresses and strains is usually formulated as minimization of potential
energy of the elements in the structure, leading to a constrained minimization problem
of the form (3). In this case r = 0, s is the vector of external loads, z is the
system force vector, and —\ is the displacement vector associated with (3). Here A
is symmetric and block diagonal where each block is associated with an element of
the structure and has relatively small dimension (see McGuire and Gallagher [16] and
Huston and Passerello [12]).

In the fluid flow problems z is the vector of velocity components, A has block
structure, but is not symmetric or block diagonal. Here r and s represent the imposed
boundary conditions and A is the pressure. The equilibrium (or incidence matrix) is
a discretization of the conservation of mass equation

Uy +vy =0

where u is the velocity in the z-direction and v is the velocity in the y-direction. As
contrasted to the structures case, the fluid flow problem is formulated in terms of the
Navier-Stokes equations, and when appropriately discretized, they give the Lagrange
multipliers problem (4) (see Hall [11] and Hall, Porsching, and Dougall [10]).

The existence and uniqueness of solutions to problems (3) and (4) are generally
given by two sets of assumptions leading to well-known theorems. The first theorem
is relevant to the structures problem and the second is important in fluid flow com-
putations. Discussions of the first theorem can be found in Dyn and Ferguson [7] and
in Hadley [9].

THEOREM 1.1. If

(i) A is symmetric and nonnegative definite,
(ii) E has full row rank, and
(iii) A and E have no common null vector,

then problems (3) and (4) are equivalent and have a unique solution | § ], where
solves (3) and

A= (EET)"'E(r — Az).
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The second theorem is established in Hall [11] and does not require A to be
symmetric. When the Navier-Stokes equations are discretized by the semi-implicit
time discretization, by the upwind discretization of the advection terms, and by the
finite difference of the viscous terms, then the assumptions of the following theorem
are true, as shown by Hall, Porsching, and Dougall [10]. Here problems (3) and (4)
are not necessarily equivalent.

THEOREM 1.2. If

(i) A has positive diagonal elements,

(ii) A is both row and column diagonally dominant and is strictly diagonally
dominant in the rows or columns, and

(iii) E has full row rank,

then the linear system (4) has a unique solution [ § ]. Moreover, if B is any matriz

whose columns form a basis of the nullspace of E, then BT AB is nonsingular.

There are two methods generally used to calculate the solution of (3) or (4), the
displacement method and the force (or dual variable) method.

Displacement Method. Consider (4) and assume A is invertible and E has
full row rank. Block elimination in (4) yields the steps:

(i) Solve EAT'ETA = EA'r — s,
(ii) Solve Az =r — ET\.

This approach is called the displacement method because for structures A rep-
resents the displacements of the nodes. Here z is the system force vector and is
recovered after A is computed. On the other hand, the force method for structures
(dual variable method for fluids) involves calculating z first.

Force Method. Consider (4) and assume that Theorem 2 holds, so that BT AB
is invertible where B is a matrix whose columns form a basis of the nullspace of E.

(i) Solve Ex, = s, where x, is any particular solution to Ex = s.
(ii) Find a basis of the nullspace of E, given by the columns of B, and solve

BT ABz, = BT (r — Azy,).
(iii) Set z = z, + Bz,
(iv) Solve (EET)X = E(r — Axz).

The relative merits of the two approaches have been the topic of some debate
[11], [14]). Essentially, the force method may be preferable when: (1) B is readily
computable, and (2) the row and column dimensions m and n for the equilibrium
matrix E are such that n — m << m. Then since BT AB has order n — m while
EA~'ET has order m, the force method is a dimension reduction scheme.

The work in [4], [5], [6], [15], and [18] is a graph theoretic approach to the com-
putation of a sparse nullspace basis. In these papers cycle bases and bipartite graphs
are used to form a nullspace basis with as few nonzero components as possible. Al-
though this approach is not used here, we do utilize graph theoretic ideas in what
we call proper partitioned structures. In the last section of this paper we examine
the nullspace for a simple incidence (or equilibrium) matrix from incompressible fluid
flow. The sparseness of the nullspace for the cycle basis approach and our approach
are similar. We show that the nullspace calculation (forming B) can often be done by
appropriate ordering of the nodes and elements, extending certain results in [2], [8],
and [19]. This ordering yields an equilibrium matrix with a great deal of structure
which can be exploited by multiprocessing computers in forming B. Furthermore, we
will show that in the context of problems (3) and (4), the force method is particularly
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useful in the reanalysis of the problem at hand, and in the nonlinear analysis when
the components of A depend upon (z, A).

The outline of the paper is as follows. In §2 we consider a distinguished portion
of a structure and show how it generates a given block structure of E. This results
in the computation of B as in (2), where B is shown to have a useful block structure.
The third section contains the introduction of the concept of a “proper” partition
of a structure. This allows us to develop, in some cases, a very nice block structure
of E and, accordingly, B. Several examples are presented and the computation of
B on multiprocessing computers is discussed. The last two sections deal with the
applications of interest here. In §4 an application to the reanalysis of structures is
given. The final section contains an application to incompressible fluid flow.

2. Equilibrium matrices with partitioned structure. In this section we
examine equilibrium matrices that have a certain block structure which is intimately
associated with a partition of a network or undirected graph. In this regard we will
use the parlance of finite-element models of physical structures; however, the concept
to be developed can be applied to other applications such as electrical networks and
fluids (see §5).

For a given undirected graph G with node set A and set of edges £, we consider
two distinguished, disjoint sets of nodes which we call Mg, and Ngee. Writing S =
(N, E), we call S a structure if the graph G is connected. We may think of edges,
(1,7), as elements connecting the nodes i and j. A pair S; = (N1,&1) is a substructure
of S if N7 and &; are nonempty subsets of N and £, respectively, and S is itself a
structure.

DEFINITION 1. Let § = (N, €) be a structure, where Nyee has cardinality m
and £ has cardinality n. An equilibrium matriz of S is a m x n matrix E = (e;;),
where

o = 1 4 € Npee and j = (i,k) € £ for some k € N,
771 0 otherwise.

We remark that entries 1 may be replaced by entries -1 in Definition 1 for directed
graphs. This situation is illustrated by Example 6 later in §5 on fluids. Also 1 may
be replaced by +I, where I is an £ x £ identity matrix and £ is the dimension of
an appropriate diagonal block of A. Another possibility is to replace 1 by an £ x £
nonsingular matrix with the sines and cosines of the angles formed by the elements
and the coordinate system (see Kaneko, Lawo, and Thierauf [13]). The first situation
is illustrated in the examples to follow.

Ezample 1. (a) N = Ngee = {1,2,3,4} and edge set £ = {e1, e2,e3,€e4} where
the graph is given by

2 €2 3

(3] €3 .

1 €4 4
Here the equilibrium matrix is 4 x 4 and given by
1 1

E=|"!

[y —y
[Eray—y
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Note that rank(E) = 3. In physical terms, this means that the structure is unstable
since E does not have full row rank. We may attach two more elements with fixed
nodes, resulting in the following example.

(b) N = -A[ftee UNﬁx where A[free = {1’2’3,4},
{61, €2,€3,€4, €5, 66}'

Nix = {5,6} and £ =

2 €2 3
€1 €3
1 1 1
1 €a 4 11
’ E= 11

€6 €5 111

- L

6 5

If the nodes are rigid, then there are three forces at each node (horizontal, vertical,
moment). In this case the 1’s represent 3 x 3 identity matrices and F is in fact 12 x 18.
The equilibrium matrix E in this case has rank 12.

In general, we call a structure with equilibrium matrix E stable if E has full row
rank. A stable structure always has a basis matrix B for its nullspace which can be
expressed in the form (2). However, it is not always clear how to effectively perform
the computations in (2).

For notation purposes in what follows, the fixed nodes will either be listed last or
deleted from the set of nodes.

Ezample 2. This is an example of a pin-jointed-truss with 14 nodes and 39
elements. In this case each node has two associated forces and consequently the 1’s
represented in E are 2 X 2 identity matrices.

3

Fic. 1. Pin-jointed-truss.

The substructures 1 and 2 in Fig. 1 are stable, whereas 3 is not stable. The connecting
elements are indicated by the light lines. If the connecting elements are attached to
substructures 1, 2, and 3, then the resulting equilibrium matrix has the block form
shown in Fig. 2.
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— 6x24 —
6x24

~\\\\\\\\\\ 12x30

4x78

L

F1G. 2. Equilibrium matriz: first form.

However, it turns out that the nullspace basis matrix is easier to compute by our
techniques if the connecting elements are associated with the last block of nodes. In
this case the equilibrium matrix takes the form in Fig. 3.

- 6x18

N 6x18
DO - zxz2

\\

i w2y

4%20

Fi1c. 3. Equilibrium matriz: second form.

The first three blocks for this second form for E are associated with substructures
and their nodes, and elements are disjoint from each other. The disjoint substructures
correspond to the first three diagonal blocks in the equilibrium matrix. This type of
substructuring is common, and therefore, we formalize this in the following definition.

DEFINITION 2. Let § = (V,€) be a structure and consider the collection of
pairs

{(Nkagk):Nk gNa gkgga ISkSK"'l}

The collection is called a partition of S if
(i) V= UfHINj is a disjoint union,
(ii) € = UkK:llé'k and the first K sets £ are disjoint, and
(iii) (N, Ex) are substructures for 1 < k < K.
We remark that the equilibrium matrix F resulting from a partition of S can be
assembled into the general block form shown in Fig. 4.
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— E -
E>
NN
Ex
R

F1G. 4. Block angular form.

Here the matrices Ej are the equilibrium matrices associated with the substructures
given by (N, &), 1 <k < K.

We are now ready to describe an effective algorithm for computing B given by
(2), where E has the block form in Fig. 4.

THEOREM 2.1. Let S = (N, E) be a stable structure with an associated partition.
Then with the equilibrium matriz E assembled into the form in Fig. 4 there is a basis
matric B of the nullspace of E such that for some permutation matrix P, PB has

the block form given by Fig. 5.

-1

Fi1c. 5. Matriz PB.

Proof. We derive PB in Fig. 5 for K = 2 in Definition 2. The proof for K > 2
follows in a similar manner. By Definition 2, F can be assembled into the form shown
in Fig. 6.

7

E = NI //

F1c. 6. Matriz E for K = 2.
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Then the use of either elementary row operations or orthogonal transformations will
result in a transformation of E into the form shown in Fig. 7.

_

_
NV

.

F1G. 7. Matriz G, E.

Now by using row interchanges, as indicated by the arrows in Fig. 7, to move any
resulting rows with all zeros in the first two diagonal blocks to the last block, we have
the reduced form shown in Fig. 8.

//%
.

Fi1G. 8. Matriz P1G1E.

By further reduction on the bottom block there results a further form as shown in
Fig. 9.

DR

Fi1Gc. 9. Matriz GzPlGlE.

Since E is of full row rank, the triangular matrices shaded in black must be invertible.
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Now, moving the column blocks between the triangular blocks to last column, as
indicated by the arrows in Fig. 9, results in the basic reduced form in Fig. 10. In Fig.

10 R, is the left square region and [Ry, Ry] = G2PiG1EP;.

P ]

N
\\\

FiG. 10. Matriz GoP,G,EP,.

By using either block back substitution or block elementary matrices we obtain
Rl_le, and note that it has the same form as R;. Thus, the nullspace basis ma-
trix of

EP; = (G2P1G1) 7[Ry, Ry] = (G2PyG1) 'Ry [I, R{ ' Ry

is given by
-1
B= P2T[ f f ] .

Thus P, B has the block form in Fig. 5, completing the proof of the theorem for the
case K=2. 0

In order to illustrate this form, consider the matrix E from Example 2 given by
Fig. 3. Each 6 x 18 block has full row rank 6, the rank of the 12 x 22 block is 10, and
the 4 x 20 block has rank 4. Thus the form of [R;, R»] is given in Fig. 11.

-6x6 6x12 28x14 =

&\\ 6x12 V

10x12

N\

F1c. 11. Matriz [Ry, Ry] in Ezample 2.

.

Because of the block structure of E associated with the finite-element model of
the physical structure, certain steps in the calculation of R, Rz, and B can be done
concurrently. This is summarized as follows.

Parallel Computation of B for a Stable Structure with Partition.

Step 1 In parallel, reduce each diagonal block of E to upper triangular form,
where by row permutations the zero rows are last.

Step 2 Reorder the rows so that the form of PyG1 F in Fig. 8 is obtained for
the general case.
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Step 3 Reduce the last row block to obtain GoPyG1E of the general form
given in Fig. 9.

Step 4 Reorder the columns to obtain the general form of GoP,G1EP; =
[Rl,Rz] in Fig. 10.

Step 5 In parallel, compute Rl_le for the K + 1 blocks of rows.

Step 6 Form

Bsz[Ri;le].

1

In the next section we show that in some cases a proper reordering of the nodes
and elements will allow us to avoid Steps 1-3.

3. Equilibrium matrices and proper partitioned structures. As motiva-
tion for the definition for a proper partition we reconsider Example 1 with the following
ordering of nodes and elements:

€2 €4
es I I 1
1 3 E= ! I I 1 !
I I
ey €3
- -
S1 So

Notice the form of the equilibrium matrix E. The diagonal blocks have inverses and
correspond to stable substructures given by

S = (vagl) = ({1v2}v {61,82}),
S = (N2’£2) = ({3a4}’ {63’64})'

The remaining elements, es and eg, connect these stable substructures.
DEFINITION 3. Let {Sx = (Nk,€k); k = 1,---,K + 1} be a partition of S =
(N, €). A partition is called proper if
(i) Nik+1 is empty.
(ii) N and & have the same cardinalities for 1 < k < K.
(iii) Sy arestable for k = 1,---, K; that is, each block E}, of F has an inverse.
We remark that the equilibrium matrix E for a structure with a proper partition
must have the form given in Fig. 12.
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HMMIOdMIN

N

FiG. 12. Matriz E = [Ry, Ry).

Here we define R, = diag(E1, Es, -+, Exk). The elements of Ex; are often called
the redundant elements of the structure. Since the diagonal blocks of R; are square
and nonsingular, the structure must be stable. The following examples will illustrate
that R, often has a great deal of structure. In each example we indicate the parallel
portions of the computation of

Ezample 3. Consider Example 2 with the eight disjoint stable substructures

given by the dark lines (Fig. 13). The connecting elements Eg are indicated by light
lines.

4
Fi1G. 13. Ezample 2 with eight disjoint stable substructures.

Since this is pin-jointed truss, each 1 in the equilibrium matrix is a 2 x 2 identity
matrix and F is 28 x 88.
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NNNNANNNN

L -
F1G. 14. Fquilibrium matriz form for Fig. 13.

The diagonal blocks in Fig. 14 are

Ek = [ 1 1 ] =1 for k=1,2’3’6’7’8 and

I 1
1

Ey E; =

~

1| I =2 x 2 identity.

I

Note the “diagonal” structure of R, which is a result of ordering the connecting
elements from the left to the right. The parallel computation of Rl_le is clear. In
this case the work to be done on each substructure is not equal. So, we might want
to consider three groups of substructures {Si, S2, S3}, {Ss, Ss}, and {Se, S7, Ss}.

Ezample 4. Consider a rigid frame which models a wheel with eight spokes (Fig.
15). Each spoke is a stable substructure and together they form a proper partition.
The connecting elements are indicated by the light lines ess, - - -, e40.

F1G. 15. Rigid frame that models a wheel.
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There are 32 nodes with three forces at each node. Thus, F will be a 96 x 120 matrix
of the form

[ E, I f |
E, I r
E3 ff
E, f f
F =
Es [ f
Es I f
E; [ f
| Es f ]
where
0 I I I -I I I
10 _ I I -1 I I I 1
f_ 0 ’ Ek_ I I ) Ek - I =1 fork—l, ,8.
I I I

Then Ri'le is easily computed and B is the 120 x 24 matrix given by

g g
g g
g g
g g
g g
g g
B= Rl_lRZ g ! z
- -1 ] | -
-1
-1
I
-1
-1
-1
L —I -

g is defined by E 1. The above calculations can be done concurrently.

Ezample 5. This example of a pin-jointed structure illustrates how a nested
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structure (Fig. 16) of the elements will yield a very nice structure of Ry, and con-
sequently, B. This gives a more complicated form of Ry in E = [Ry, R;], where a
proper partition is identified.

1

F1G. 16. Pin-jointed-truss with nested structure of the elements.

The eight stable substructures are given by the dark lines. The dark and regular lines
indicate four disjoint substructures. The light lines are elements which connect these
four substructures. There are 30 nodes and 79 elements and two forces at each node.
Therefore, the equilibrium matrix F is 60 x 158 and has the form shown in Fig. 17.

DN

DO

DO

DA

Fi1G. 17. Equilibrium matriz form for Fig. 16.

The blocks of Ry can be grouped to match those in R;. This allows us to implement
the computation of Rl"le on a multiprocessing computer.

4. Reanalysis of structures and the force method. In this section we apply
the force method and the above structure of the nullspace matrix to the reanalysis of a
structure. Reanalysis refers to the analysis of a structure which has been only slightly
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modified. We will assume that only one element has been modified and that the
equilibrium matrix remains unchanged. We assume the equilibrium matrix has full
row rank. Thus, in (4) r = 0, A = diag (Ax), where each Ay is an ng X ng symmetric
positive-definite matrix. A will be modified by changing one A to Ay + 6x6F where
the 6y are ng % ng; we may assume the perturbation of A may be written in the form
667 (see Batt and Gellin [1]).

Since A is symmetric positive definite, A has a Cholesky factorization A = GTG.
Step (ii) of the force method may be viewed as the normal equation of a least squares
problem

(5) BTGTGBz, = —-BTGT Gz,
Thus, let GB = QR be the QR factorization and find z, by solving
(6) Rz, = ~QTGz,.
Here, R™! exists because B has full column rank.
The advantage of the force method is that we can use the QR factorization of the
unperturbed problem (5) to solve the perturbed problem
(7) BT (A + ekékéfef) B(.’L’o + A:L‘k) = -BT (A + ekﬁkb','fe{) Tp.

Here only the kth block of A has been perturbed by 6,6 . We have used the notation
ek for a n x ng matrix

ex = | I | « kth block, I = ny X ng identity and

Aisn xn, BTey is (n — m) x ny matrix consisting of the
Eism xn, kth block column of BT.
Bis n x (n—m),

The key formula in the proof of the following theorem is the Sherman-Morrison-
Woodbury formula (see Ortega and Rheinboldt [17]):

(8) (A+UVT) 1= A - A lUT +VTAIU) VT AL

Here (A + UVT)™1 exists if and only if (I + VT A~1U)~! exists.

THEOREM 4.1. Let z, be the solution of (5) (or equivalently (6)). Let GB = QR
where A = GTG is symmetric positive definite and B has full column rank. Then the
solution of (7) is given by x, + Axy, where

(9) Azg = [RT'RT —R'RTUI + UFR'R™TU)'UFR'R™T] fi,
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U = BTeibs (n —m) x ng matriz,
I ng X ng  identity matriz,
fr = —BTechk:S,"fef(on + xp).

Proof. Consider (7) where z, satisfies (5)

BT(A + ek6k6,7;ef)B(xo + Axy) = —BT(A + ek6k6,{e{)xp,

BT ABz, + BT ABAzy, + BT e 616F ef B(z, + Axg) = —BT Az, — BT e 668 ef zp.
Since (5) holds and A = GTG,
(BTGTGB + BTei66f e B)Azy = —BTeré18% ef (Bxo + p) = fi-

Apply the Sherman-Morrison-Woodbury formula (8) with the following substitutions

A = BTGTGB=RTQTQR=RTR,
A—l — R—IR—T

U = U= BTeb,

Vv = U

This completes the proof of the theorem. 0

Note, I + UTR™'R~TUj, in (9) is an ny x ni symmetric positive-definite matrix,
and therefore, its inverse exists and is simple to compute for small ny.

The appearance of the e, and el matrices in (9) reduces the amount of com-
putation. The n; usually ranges from one to ten. Also, B is usually sparse. The
calculation of the QR factorization of GB often can be done in parallel. Consider
Example 4 where B has a block structure. The Givens transformations can be used
in parallel by concurrently working on the eight column blocks. The —1I in row block
33 and column block 1 can be used to annihilate the components in row blocks 1-4
and column block 1. At the same time the terms in row blocks 5-8 and column 2 can
be annihilated by the —I in row block 34 and column block 2. The remainder of the
top 32 row blocks can be annihilated concurrently in a similar manner.

5. Applications to incompressible fluid flow. In this section we consider
an application of the force method, the proper partition of the finite difference grid
(structure), and the time induced reanalysis to incompressible fluid flow (see [3] or
[11]). As noted in Hall [11], an appropriate discretization of the Navier-Stokes equa-
tions will yield a sequence of problems of the form (4). The matrix A will change a
little from one time step to the next. As FE reflects the conservation of mass equation,
it remains fixed. In this section we illustrate how we can approximate the solution of

(10) BT(A+ AA)B(z, + Az) = BT (r — (A + AA)z,)

where A A represents a change in A because the velocity has changed from one time
step to the next time step(s). We want to make use of the solution process when A4 =
0 and Az = 0, that is, the LU factorization of BT AB is known. The perturbation AA
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of A, unlike the perturbation for structures, may change every row of A. However,
the magnitude of AA, ||AA|, may be small for suitably small changes in time. Also,
A is not symmetric, but BT AB is invertible (see Theorem 1.2).

Before we consider the details, we review an example given in Burkardt, Hall, and
Porsching [4] and Hall [11]. Consider the incompressible fluid flow about an obstacle
with no-slip boundary conditions at the walls (Fig. 18).

e
L~ N——]

“\.//_

\_—_/

vYYY

Fi1G. 18. Fluid flow about an obstacle.

A finite difference grid with 14 cells has 21 unknown velocity components given by
the following vectors in Fig. 19.

1 213 | 415 v
! 30 3 R i 3 I 17
3
y Vo Vg
10 14 Vo1
node 9

F1G. 19. Finite difference grid for Fig. 18.

(A full numbering of this network is given in Hall [11].) Each cell is analogous to a
free node and each vector component is analogous to an element. The nodes to the
right of vectors vs, v, and v13 are fixed nodes. The connected graph is now directed
and the corresponding equilibrium matrix has entries 0 and %1, called an incidence
matrix in [11]. For example, row 9 in the incidence matrix reflects the conservation
of mass for cell 9:

vg — U7 V17 — V21

h h

=0,

where h = Az = Ay. Except for cells 6 and 7, each horizontal row of cells is similar
to a stable substructure. The incidence matrix is almost in the form given by a proper
partition. It fails to be a proper partition because the cells 6 and 7 with the vector
vg is not a stable structure. The incidence matrix E is given:



18 R. J. PLEMMONS AND R. E. WHITE

Execute the following elementary row operations:

add row 6 to row 7,
interchange row 7 and row 14,
add row 14 to row 1,

subtract row 14 from row 6 .

Representing these by a matrix G we have the following matrix GE:

1 1 0 0-1-1 0 0]
-1 1

oS O =
S = O
[l ==
-0 O o
OO
|
S = O
-0 o

The matrix GE has the form which is associated with a proper partition.

1

0 0-1-1

—_

1
1
0 0|

Conse-

quently, the nullspace of E is given by the span of the columns of B which is a 21 x 7

matrix:

1 -1
0 -1
0 -1
0 -1 -1
0 -1 -1 -1
-1 0
0 1 0
0 1 1 0
1
B___[R;’Rz]_ !
—I 1
1
1 0 0 -1

-1

-1
-1

-1

-1
-1
-1
-1
-1

— e e e OO O

-1
-1

—

(=]

—
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It is interesting to compare this nullspace basis with the basis B obtained in Hall [11]
by using graph theoretic ideas. In [11], B is a little more sparse, but B may not be

constructed by utilizing the properties of a proper partition.

In the above, the incidence matrix was initially not in the form associated with
a proper partition of a structure. We can reorder the nodes so that the correspond-
ing incidence matrix does have the desired form. This is indicated by the following

example where the three substructures are given by the dark lines.

Ezample 6. Consider the following proper partition of a finite difference grid

(structure) (Fig. 20).

3 4 ) 6 7

2 10 8 3 |

| 7 + 41
1 12 13 14

F1G. 20. Proper partition of a finite difference grid.

Then the associated equilibrium matrix E has the following form:

-1 1

The resulting Ry 'Ry has the form

[ e
R

R;‘Rz =

-1
-1
-1
-1
-1

-1
-1
-1

Then B has the form

-1
-1
-1
-1

[

-1
-1
1
1

-1
-1

1 -1 -1
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1
1 1
1 1
1 1 -1
1 1 -1
1 1 -1 -1
1 1 -1 -1 -1
1 -1
1 1 -1 -1
EaNE B
-1 -1 -1 1
-1 -1 1 1
-1 -1 1 1 1
-1
-1
-1
-1
-1
-1
L -1-

Consider the perturbed problem (10), and assume the solution for (10) with AA =
0 is given by z,. Theorem 2 gives conditions on A and B that are applicable to fluid
flow problems. Suppose that BT AB = LU has a known LU factorization. Then the
solution of equation (10) can be approximated for suitably small AA.

THEOREM 5.1. Let (BTAB)™! exist and z,, satisfy (10) with AA = 0. Then for
suitably small AA,
(11) (Az)™*! = (BTAB)™! [-BTAAB(Az)™ — BT AA(Bz, + z,)]
converges to Az and x, + Az satisfies (10).

Proof. Write (10) in expanded form:

BT ABz, + BTABAz + BTAABz, + BTAABAz = BT (r — Az,) — BT AAxz,.
Since BT ABz, = BT (r — Az,),
BTABAz + BTAABAz = —BT AA(Bz, + ).
Or, as (BTAB)™! exists,
Az = (BTAB)™'(-BTAAB)Az — (BTAB)™! (BTAA(Bz, + 1)) -

So, if p (BTAB)~!(—~BTAAB)) < 1, then the iterative scheme (11) must converge.
Since

I(BTAB)~'(-BTAAB)| < |(BTAB)™!|| |BTAAB|,

we have the desired result for suitably small AA. O

As already mentioned, we must solve a sequence of problems of the form (4) where
A is changing with each time step. It is not necessary to compute the LU factorization
for each BT AB. In particular, we may use the following scheme for solving (4) with
A replaced by A, = the value of A at the £th time step:
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(i) Factor BT AyB = L,U, and solve (4) for z, = x4 = the value of = at the
£th time step.
(ii) Approximate Azy, in BT AgyB(z¢ + Azy) = BT (r — Ag4xzp) by using
line (11) in Theorem 5 with AA = Ayt — Agand 1 <k < K.
(iii) Repeat (i) and (ii) with £ replaced by £ + K. The size of K will be
determined by AA and the magnitude of p ((BTAB)~"}(BTAAB)) in
the iterative scheme (11).

There are several advantages of using the force method to solve the full system
in (4). The force method is a variable reduction scheme which involves solution of
reduced linear systems with BT A;B. Theorem 5 shows that BT A;B does not require
a new LU factorization for each £. The matrix B is a nullspace basis matrix for an
incidence matrix E; where, upon appropriate ordering of the cells, F has the features
of a proper partitioned equilibrium matrix. Consequently, B is easily computed and
can have a useful structure of its own which can further simplify the solution of linear
systems with BT A,B. O
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STABILITY ANALYSIS OF ALGORITHMS FOR SOLVING CONFLUENT
VANDERMONDE-LIKE SYSTEMS*

NICHOLAS J. HIGHAM#}

Abstract. A confluent Vandermonde-like matrix P(ag, @y, * -+ , @,) is a generalisation of the confluent
Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the
polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px = b and P7a = f in
O(n?) operations are derived. Forward and backward error analyses that provide bounds for the relative error
and the residual of the computed solution are given. The bounds reveal a rich variety of problem-dependent
phenomena, including both good and bad stability properties and the possibility of extremely accurate solutions.
To combat potential instability, a method is derived for computing a “stable” ordering of the points «;; it
mimics the interchanges performed by Gaussian elimination with partial pivoting, using only O(n?) operations.
The results of extensive numerical tests are summarised, and recommendations are given for how to use the
fast algorithms to solve Vandermonde-like systems in a stable manner.

Key words. Vandermonde matrix, orthogonal polynomials, Hermite interpolation, Clenshaw recurrence,
forward error analysis, backward error analysis, stability, iterative refinement
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1. Introduction. Let {pi(2)}%-o be a set of polynomials, where py is of degree k,

and let ag, ;, -, a, be real scalars, ordered so that equal points are contiguous,
that is,
(11) a; = o (l<_]) = 0T Qp T T

We define the confluent Vandermonde-like matrix
P=P(ag,e, -+ )= [do(0), 1 (), =+ , gl ) |ERF DX 4D,

where the vectors ¢;(¢) are defined recursively by

[po(2), pi(2), -+, Pu(0)]T ifj=00r ;# o _y,

4(=14 4 .
7 q;-1(1), otherwise.

In the case of the monomials, p,(z) = t¥, this definition yields the well-known confluent
Vandermonde matrix [9], [4]. When the points «; are distinct we can write P =
(pi())? -0, and P is referred to as a nonconfluent Vandermonde-like matrix [12]. For
all polynomials and points, P is nonsingular; this follows from the derivation of the
algorithms in § 2.

Various applications give rise to confluent or nonconfluent Vandermonde or Van-
dermonde-like systems

(1.2) Px=b (primal)
and
(1.3) PTa=f (dual).

* Received by the editors December 7, 1987; accepted for publication (in revised form) March 22, 1989.
+ Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
(NA.NHIGHAM@NA-NET.STANFORD.EDU ).
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Three examples are the construction of quadrature formulae [2], [14], [15], rational
Chebyshev approximation [1], and the approximation of linear functionals [3], [22].

For the monomials, with distinct points «;, efficient algorithms for solving the primal
and dual Vandermonde systems are given in [ 5]. These algorithms have been generalised
in two ways: in [4] they are extended to confluent Vandermonde matrices, and in [12]
they are extended to nonconfluent Vandermonde-like matrices, under the assumption
that the polynomials p, () satisfy a three-term recurrence relation. In § 2 we blend these
two extensions, obtaining algorithms for solving (1.2) and (1.3), which include those in
[51,[4], [12] as special cases. We also show how to compute the residual vector of the
dual system efficiently using a generalisation of the Clenshaw recurrence.

In § 3 we present an error analysis of the algorithms of § 2. The analysis provides
bounds for both the forward error and the residual of the computed solutions. It makes
no assumptions about the ordering or signs of the points «;, and thus extends the error
analysis in [11].

To interpret the analysis we compare the error bounds with appropriate “ideal”
bounds. This leads, in § 4, to pleasing stability results for certain classes of problem, but
also reveals grave instabilities in some other cases. The instabilities can be interpreted as
indicating that the natural, increasing ordering of the points can be a poor one. In § 5
we derive a technique for computing a more generally appropriate ordering. The method
is based on a connection derived between the stability of the fast algorithms and the
stability of Gaussian elimination. As a means for restoring stability, the re-ordering ap-
proach has several advantages over iterative refinement in single precision, which was
used in [12] and [21].

Numerical experiments are presented in § 6. Finally, in § 7 we offer recommendations
on the use of the fast algorithms for solving Vandermonde-like systems in a stable manner.

2. Algorithms. Assume that the polynomials p,(¢) satisfy the three-term recur-
rence relation

(2.1a) Di+1(1)=0,(t—B)p{(t) —v;pj- (1), JZ1,
with
(2.1b) po(1)=1, D1(2)=0o(— Bo)po(t),

where 6; # 0 for all j. Algorithms for solving the systems (1.2) and (1.3) can be derived
by using a combination of the techniques in [4]and [12]. Denote by 7(i) = 0 the smallest

integer for which o; = o;—| = - -+ = a,(;). Considering, first, the dual system (1.3), we
note that
n
(2.2) o()= 2 a;ipi(1)
i=0
satisfies

o) = f, 0=i=n.

Thus ¢ is a Hermite interpolating polynomial for the data { «;, f;}, and our task is to
obtain its representation in terms of the basis { p;(¢)}7-o. As a first step, following [4],
we construct the divided difference form of ¢:

i—1

(2.3) o()=2 ¢ [] (1-a).
i=0

i=0
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The (confluent) divided differences ¢; = f[ao, @y, - * + , @;] may be generated using the
recurrence relation [4], [20, p. 55]

(2.4)
Slej—i ol =fley-k-1, "+ s e-1] GF Q-1
0= O — k-1 ’ ’ ’ ’
Slaj—p—1, 1=
ﬂ(j)+k+l —
——(k+l)' s o= 0 _f—1.

Now we need to generate the a; in (2.2) from the ¢;in (2.3). We can use the recurrences
in [12], which are unaffected by confluency; these are derived by expanding (2.3) using
nested multiplication, and using the recurrence relations (2.1) to express the results as
a linear combination of the polynomials p;.

In the following algorithm Stage I computes the confluent divided differences. We
use an implementation of (2.4) from [6, pp. 68-69], in preference to the more complicated
version in [4]. Stage II is identical to the corresponding part of the dual algorithm
in [12].

ALGORITHM 2.1 (Dual, P7a = f). Given parameters {0;, B, v} /=, a vector f,
and points { a; } /- satisfying (1.1), this algorithm solves the dual system P7a = f.

Stage I: Setc=f
Fork=0ton—1
clast = ¢
Forj=k+ 1ton
Ifaj= aj_k_lthen
¢ = ¢/(k+1)

else
temp = ¢;
¢ = (¢ — clast)/(o; — k- 1)
clast = temp
endif
endfor j
endfor k
Stage II: Seta =c¢
1= 0n—1+ (Bo— an-1)an
a, = an/ 00

Fork=n—2to0step —1
ax = ar+ (Bo — ar)ar+1 + (v1/01)ak + 2
Forj=1lton—k—2
=+ jl0i -1+ B — )y jr1+ (Vir1/0i+ 1)+ j+2

endfor j
an-1 = an—l/an—-k—Z + (.Bn—k-l - ak)an
An = an/0n k-1

endfor k 0O

In the algorithm the vectors ¢ and a have been used for clarity; in fact both can be
replaced by f, so that the right-hand side is transformed into the solution without using
any extra storage. Assuming that the values v;/0; are given (note that +y; appears only in
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the terms +;/6;) the computational cost of Algorithm 2.1 is n(2n + 1)M and at most
n(5n + 3)/2A4, where M denotes a multiplication or division, and 4 an addition or
subtraction.

An algorithm for solving the primal system can be deduced immediately, using the
approach of [4], [5], [12]. We will show in § 3 that the dual algorithm effectively
multiplies the right-hand side vector f by P~7, employing a factorisation of P~ 7 into
the product of 2n triangular matrices. Taking the transpose of this product we obtain a
representation of P!, from which it is easy to write an algorithm for computing
x=P7'b.

ALGORITHM 2.2 (Primal, Px = b). Given parameters {0;, 8, v;}~¢ , a vector b,
and points { «; } 7o satisfying (1.1), this algorithm solves the primal system Px = b.
Stage I. Setd =»
Fork=0ton—2
Forj=n—kto 2 step —1
i j=(Yj-1/0j- 1)k +j-2 + Bi—1— ar)disj— 1+ diev /0
endfor j
dic+1 = (Bo — aw)di + dic + 1/00
endfor k
dn = (Bo — an—1)dn -1+ dn/bo

Stage II: Set x = d
Fork=n—1to0step —1
xlast =0
Forj=ntok + 1step —1
IfOlj S0 k-1 then
x; = x;/(k + 1)
else
temp = x;/(ej — o k- 1)
x; = temp — xlast
xlast = temp
endif
endfor j
X = Xp — xlast
endfor k O

Algorithm 2.2 has, by construction, the same operation count (to within one ad-
dition) as Algorithm 2.1. Values of 8;, 8;, v, for some polynomials of interest in Algorithms
2.1 and 2.2 are given in Table 2.1.

For practical use of Algorithms 2.1 and 2.2 it is important to be able to calculate
the residual, in order to test that the algorithms have been coded correctly (for example)
and, perhaps, to implement iterative refinement (see § 5). Ordinarily, residual compu-
tation for linear equations is trivial, but in this context the coefficient matrix is not given
explicitly, and computing the residual turns out to be conceptually almost as difficult,
and computationally as expensive, as solving the linear system!

To compute the residual for the dual system we need a means for evaluating ¢(z)
in (2.2) and its first k = n derivatives, where k = max; (i — r(i)) is the order of confluency.
Since the polynomials p; satisfy a three-term recurrence relation we can use an extension
of the Clenshaw recurrence formula. The following algorithm implements the appropriate
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TABLE 2.1
Parameters in the three term recurrence (2.1).

Polynomial 0; B; 07
Monomials 1 0 0
Chebyshev 2% 0 1 *p = 1
2j+1 j
* 0 —_ *pi(1 1
Legendre T 71 pi(1) =
Hermite 2 0 2j
Laguerre ——-1—— 2+ 1 —]—
. J+1 / J+1

recurrences, which are given in [18]; we note that an alternative derivation to that in
[18] is to differentiate repeatedly the original Clenshaw recurrence and to rescale so as
to consign factorial terms to a “clean-up” loop at the end.

ALGORITHM 2.3 (Extended Clenshaw recurrence [18]). This algorithm computes
the k + 1 values y; = ¢ V)(x), 0 = j =< k, where ¢ is given by (2.2) and k < n. It uses a
work vector z of order k.

Sety,=z;=0 (i=0,1,---,k)

Yo = an
Forj=n—11to0step —1
temp = yo
Yo=0i(x—B)¥o — vj+120 + @
Zo = temp
For i = 1 to min (k, n — j)
temp = y;
Vi=0((x = B))yi+ zi-1) — Yj+1Zi
z; = temp
endfor i
endfor j
m=1
Fori=2t0k
m= mi
Yi=mxy;
endfor i O

Cost. 3[n+kn—k(k—1)/2](M + A) + 2 max {0, k — 1} M.
Computing the residual using Algorithm 2.3 costs between approximately
3n2/2(M + A) (for full confluency) and 3n2(M + A) (for the nonconfluent case).
The residual for the primal system can be computed in a similar way, using recur-
rences obtained by differentiating (2.1).

3. Rounding error analysis. In this section we derive bounds for the forward error
and the residual of the computed solution obtained from Algorithm 2.1 in floating point
arithmetic. Because of the inherent duality between Algorithms 2.1 and 2.2 all the results
that we state have obvious counterparts for Algorithm 2.2.

The key to the analysis is the observation that Algorithm 2.1 can be expressed
entirely in the language of matrix-vector products (a similar observation drives the analysis
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of a related problem in [19]). In Stage I, letting ¢¥ denote the vector c at the start of
the kth iteration of the outer loop, we have

(3.1) cO=f ck+D=p,c0  |=0,1, -+ ,n—1.

We will adopt the convention that the subscripts of all vectors and matrices run from 0
to n. The matrix L, is lower triangular and agrees with the identity matrix in rows 0 to
k. The remaining rows can be described by, for k + 1 =j = n,

TL e,T/(k+l) ifaj=aj_k_1,
g (ef —el/(aj—aj_k—,) for some s<j, otherwise,

where ¢; is column j of the identity matrix. Similarly, Stage II can be expressed as
(32) a”=c",  aP=Ua**", k=n—1,n-2,---,0.

The matrix Uy is upper triangular, it agrees with the identity matrix in rows 0 to k — 1
and it has zeros everywhere above the first two superdiagonals.

From (3.1) and (3.2) we see that the overall effect of the Algorithm 2.1 is to evaluate
step by step the product

(33) a=UO'"Un—an—l"'LOfEP_Tf
We adopt the standard model of floating point arithmetic [6, p. 9]:
(3.4) fi(xop y)=(xop y)(1+3d), [6|=u, op=+,—%,/,

where u is the unit roundoff. In line with the general philosophy of rounding error analysis
we do not aim for the sharpest possible constants in our bounds, and are thus able to
keep the analysis quite short.

THEOREM 3.1. Let Algorithm 2.1 be applied in floating point arithmetic to floating
point data { a;, f;}?-o. Provided that no overflows are encountered the algorithm runs to
completion, and the computed solution d satisfies

|[d—al =c(n,u)|Up| - |Up—y| | Ly—1|--- | Lol | f1,

where, with u = (1 + u)* — 1, c(n, u) = (1 + p)*>" — 1 = 8nu + O(u?).

Proof. First, note that Algorithm 2.1 must succeed in the absence of overflow, be-
cause division by zero cannot occur.

Because of the form of L, straightforward application of the model (3.4) to the
components of (3.1) yields

(3.5) ¢+ D =D Lié®,

where Dy = diag (d;), with d;=1 for 0=i<k, and (1 —u)*=d;= (1 + u)?® for
k+1=i=n.Thus

| D=1 =[(14u)*~111,
and hence (3.5) may be written in the form
(3.6) ¢ D= (L+ AL P, | ALc| ST(1+u)®—1]] L.

Turning to (3.2), we can regard the multiplication a® = U,a** 1 as comprising
a sequence of three-term inner products. Analysing these in standard fashion, using (3.4),
we arrive at the equation

(3.7) V= (Ut AUYA** D, AU =[(1+u)* = 111 Uil
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wl}cere we have taken into account the rounding errors in forming uf'f)H = 6; — oy and
Uh s = yje1/0+1 (i = k + j).
Since &@ = £, and 4 = 4*, (3.6) and (3.7) imply that
(38)  d=(Up+AUy)+(Up— 1+ AUy )(Ly—1+ AL, )+ -(Lo+ ALp)f,
where, on weakening (3.6), we have
AU Su|Ukl, AL SplLel, p=(1+u)*-1.

Now we make use of the following perturbation result that is easily proved by induction:
For matrices X; + AX;, if |AX;| = 8| X;| for all j, then

II (x+ax)—II X|=1(1+8)"* ' =11 I 1.x51.
j=0 j=0

ji= j=0

Applying this result to the difference of (3.8) and (3.3), we obtain the desired bound for
the forward error. O

In the course of proving Theorem 3.1 we derived (3.8), a form of backward error
result. However, (3.8) is of little intrinsic interest because the perturbations it contains
are associated with the matrices U, and L;, and not in any exploitable way with the
original data { o, f;} (and, possibly, {6;, 8;, v;}). The appropriate way to analyse backward
error, as we will explain in § 4.2, is to look at the residual, r = f — P7q (cf. the similar
approach taken in a different context in [7]). Rearranging (3.8),

(39) f=Lo+ALy) ™" - (Ly-1+ALy— ) "(Up— 1+ AU, - 1) 7" -+ (Up+ AUp) 7'd.
From the proof of Theorem 3.1 we can show that
(L +AL) ™' =Li' + Ey, | Eel S[(1—u)—1]| LK'|.

Strictly, an analogous bound for (U, + AU,)™! does not hold, since AU, cannot be
expressed in the form of a diagonal matrix times U,. However, it seems reasonable to
make a simplifying assumption that such a bound is valid, say,

(3.10) (Ut AU =Ui' + Fy, | Fel =[(1—uw)* = 1]| Uk |.
Then, writing (3.9) as
f=(Ls"+Eo) - (Li \+ E, - YUzl (+ Fy-y) -+ «(Ug' + Fo)d

n—1
=PTd+( > L' Ly \ExLgh, - LY Uyl - - UG
k=0
n—1
+ 2 Lg' - ~L;‘_1U;‘_l---U;LIFkU;LI--'Ua‘)d+0(u2),
k=0
we obtain the following result.
THEOREM 3.2. Under the assumption (3.10), the residual of the computed solution
d from Algorithm 2.1 is bounded by

|f =PTd| =du| Lg' |-+ | LyL [ |URL |-+ | UGt | 1dl + O(u?),

with d, = Tn. O
In common with most error analyses the one above uses a profusion of triangle and
submultiplicative inequalities, and consequently the bounds will usually be unrealistic
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error estimates. However, as we will see, they are well able to reveal extremes of behaviour,
with respect to accuracy and stability.

4. Implications for stability. Now we pursue the implications of the error analysis.
To interpret the forward error bound of Theorem 3.1 and the backward error bound of
Theorem 3.2 we need to use two different notions of stability. We consider these separately
in §§ 4.1 and 4.2, since there is no simple relation between them and each is of independent
interest. We will focus attention mainly on the nonconfluent case, making brief comments
about the effects of confluency.

4.1. Weak stability. To interpret the forward error bound
(4.1) ld—al=c(n,u)|Up| - |Up—1 || Ly—1 |- | Lol | f]

from Theorem 3.1 we need an “ideal” bound with which to compare it. Following the
approach of [11, § 4] we consider the effect of a small, element-wise perturbation in f.
If PT(a + éa) = f + of with |8f | = u |f], then it is easy to show that

(4.2) léal =ul P~T]| f1,

and that equality is attained for suitable choice of 8f. This prompts the informal definition
that an algorithm for solving P7a = f in floating point arithmetic is weakly stable if the
error in the computed solution is not much larger, in some appropriate measure, than
the upper bound in (4.2). A useful way to interpret the definition is that if the machine
right-hand side vector is inexact, then a weakly stable algorithm solves the machine
problem to as good an accuracy as the data warrants.

By comparing (4.1) and (4.2) we see that Algorithm 2.1 is certainly weakly
stable if

(43) IUOI IUn—II |Ln—l | |L0| —S—bnlp_Tl =anUO"'l]n~1Ln—1 LOl
for some small constant b, = 1. This condition requires that there be little subtractive
cancellation in the product Uy - - U,,_ L, - - Ly. Suppose the points are distinct and

consider the case n = 3. We have
P—T= U0U1U2L2L|L0

1 60—a0 71/01 0 1 0 0 0
_ 05"  Bi—ao v2/0: 1 Bo—ar  v1/6
B 07" B 0"  Bi—a
05" 07!
[1 00 0 1
v 1 0 0 0 1
1 60—a2 00 1
0o 0 0 —1/(as—ap) 1/(az—ap)

(4.4) -

1

0

0 —1/(ez—ap) 1/(ax—ap)

0 0 —1/(az3—a;) 1/(az—ay)

i 1

% —1/(ay—ap) 1/(a;—ap)

0 —1/(x—a;) 1/(z—ay)

L 0 0 —1/(as—az) 1/(az—a3)
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There is no subtractive cancellation in this product as long as each matrix has the alter-
nating sign pattern defined, for 4 = (a;), by (—1)**/a; Z 0. This sign pattern holds for
the matrices L; if the points «; are arranged in increasing order. The matrices U; have
the required sign pattern provided that (in general)

(4.5) 6,>0, ;=0 foralli, and Bi—ay=0 foralli+k=n—1.

Hence we obtain the following result, where we weaken the last condition to §; = 0 and
o; = 0 for all i since 8; = 0 holds for most of the commonly occurring polynomials.

COROLLARY 4.1. If 0= ap< oy < -+ <oy, and ;> 0, 8; = 0 and v; Z 0 for all
i, then

ld—al =c(n,u)| PT||f],

where c(n, u) is defined in Theorem 3.1, and hence, under these conditions, Algorithm
2.1 is weakly stable. O

Corollary 4.1 is stated without proofin [12, § 3]. In the special case of the monomials
(0, =1, 8; = v; =0) Corollary 4.1 is essentially the same as the main result of [11, Thm.
2.3]. As shown in [11], the bound in the corollary can imply high relative accuracy even
when P~ 7T is large. To see this, note that under the conditions of the corollary P~7
has the alternating sign pattern, since each of its factors does; thus if (—1)'f; = 0 then
|P~T||f| = |P"Tf| = |a|, and the corollary implies that 4 is accurate essentially to
full machine precision.

The nonnegativity condition on the points_o; in Corollary 4.1 is rather restrictive,
since points of both signs are likely to occur in practice. Suppose, then, that we alter the
conditions of Corollary 4.1 to allow that

(4.6) < <op<0=api1<: - <ay, O=sm=n—1.

The matrices L, retain the alternating sign pattern,asdo Uy, 41, -+, Uy—,. But Uy, * - -,

U,, lose the sign property, and so there is subtractive cancellation within the product

Uy U,_L,_ - Ly. It is possible to derive an a priori bound for the effect of this

cancellation. For example, we have U; 2 0 for 0 = i = m, and so

|U0| |Un—l||Ln—l|"' ILOI =UO"'UmlUm+l"'Un—1Ln—l"'L0|

=BIB—IBUm+l"'Un—an—l"'Lol

4.7

4.7) =B|B~'P7T|
=B[B7'||P7T],

where B = U - - U,,. However, in our experience this inequality is quite weak, and to
obtain a manageable bound for the term B| B~!| would produce a substantial further
weakening. Therefore we adopt an empirical approach.

For various distributions of distinct points ; € [—1, 1], ordered according to (4.6),
we evaluated for the monomials, and for the Chebyshev polynomials T(¢), the ratio

__"|U0|"'|Un—l||Ln—l|"'|L0|"oo
= — >1.
1P~

(4.8) n

This quantity is a norm-wise analogue of b, in (4.3); we have taken norms because for
points satisfying (4.6) inequality (4.3) can fail to hold for any b, since P~7 can have a
zero element while the lower bound matrix in (4.3) has a nonzero in the same position.
Note that g, can be interpreted as a measure of the sensitivity of the factorisation
P T=Uy--U,_ L, Ly to perturbations in the factors. Loosely, for a particular
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problem we would expect Algorithm 2.1 to perform in a weakly stable manner only if
g, is not too large compared to one.

Values of g,, together with the condition number k., (P7) = | PT|| | P~ 7|, are
presented for two representative point distributions in Figs. 4.1 and 4.2. The g, values
for the monomials are reasonably small, but suggest some potential instability. More
seriously, the results indicate severe instability of Algorithm 2.1 for the Chebyshev poly-
nomials; for example, with n = 30 and «; the extrema of T}, there is a potential loss of
up to 14 figures in solving an almost perfectly conditioned linear system (cf. problem
(6.3)). Instability of this magnitude was diagnosed in [12], and a heuristic explanation
is given there. The present analysis reveals the source of the problem: the matrix factorisa-
tion at the heart of Algorithm 2.1 is, in some cases, an unstable one, in the sense that
the product is unduly sensitive to small perturbations in the factors.

If the order of confluency k is positive, and the points are in increasing order, then
the alternating sign condition fails to hold for at least one of Ly, -+, Ly—;. A result
similar to Corollary 4.1 can be obtained using the technique employed in (4.7). For
example, if £ = 1 then the bound in Corollary 4.1 can be replaced by

ld—al=c(n,u)| P~T| | M|| f],
where M = | Lg' || Lo| is unit lower triangular and satisfies |m;;| < 2.

4.2. Backward stability. We turn now to the residual bound in Theorem 3.2:

(4.9) \f =PTd| Sdwu|Lg" |-+ | Lyt [1URL |-+ [ UG | 4] + O(u?).

For comparison, if d agrees with a to working precision (e.g., @ = fl(a)) then
a=d+aéa, |éd| =uldl,

and so

(4.10) |f —PTa| = | PTsa| <u| PT||a).

We take (4.10), and the norm-wise version

(4.11) If=PTallo =ull PTl ol

as our model bounds for the residual vector. Connections with the usual notion of back-
ward error are that (4.10) is true if and only if, for some E [16], [17],

(4.12) (PT+E)a=f, | E| £u| PT|,
and (4.11) implies
(4.13) (P"+F)a=f, |Flo=n"?u|P"l, (F=(f-P'a)a"/a’a).

Thus (4.10) and (4.11) are equivalent to the condition that 4 is the solution of a linear
system obtained from P7q = f by slightly perturbing P7, in the element-wise sense in
(4.12), or the norm-wise sense in (4.13). Note, however, that these perturbed matrices
are not, in general, Vandermonde-like matrices.

For the monomials, with distinct, nonnegative points arranged in increasing order,
the matrices L; and U, are bidiagonal with the alternating sign pattern, as we have seen
in § 4.1. Thus L' = 0 and U;! 2 0, and since PT = Lg'---L;L,\U;L, - - Uj', we
obtain from (4.9) the following pleasing backward stability result.

COROLLARY 4.2. Let 0 = ag < oy < *** < o, and consider Algorithm 2.1 for the
monomials. Under the assumption (3.10), the computed solution 4 satisfies

|f = PTd| =d,u| PT| |d| + O(u?),
with d, = Tn. O
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To investigate the general case (permitting confluency) it is useful to approximate
the matrix product in (4.9) by its lower bound in

|L||U|:=|Lg" - Ly [ UL - U | S T Lot -+ | LyLy | UL |-+ - UG

where PT = LU is an unnormalised LU factorisation. In so doing we make the residual
bound smaller and so we are still able to draw conclusions from a large value for the
bound. The significance of the approximation is that | L| | U| is the matrix that appears
in the backward error analysis of Gaussian elimination. For example, from [8] the LU
factors I and U computed by Gaussian elimination without pivoting on A € R"*" satisfy

nu
1—nu

(4.14) LU=A+E, |E| = |L]0].

Using our approximation in the bound (4.9), we obtain
(4.15) |f =PT4| =du| L| |U| |4| +0(u?) (PT=LU).

The similarity of (4.14) and (4.15) suggests that the backward stability of Algorithm 2.1
is related to that of Gaussian elimination without pivoting on P7. (Note that | L| |U| =
| LD| | D™'U| for any diagonal D, so the normalisation of our LU factorisation is un-
important.) For the same polynomials and points as in Figs. 4.1 and 4.2, Figs. 4.3 and
4.4 show values of

LUy

(4.16) =1 pT (PT=LU).

Again, the results predict serious instability of Algorithm 2.1 for the Chebyshev poly-
nomials, and, to a somewhat lesser extent, for the monomials.

5. Preventing and curing instability. Although the increasing ordering for the points
«; yields the favourable stability results in Corollaries 4.1 and 4.2, this ordering is not
universally appropriate for Algorithm 2.1, as evidenced by the instability for the Chebyshev

16 T T T T

14}

12 10Q10 koo (PT)

o 4

10
" 10G10 ke (PT)

5 10 15 20 25 30
n

FIG. 4.1. Monomials. X: o; = —1 + 2i/n; O: a,—; = cos (iw/n) (extrema of T,).
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polynomials when there are points of both signs. How, then, in general, can we construct
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FIG. 4.2. Chebyshev polynomials. X: a; = —1 + 2i/n; O: a,_; = cos (iw/n) (extrema of T,).
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1 s "
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n

FIG. 4.3. Monomials. X: a; = —1 + 2i/n; O: a,-; = cos (iw/n) (extrema of T,).

a “good” ordering of the points?

Consider the nonconfluent case. We suggest the following approach that exploits
the connection with Gaussian elimination exposed in (4.14) and (4.15). The bound
(4.15) suggests that to make Algorithm 2.1 backward stable the points should be ordered
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FIG. 4.4. Chebyshev polynomials. X: a; = —1 + 2i/n; O: a,—; = cos (ix/n) (extrema of T,).

so that g, in (4.16) is reasonably small. But re-ordering the points is equivalent to per-
muting the rows of P7, and as is well known, Gaussian elimination with partial pivoting
is a very successful way to obtain a row permutation that keeps g, small. Now we make
the crucial observation that the permutation that would be produced by Gaussian elim-
ination with partial pivoting on P can be computed in O(n?) operations, without actually
performing the elimination. To see this, recall that PT = Lg'---L;L \U;L,---Ug' =
LU, and so if we take L unit lower triangular then (cf. the inverse of (4.4))

i—1

ui=nh; H (ai—a)),

j=0
where h; depends only on the 6;. At the kth stage of Gaussian elimination on P7 the
partial pivoting strategy interchanges rows k and r, where |u,,| = max,>, | uy|. Because
of the equivalence between interchanges among the rows of P” and among the points
«a;, it follows that r is characterised by
k=1

H (as_aj)

j=0

k-1
H (ar"aj) .
j=0

Jj=

= max
szk

This relation forms the basis for the next algorithm.

ALGORITHM 5.1. Given distinct points ag, «;, *** , ay, this algorithm re-orders
the points according to the same permutation that would be produced by Gaussian
elimination with partial pivoting applied to P7(aq, o, * - - , ,) (but see below). The
permutation is recorded in the vector p.

Swap (o, a;) where o = min;z9 o,  po=J
Swap (a;, «;) where o; = max;; o, D =j
T =~ Qg (l=2>3"'.’n)
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Fork=2ton—1
m = mx (o — a—1) (i=k,---,n)
Fll‘ld] where ;= MaX;zk |7l','|
Swap (ax, ay); Swap (mx, ),  pe=]

endfor k
Cost. Approximately n?/2 multiplications and comparisons.

In fact, Algorithm 5.1 does slightly more than imitate partial pivoting since it chooses
ap and «;, rather than just «;, to maximise the (1, 1) pivot a; — «p. This has the desirable
effect of making the output of the algorithm independent of the initial ordering of the
points.

If we apply the heuristic that g, ~ 1 for Gaussian elimination with partial pivoting,
then from (4.15) we obtain for the ordering of Algorithm 5.1 the approximate re-
sidual bound

If = PTdll oo = dull PTll I dll o, + O(ue?).

Thus, under the several assumptions leading to (4.15), the ordering of Algorithm 5.1
renders Algorithm 2.1 (and similarly Algorithm 2.2) backward stable.

We note that Algorithm 5.1 never produces the increasing ordering, since it sets
«a; = max; «;. It is also interesting to note that Algorithm 5.1 is invariant under the
linear transformation of the points «; := pa; + A.

An alternative approach to achieving backward stability is to take an arbitrary or-
dering of the points and to follow Algorithm 2.1 with one step of iterative refinement in
single precision. This approach, advocated for general linear equation solvers in [13],
was used successfully with the nonconfluent version of Algorithm 2.1, with Chebyshev
polynomials, in [12]. However, we have no rigorous forward error bounds or residual
bounds for Algorithm 2.1 combined with iterative refinement.

In terms of computational cost the re-ordering strategy is preferable to iterative
refinement, since it requires only 5#2/2 multiplications in total, compared to the 7n2
multiplications required for two invocations of Algorithm 2.1 and a residual vector com-
putation. Moreover, in some applications a sequence of problems with the same, or
slightly changed, sequence of points may arise, in which case the re-ordering strategy
need be applied only once for the whole sequence.

In the confluent case Algorithm 5.1 can be applied to the distinct subset of the
points, with groups of equal points interchanged block-wise (since condition (1.1) must
be maintained). Note, however, that in this form the algorithm no longer mimics the
partial pivoting interchanges, and so the theoretical support is weaker.

6. Numerical experiments. We have carried out a wide variety of numerical ex-
periments to test the analysis of §§ 3-5, and to gain further insight into the behaviour of
Algorithm 2.1; we present detailed results for a subset of the tests in this section. The
tests were done using Borland Turbo Basic on a PC-AT compatible machine. Turbo
Basic uses IEEE-standard single and double precision arithmetic, for which the unit
roundoffs are u, = 272 ~ 1.19 X 1077 and ug, = 2732 ~ 2.22 X 107'6, respectively.

We solved each test problem in single precision using each of the following four
schemes, which we will refer to by the mnemonics indicated.

(1) Alg: Algorithm 2.1.

(2) Ord: Algorithm 2.1 preceded by Algorithm 5.1.

(3) Sir: Algorithm 2.1 followed by one step of iterative refinement with the residual

computed in single precision using Algorithm 2.3.
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(4) Gepp: Gaussian elimination with partial pivoting, where P” is formed in double
precision using repeated calls to Algorithm 2.3 (with x = «;, and a = ¢; in
(2.2)).
In all our test problems the points are in increasing order (of course this is irrelevant
for Ord and Gepp). For each computed solution d we formed the norm-wise rel-
ative error

ERR = 14—l
uspllall o
and the relative residual
— pTj4
rps o 1= PTl

usp | P7ll o1l oo

Here, a := dy, is the solution computed by Algorithm 2.1 in double precision, and the
residual f — P74 is computed using Algorithm 2.3 in double precision. The order n was
restricted to ensure that dg, was correct to single precision, thus ensuring a correct value
for ERR. Note that ERR and RES are scaled to be “independent of the machine preci-
sion”; thus both should be compared with 1 when assessing the accuracy of a computed
solution or the size of its residual.

Two further quantities computed were the model bound for ERR, from (4.2),

P f e

NPT

b

and g, in (4.16) (for the original, increasing ordering of the points).
The first problem,

(6.1) Chebyshev polynomials a; = i fi~Unif [~1,1],

illustrates Corollary 4.1 (Unif denotes the uniform random number distribution); see
Table 6.1. The excellent accuracy of Algorithm 2.1 is forecast by the corollary since, as
is clear from the results, | | P~ 7| | f] o =~ llallo (a is a large-normed solution). Inter-
estingly, the favourable forward error properties are seen to be lost in the process of
iterative refinement, as has been observed in [12].

Next, we consider the monomials on problems with points of both signs. We tried
a variety of problems, aiming to generate the instability that the analysis of § 4 predicts
may occur for the monomials. In most problems, including all those from [5] and [11],
Algorithm 2.1 performed in both a weakly stable and a backward stable manner, yielding

TABLE 6.1
Results for problem (6.1). All values except n are logs to base 10.

ERR RES
n ko(PT)  all. Alg Ord Sir  Gepp Alg Ord Sir Gepp W, &
10 8.6 6.5 -0.2 0.8 5.8 6.7 -1.6 -1.4 -15 -1.3 0.9 2.1
15 13.1 11.4 -0.3 0.4 10.3 6.9 -1.3 -1.6 -1.6 -1.3 0.1 35
20 17.6 13.9 1.0 1.6 14.7 6.9 -1.4 -1.8 —-1.5 -1.7 2.1 5.2

25 22.1 19.6 0.2 0.8 19.3 6.9 -1.7 -16 -—1.6 -09 08 64
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TABLE 6.2
Results for problem (6.2). All values except n are logs to base 10.

ERR RES
n ko(PT) llale Alg Ord Sir Gepp  Alg Ord Sir Gepp W, '

10 4.8 0.0 1.1 1.8 0.9 -03 -02 -1L5 -17 -3.6 1.3 22
15 7.3 0.0 2.2 3.9 2.0 1.2 1.6 -—-11 -—12 -29 23 34
20 9.7 0.0 3.8 6.4 2.8 1.9 3 -15  -—-19 -3.1 33 48
25 12.2 0.0 5.1 9.2 5.5 34 44 =21 -09 -30 44 52
30 14.7 0.0 6.1 11.6 9.3 44 54 -18 1.2 -29 55 6.1

TABLE 6.3
Results for problem (6.3). All values except n are logs to base 10.
ERR RES
n ko(PT)  llallw Alg Ord Sir Gepp Alg Ord Sir  Gepp Wy n
10 1.0 0.0 3.8 1.1 0.3 0.2 35 0.8 0.0 -0.2 0.4 4.2
15 1.2 0.0 6.5 1.0 0.3 0.5 5.9 0.3 0.1 -0.1 0.4 6.6
20 1.3 0.0 8.8 1.7 2.3 0.5 6.4 1.2 1.8 -0.1 0.4 9.1
25 1.4 0.0 10.9 2.1 6.5 1.9 6.5 1.4 5.8 0.1 0.5 10.3

ERR = w,, and RES = O(1). On examining the error analysis we selected the problem
(6.2) monomials o;=—1 +;’, f=PTe,,

reasoning that a = e, might “pick out” large elements in the matrix product in (4.9).
The results, summarised in Table 6.2, do indeed display instability, principally in the
residual, and they match well the predictions of the analysis, as can be seen by comparing
the values of RES (for Alg) and g,,.

The problem

i+~

(6.3) Chebyshev polynomials «,_;=cos ( g

), f=PTe,

in which the points are the zeros of 7}, +, illustrates the instability of Algorithm 2.1 for
the Chebyshev polynomials when there are points of both signs; the results are in Table
6.3. The re-ordering strategy successfully stabilises Algorithm 2.1, as does iterative re-
finement except at n = 25 (at this value even using double precision to compute the
residual brought no further improvement). Note that because P is well conditioned [10],
a small residual implies a small forward error in this problem.

Finally, we present two confluent problems. In these the order of confluency is four
and the distinct points {\;} ¢~ occur in groups of successive sizes 4, 3,2, 1, 4,3, -+ -,
where the obvious pattern repeats. The two problems are:

(6.4a) monomials j
Ad_i=cCos (

l_7r)5 i=0)1’."’d’ f=en'

(6.4b) Chebyshev polynomials d

In Table 6.4 we see that both iterative refinement and the re-ordering approach behave
very unstably on (6.4a) in the sense of weak stability; in our experience this instability
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TABLE 6.4
Results for problem (6.4a). All values except n are logs to base 10.

ERR RES
n ko(PT)  lale Alg Ord Sir Gepp Alg Ord Sir Gepp W, &n
9 6.4 -0.3 0.3 3.7 0.3 3.5 -1.1 -0.9 -1.0 -1.2 0.0 1.0
19 12.3 2.3 1.0 6.4 6.1 6.9 -1.7 -1.8 -1.7 -1.5 0.0 3.0
29 17.4 5.7 2.8 10.6 10.9 6.9 -0.6 -2.3 0.4 -1.8 0.0 4.8
TABLE 6.5

Results for problem (6.4b). All values except n are logs to base 10.

ERR RES
n ko(PT)  llale Alg Ord Sir Gepp Alg Ord Sir Gepp W, &n
9 6.6 -0.6 0.5 2.5 0.5 1.8 -3.7 -2.8 -2.5 -2.5 0.0 1.3
19 9.4 -0.9 4.9 4.2 2.1 4.6 -0.8 -2.4 -3.6 -2.3 0.0 4.1
29 11.3 -1.1 9.9 8.2 9.8 5.7 0.7 -0.8 1.0 -2.3 0.0 5.8

is unusual for the latter scheme. Table 6.5 demonstrates clearly that weak stability is not
implied by backward stability.

The complete set of test results contain several more features worth noting.

(1) The results for confluent problems were similar in most respects to those for
nonconfluent ones; the behaviour of Algorithm 2.1 seems to be minimally affected by
confluency. Test results for the Legendre polynomials were very similar in almost every
respect to those for the Chebyshev polynomials.

(2) The growth quantity g, for Gaussian elimination without pivoting is sometimes
many orders of magnitude bigger than RES for Alg, but approximate equality can be
attained, as in problem (6.2). This behaviour confirms our expectations—see the com-
ment at the end of § 3.

(3) For the monomials our experience is that the forward error from Alg is usually
similar to, or smaller than, the forward error from Ord.

(4) Unlike in the tests of [12], in which ug, ~ 107'°, we found that iterative re-
finement in single precision does not always yield a small residual (see Table 6.3, for
example). This does not appear to be due to errors in computing the single precision
residual via Algorithm 2.3, but seems to indicate that in order to guarantee the success
of iterative refinement in single precision a certain level of precision is required relative
to the degree of instability (indeed this is implied by the results in [13]).

(5) All our tests support the following heuristic, for which theoretical backing is
easily given:

The computed solution X from Gaussian elimination with partial pivoting applied
to a linear system Ax = b usually satisfies | X, = u~!{|b]lo/ | 4llw, Where u is the
unit roundoff.

Thus, although Gaussian elimination with partial pivoting is guaranteed to produce a
small residual, it is unable to solve accurately Vandermonde problems with a very large
solution, such as problem (6.1). (Indeed, merely forming the machine matrix fl(P7)
may be enough to force ||all, = u™!|| f ||/ || PT|| for the machine problem!)
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7. Conclusions. To conclude, we offer some brief guidelines on the numerical so-
lution of Vandermonde and Vandermonde-like systems. First, we caution that construc-
tion of algorithms that involve the solution of a Vandermonde-like system is not generally
to be recommended. The tendency for Vandermonde matrices to be extremely ill-con-
ditioned may render such an approach inherently unstable, in the sense that the “ideal”
forward error bound (4.2) is unacceptably large; furthermore, as » increases the solution
components may soon exceed the largest representable machine number, producing
overflow. Despite these problems we have seen that many Vandermonde systems can be
solved to surprisingly high accuracy using Algorithms 2.1 and 2.2. A useful rule of thumb
is that it is those Vandermonde systems with a large-normed solution—one that reflects
the size of P~!—that are solved to high accuracy.

Our experience shows that of the four solution methods considered in § 6 (Alg, Ord,
Sir, Gepp), none consistently produces the smallest forward error or the smallest relative
residual. Nevertheless, the error analysis and the test results point to some clear recom-
mendations for the choice of solution method. Recall that Alg denotes Algorithm 2.1
(or Algorithm 2.2) with the points arranged in increasing order, and Ord denotes Al-
gorithm 2.1 (or Algorithm 2.2) preceded by Algorithm 5.1.

Monomials. Nonnegative points: Use Alg. In the nonconfluent case Corollaries 4. 1
and 4.2 guarantee both weak and backward stability.

Points of both signs: (i) Use Alg. This usually behaves in a weakly stable and a
backward stable manner. (ii) If it is vital to obtain a small residual use Ord, perhaps
after first trying Alg. Note, however, that the forward error for Ord is usually no smaller,
and sometimes larger, than that for Alg (see Tables 6.2 and 6.4).

Other polynomials. Nonnegative points: Use Alg. In the nonconfluent case Corollary
4.1 guarantees weak stability if 6, > 0, 8; = 0, and v; = 0 in (2.1), as for the Chebyshev,
Legendre, and Hermite polynomials.

Points of both signs: Use Ord (Alg is unstable).

If the points are all nonpositive then in both cases Alg should be used with the
points in decreasing order (appropriate analogues of Corollaries 4.1 and 4.2 can be derived
for this situation).

Acknowledgments. I am grateful to Professor Charles Clenshaw for pointing out
reference [18], and to Des Higham for valuable comments on the manuscript.
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BALANCED APPROXIMATION OF STOCHASTIC SYSTEMS*
K. S. ARUNt AND S. Y. KUNGi

Abstract. The state of a linear system is an information interface between past inputs and future outputs,
and system approximation (even identification ) is essentially a problem of approximating a large-dimensional
interface by a low-order partial state. Balanced Model Reduction [IEEE Trans. Automat. Control, 26 (1981),
pp. 17-311], the Fujishige-Nagai-Sawaragi Model Reduction Algorithm [Internat. J. Control, 22 (1975), pp.
807-819], and the Principal Hankel Components Algorithm for system identification [Proc. 12th Asilomar
Conference on Circuits Systems and Computers, Pacific Grove, CA, November 1978] approximate this input-
output interface by its principal components. First generalizations of balanced model reduction to the stochastic
system approximation problem are presented. Then the ideas of principal components to the problem of ap-
proximating the information interface between two random vectors are generalized; this leads to three approximate
stochastic realization methods based on singular value decomposition. These methods and their relationship to
the different kinds of balanced stochastic model reduction are discussed.

Key words. balancing, model reduction, stochastic realization, system identification, principal components,
singular value decomposition, canonical correlations, mutual information, predictive efficiency

AMS(MOS) subject classifications. 93E12, 62M 10, 62H25, 60G25, 93B30

1. Introduction. This paper addresses the problem of identifying a linear, rational,
discrete-time system driven by second-order white noise, given estimates of the covariance
lags of the output process. The approach adopted in this paper is that of balanced model
reduction. In general, the state of a system is an information interface between the past
and the future, and the dimension of this interface is equal to the minimal order of the
system and the minimal size of its state vector. However, perturbations in the covariance
lags increase the apparent dimension of this interface to much more than the true system
order. Then the problem is one of constructing a reduced-order model whose state is an
adequate approximation of this apparently large-dimensional interface between the past
and the future. This partial state must be constructed from the significant components
of the information interface. The yardstick that we will use to measure the significance
of a candidate state component is the one that is used in balanced model reduction [1],
and in the deterministic identification algorithm of [3]. We will show that a partial state
chosen using such a criterion, has the highest predictive efficiency for the future.

The key idea is to put the full-order state in internally balanced coordinates, because
in such a coordinate system, the elements of the state vector are uncorrelated, and their
variances measure their individual contributions to the input-output behavior of the
system. Then, the partial state may be constructed from those elements of the full-order
state that have the largest variances. In this paper, we will indicate how the variances of
the different elements of the balanced full-order state can be determined directly from
the covariances via singular value decomposition, without actually constructing the full-
order model.

Section 2 develops a stochastic definition of system state, and demonstrates the
phase ambiguity in covariance information. Section 3 describes the many kinds of system
balancing that have been proposed in the context of stochastic model reduction. Section
4 discusses three approaches to approximate stochastic realization, and brings out their
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connections to the different balancing schemes discussed in § 3. The theme of § 4 is
principal components approximation of the past-future interface, which is also the state
space of the innovations representation (minimum-phase model) corresponding to the
covariance data.

2. Preliminaries.
2.1. The model. In state-space notation, a discrete-time, linear, shift-invariant, ra-
tional, pth order system is

(1) x(t+1)=Fx(t)+Tv(?), y(t)=hx(t)+v(¢)

where v(¢) and y(¢) are the input and output sequences, respectively, x(z) isa p X 1
state vector process, and F, T, and h are constant parameter-matrices of sizes p X p,
p X 1,and 1 X p, respectively. Henceforth, boldface, italic, and upper case Greek letters
will be used to denote matrices and vectors, and the transpose operator will be denoted
by a superscript .

In terms of the state-space parameters, the transfer function of the system is
given by

H(z)=h(zI-F)"'T+1,

the poles of the model are the eigenvalues of F, while the zeros are the eigenvalues of
the matrix (F — Th). It can be seen that the impulse response of the model, in terms of
the state-space parameters is

- 1, k=0,
1l =
hF<-I'T, k>0.

For any invertible p X p matrix Q, the transformed parameter-triple (Q'FQ, Q~'T,
hQ) has the same impulse response and transfer function; and it corresponds to a new
coordinate system for the state. The new state is Q ~'x instead of x.

The particular state-coordinate system we are interested in, is the so-called internally
balanced coordinate system [1]. The internally balanced realization is a special case of
the principal-axis realization introduced in [4]. The principal-axis realization is char-
acterized by both the observability grammian W and the controllability grammian K
being diagonal. In general, these grammians are the solutions of the two following
p X p Lyapunov equations [5]:

K=FKF'+TT', W =F'WF +h'h,
and are also explicitly given by

Tt
TF!
K=[TFTFTF°T ---]| TF” | =cC’,
TF"

h
hF

W=[h'Fh'F h‘F’h’---] | hF? | =0'O.
hF?
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In linear systems terminology, the infinite-sized, p-dimensional operators O and C
are known as the extended observability matrix and the extended controllability matrix,
respectively. Note that these matrices and the two grammians are not unique for a given
transfer-function, instead they change with the state coordinates. A transformation of
the state from x to Q !x changes the extended observability matrix to OQ and the
extended controllability matrix to Q~'C, while changing the grammians to Q”‘KQ’_l
and Q'WQ. A transformation Q that simultaneously diagonalizes both the grammians
can always be found, and a principal-axis realization always exists [4]. In fact, for any
given transfer-function, many such principal-axis realizations exist, and the balanced
realization is one of them.

A realization is said to be internally balanced [1] if the grammians K and W are
not only diagonal, but also equal to each other:

K=W=2, whereZ=diag (01,02, " ,0p).

Though the operators O and C and the corresponding grammians W and K depend

on the coordinates of the state, the eigenvalues of the product WK are coordinate-invariant,

and in fact, are equal to ¢, ¢3, - - -, af,. Therefore, the elements of the balanced gram-

mians are invariant parameters of the system, and a model-reduction criterion based on
these elements will depend on the system’s input-output behavior, and not on the state-
coordinates. In balanced model reduction [1], [6], the full-order system is first balanced,
and then the partial state for the reduced-order system is constructed from the elements
of the balanced full-order state with the largest o — .

2.2. The notion of state. Intuitively, the state of a (minimal-order) system is a
summary of the information in the past input history that is both necessary and sufficient
to predict the future output. In fact, from the state-transition equation of the model:

x(t+1)=Fx(t)+Tv(?),
we can see that the state is a linear combination of the past inputs:
x(8)=To(t— 1)+ FTo(t—2)+F?To(t—3)+F3Tv(t—4)+ - - - =CV~(¢)

where C is the extended controllability matrix defined earlier, and V ~ is the following
vector of past inputs:

V() =[v—1)v(—2)v(—3)v(t—4) -]
Moreover, from the output equation:
y(t)=hx(1)+v(s),

we can see that if the future input is zero, i.e., if v(k) = O for all k = ¢, then the present
and future outputs are completely determined by the present state as y(¢ + k) = hF*x(¢)
forall k= 0, or

Y Y (¢)=0x(1)

where O is the extended observability matrix defined earlier, and Y * is the following
vector of present and future outputs.1

Y () =[y(0) y(t+ 1) y(t+2) p(t+3) - -1

Hence, the extended controllability matrix C maps the past input V ~ into the state
x, and the extended observability matrix O maps the state vector into the future output

! The future-input vector V * and past-output Y ~ are defined just as are Y * and V ~, respectively.
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Y *. Together, the composition H = OC is an operator from the past input to the future
output. The same conclusion may be arrived at by noting that the (m, n)th element of
H=0CishF" 'F" T = i(m + n— 1) so that the composition H is the Hankel matrix
that appears in the following equation:

yor 1 [ i i@ i3y [ ove=1T
y(t+1) i(2) i(3) i(4) --- v(t—2)
y(t+2) i(3) i(4) i(5) --- v(t—3)
y(t+3) =1 i(4) i(5) i(6) --- v(t—4)
b - L : d L- -

i(0) 0 0-- 11 vy 7
i(1)  i(0) 0--- v(t+1)
i(2) i(1) i) - v(t+2)
+ i3 i) i) - v(t+3)
or
(2) Y*=HV +LV*™

Knowing that the Hankel matrix in (2) can be factored as H = OC, (2) can be rewrit-
ten as

Yt=0x+LV*'t' wherex=CV".

Hence, H is a two-stage operator that maps the past input V ~ into the state x, and the
state x into the future Y *. Consequently, the rank of H is equal to the size of the state
vector that in turn, is equal to the model order p.

Let the singular value decomposition (SVD) of H be

H=UzV"

One choice of factors O and C is UZ!/?2 and Z!/2V*, respectively. Any other choice
corresponds to different coordinates for the system state. In the chosen coordinates, both
grammians W and K are equal to Z. This establishes that the singular values of H are
in fact, equal to the system’s coordinate-invariant parameters oy, - - -, o,. Hence, the
deterministic identification algorithm of [ 3] that constructs a low-order system from the
principal components in the SVD of H, uses in effect, the same partial-state selection
criterion used in balanced model reduction.

Because of the system’s time-invariance, O and C (in any coordinates ) have special
structure, they satisfy

(3) OF=0% and C¥'=C"}

where O4 is obtained from O simply by deleting the first row, and shifting all other rows
one step up.

2.3. The stochastic model. When the input v(¢) to the model of (1) is a white
random process of variance p, the system-invariants o, take on a new interpretation.
Here, by white, we only mean second-order white, i.e., a sequence of zero-mean, uncor-
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related random variables, all with the same variance:
o m=0,
0, m#0

where E[-] denotes the expectation operator. Then the state covariance matrix P =
E[xx'] satisfies the Lyapunov equation:

P=FPF'+TT,

E[v(t)v(t+m)]=[

and is equal to p times the controllability grammian K. The covariance of the output
process y(t) is

hPh' + p, m=0,
r(m)=E[y()y(t+m)]= [hF"”' gm0
where g = FPh' + pT = E[x(¢ + 1)y(¢)]. The output power spectrum
S(z)=pH(2)H(z H)=Z*2r(m)z™

is given in terms of the system parameters as:
r(0)

>

Since the state-variance P is p times the controllability grammian K, the variance

of state-element x; in internally balanced coordinates is simply p o because

S(z)=R(z)+R(z™") where R(z)=h(zI-F) 'g+

P=pW=p2Z;

for an internally balanced realization. However, because of phase ambiguity in stochastic
systems when only output covariances {r(m)} are known, different kinds of balancing
have been proposed in the context of the stochastic system approximation problem.

2.4. Phase ambiguity. If we reflect some (or all) system-zeros across the unit circle
in the z-plane and rescale the transfer function to make the direct feedthrough term i(0)
equal to 1, we get a new system that can still generate the process y(¢) when it is driven
by a different white noise sequence.? Thus, when we wish to identify the system from the
output process alone (without knowledge of the input process) or from output covariances,
there is ambiguity as to the exact location of the system-zeros. The restriction that the
system be causally stable constrains all poles to be within the unit circle, but because of
the ambiguity about zero locations, there are many causally stable models that have the
same poles, and generate the same output covariance sequence r(m) when driven by
different white-noise processes.

However, the triple (F, g, h) can be determined uniquely (modulo coordinate trans-
formations to (Q 'FQ, Q!g, hQ)) from the output covariance sequence. This means
that the various models that generate the same covariance sequence, can each be put in
state-coordinates where they all have a common state-feedback matrix F, the same output
matrix h, and the same vector g = E[x(¢ + 1)y(¢)]. However, they differ in the input
matrix T, input variance p, and state-variance P. We thus have a number of covariance-
equivalent models of the form:

Xpu(2+ 1) =Fx,,(2) + Tru 0 (2), (1) =hx,, (1) + v,(2),

2 The two white-noise processes are related by an all-pass system of order p.
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all of which have unity feedthrough, and the same F and h matrices, but have differ-
ing Ty, matrices, and are driven by different white input sequences v,,(¢) with different
variances p,,. Yet they all generate the same output process y(¢). Their states and
state-variances P,, = E[x,,x/,] are different, but every P,, satisfies the algebraic Ric-
cati equation:

P,=FP,F'+(g—FP,h')(r(0)—hP,h’)"'(g—FP,h’)".

This can be verified by replacing T,, and p,, in the Lyapunov equation P,, = FP,, F’ +
P T T by Ty = pr_nl(g - Ftht) and p,, = r(0) — hP,,h".

In Faurre’s pioneering work on stochastic realization [7], [8], he has shown that
the state-variance of the minimum-phase model (that has all its zeros inside the unit
circle) is the smallest solution P, of the Riccati equation.® It was later established [9]-
[11] that the largest solution P, is the state-variance of the maximum-phase model,
having all its zeros outside the unit circle.

2.5. Stochastic definition of state. In this section, we will develop a stochastic def-
inition for the state of a system, along the lines of [12]. For a zero-mean »n X 1 random
vector Y = (¥, V2, -+ +, ¥»)', Span (Y) will denote the Hilbert space of all random
variables that are linear combinations of { y;, y», -+, ¥»}. The inner product on this
space of zero-mean random variables is the cross correlation, and the dimension of this
space (upper bounded by ») is the largest number of mutually uncorrelated random
variables in the space. We will use the notation x\Y to denote the linear, minimum-
variance estimate of zero-mean random vector x from the zero-mean random vector Y.
It is also the orthogonal projection of x onto the subspace Span (Y ). From elementary
estimation theory [13], we know that

(4) x\Y=E[xYI(E[YY ‘] 'x.

When the input is a white-noise process, the past and future inputs are uncorrelated,
and as a result, the two components of the future output vector Y * from (2)

Y*=HV +LV"*

are orthogonal. Consequently, the orthogonal projection of Y * on Span (V ~) must be
HV ~ itself,

ie, Y'\V =HV~,

However, we have already seen that this information is completely summarized in the
state, since HV ~ = Ox, and x = CV . Therefore,

(5) Y'\V =HV ™ =0x, x=CV~,

a mathematical restatement of the fact that the state condenses all the information in
the past input that is sufficient for predicting the future output.

This input-output notion of state can be further refined to a past-future notion based
entirely on the output process. While (5) is satisfied by all the covariance-equivalent
models that generate y(t), the following past-to-future definitions of the state will depend
on the zero locations of the model.

In each of the covariance-equivalent models (F, T,,, h, p,,), the output y(z) is
obtained causally from v,,(¢), and consequently, Y ~ lies in Span (V ;) for every m.
However, only the minimum-phase model has a causally stable inverse, and only vp;,(2)

3 A symmetric matrix A is said to be bigger than another symmetric matrix B if A — B is nonnegative
definite.
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can be obtained causally from the output y(¢).* Therefore, V p, lies in Span (Y 7), but
none of the other past inputs V ;, lie in Span (Y 7). As a direct consequence, we have
the following equality of spaces:

Span (Y 7) = Span (V min);

however, Span (Y 7) is a proper subspace of Span (V 1), the space spanned by the past
inputs to every nonminimum phase model. As a result of the above equality, the state
of the minimum-phase model can be also interpreted as a summary of the past output
history (instead of past input history) for predicting the future output.

2.5.1. The minimum-phase model. The minimum-phase model:
(6) Xmin (£+ 1) = FXmin (£) + Trmin Umin (£),  Y(£) = hXmin (£) + Umin (£)
has a causally stable inverse obtained by simply rearranging the forward model’s equations:
(7)  Xmin (£+ 1) =(F = Tmin h)Xmin (£) + Tnin y(£),  Vmin (£) = —hxmin (1) +y(2).

The minimum-phase property ensures that the zeros of the model of (6) that are the
eigenvalues of (F — T, h) lie within the unit circle. But these eigenvalues are precisely
the poles of the inverse filter of (7), hence the inverse filter must be stable. Thus the
state-process Xmin (£) as well as the input process v, (¢) can be obtained causally from
the output y(¢) using the above inverse filter.

The state transition equation of the inverse filter indicates that

()

- —T,, (F=T. gy | YD Gy
xmm (t) - (Tmm (F Tmln h)Tmm (F Tmll'l h)szll'l ) y(t+ 2) \PY (t)'

Moreover, since Span (Y ~) = Span (V pin), we have

YN\Y =Y \V5in=HV qin = OXnin.
Combining the last two equations, we get
(8) Xmin=YY ™ and Y*\Y ™ =OXpin,

meaning that the state of the minimum-phase model summarizes the past output history
for predicting the future output.

As a footnote, (8) indicates that the projection of y(¢) on the past space Span (Y 7)
is nothing but

y(t)\Y = hxmil‘l (t)
Therefore, the part of y(¢) that cannot be predicted from the past Y ~ is simply
V(1) — hXpin (2) = Opin (£).

Thus, the input white noise to a minimum-phase model is the innovations process [14]
for the output, and consequently, the minimum-phase model is also called the innovations
representation of the output process [9], [15].

3. Balancing of stochastic systems.
3.1. Balanced model reduction. If the full-order model is completely given, and the
question is one of model reduction, we could apply Moore’s balanced model reduction

4 The subscript min on x, T, and v indicate that they refer to the minimum-phase model only.
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procedure in a fairly straightforward fashion. As noted earlier, in internally balanced
coordinates, P = pW = diagonal matrix p Z, whose (k, k) entry poy is the variance of
the element x; of the balanced full-order state. The partial state for the reduced-order
model may be constructed from the elements x; of the balanced full-order state with the
largest variances.

When the full-order model is internally balanced, the different elements x; of the
full-order state are uncorrelated (since P is diagonal ), and their contributions to energy
in the future-output, are also decoupled (since W is also diagonal). In addition, for each
state-element Xy, its variance Py is proportional to Wy, that measures its output-energy
contribution. Therefore, the significance of x; can be measured by its variance Py alone.
Hence, balanced model reduction picks out those components of the state space, that
have large variances and also make a large contribution to the future output.

It turns out that such a model reduction scheme was in effect, proposed by Fujishige,
Nagai, and Sawaragi [ 2] much before the concept of balancing was introduced. Fujishige,
Nagai, and Sawaragi used a least-squares prediction-error criterion to justify their model
reduction algorithm.

3.2. Fujishige model reduction. Recall the input-output definition of state in (5):
Y'\V =HV ™ =0x, x=CV"~.

The space Span (Ox) is coordinate-invariant, and its dimension 7 is the order of the
model. The full-order state is any basis for this space. For model reduction, the partial
state has to be obtained from the significant components of this full-order state space.
An optimal compression of Ox that retains the maximum information is provided by
the principal components in its Karhunen-Loeve (KL) decomposition. Let the eigen-
decomposition of its covariance matrix E[(Ox)(0x)'] = OPO' be

OPO'=UZ'= 3 oiuul
k=1

where 7 is the model order, and the eigenvalues are arranged in nonincreasing order
6,2 03 Z *++ Z 0,. Then, a KL decomposition [16] of Ox is

Ox= 3 (u0x)u,

k=1

and the random variables u}Ox that are the scalar coefficients in the above expansion,
are uncorrelated with each other, while their individual variances are ¢%. Let U, be
composed from the p eigenvectors corresponding to the p largest eigenvalues. Then, a
principal components approximation of Ox is (for p < n) [17]

P
2. (ukOx)uy
k=1

that is completely summarized in
Xpartial = Utl OX .

The Fujishige Model Reduction Algorithm chooses the above partial state because
it has the smallest error in predicting the future output. Among all p-sized vec-
tors from Span (Ox), the above choice minimizes the least-squares prediction error
E"Y+ - Y+\xpartial ”2 [18]’ [19]
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3.2.1. Relation to balanced model reduction. Recall that Ox equals HV ~. Taking
the covariances of both sides, we arrive at

OPO'=pHH',

implying that the eigenvalues of OPO' are p times the squared singular values of the
infinite Hankel H. The singular values in turn, are equal to the system-invariant param-
eters used in balanced model reduction. Thus, Fujishige’s method uses the same partial
state selection criterion as balanced model reduction. Furthermore, it can be verified that
both methods obtain the same reduced-order model. In effect, balanced model reduction
was first proposed by Fujishige, Nagai, and Sawaragi using a stochastic justification.

When only output covariances are available, and the full-order model is not given,
the situation is very different. Because of phase-ambiguity, there is a whole class of full-
order models that could have generated the given covariance sequence, and a balanced
model reduction of each of them will lead to not only different phase-responses, but also
to different approximated covariance sequences, and different power spectra. The first
two kinds of balancing that are described below, work with system-invariant parameters
that are common to all the full-order covariance-equivalent models that generate r(m).
Neither of the two approaches internally balances any of the covariance-equivalent models
in Moore’s sense.

3.3. Covariance balancing. Although the states of the covariance-equivalent models
Xm(t+ 1) =Fxp (1) + T om(2), (1) =hx,,(1) + vm(2)

that generate the process y(¢) are different, they all have the same correlation with the
past output, i.e.,

G=E[x,Y ]
is the same for all covariance-equivalent models, and is in fact,
G=[g,Fg,F’g,Fg, -]

where g = FP,,h’ + p,,T,, is the same for all models.?
The new grammian J = GG' that satisfies the Lyapunov equation

J=FJF'+gg'

and is common to all the covariance-equivalent models, is the controllability grammian
for the new causal system (F, g, h) whose impulse response is {r(0)/2, r(1), r(2),
r(3), ---}, and transfer function is R(z). Just as for the other grammians, coor-
dinate transformations effect J, however, the eigenvalues of the product WJ are
coordinate-invariant, and common to the entire class of covariance-equivalent models
(F, Ty, h, pp).

We will say that this class of models is covariance-balanced if

W = J =adiagonal matrix D.

Taking a hint from balanced model reduction, we could try to construct a class of reduced-
order approximate models by retaining only those rows and columns of the covariance-
balanced (F, g, h) matrices corresponding to the p largest entries in this diagonal matrix

5 This indicates that X,, \Y = = Xmia for all m, explaining why Py, = P, for all m.



BALANCED APPROXIMATION OF STOCHASTIC SYSTEMS 51

D. However, there is no guarantee that the approximated pseudocovariance sequence
r(0), m=0,

Fim)=1 ..
hE '™ -1g, m+0

is nonnegative definite. As a result, the reduced-order Riccati equation

P = FPF'+ (g — FPh')(r(0)— hPh) ' (g — FPh)’

may not have any positive-definite solution. In other words, we may not be able to find
any model that generates the pseudo-covariance sequence 7(m). A simple, ad hoc solution
is to add a suitable constant to r(0).

3.4. Desai and Pal stochastic balancing. The state-variances of the minimum-phase
and maximum-phase models ( Py, and P, respectively ) change with coordinate trans-
formations. If Xpi, is transformed to Q ~'Xpin, then Py, and P, get transformed to
Q 'Ppin Q7" and Q 'xpmax Q. However, the product Pk, Pui, undergoes a similarity
transformation to Q'Pyly Pmin Q "', Therefore, the eigenvalues of Pk, Pmin are also
system-invariants [20], [21], and like the eigenvalues of WJ, are common to the entire
class of covariance-equivalent models (F, T,,, h, p,,). This class can be coordinate-
transformed to make

Pl = Ppin = a diagonal matrix A.

In these coordinates, the class of covariance-equivalent models (F, T,,, h, p,,) is said to
be stochastically balanced in the Desai and Pal sense [21], [22]. The entries of the
diagonal matrix A are the eigenvalues of P P in any coordinate system, and are
coordinate-invariant parameters of the covariance-equivalent class.

Desai and Pal suggest constructing a class of reduced-order covariance-equivalent
models by retaining only those elements of the stochastically balanced full-order states
Xmin and Xmax that correspond to the p largest entries in the diagonal matrix A. The
justification for such a model reduction is in the fact that the entries of A are the canonical
correlation coefficients between Y ~and Y ¥, and measure the mutual information between
them. A more detailed discussion follows in the next section on approximate stochastic
realization.

3.5. Internal balancing of the minimum-phase model. In both the kinds of balancing
described above, none of the models (F, T,,, h, p,,) is internally balanced, and none of
the states x,, is centered between the input and the output. The problem here is that if
we internally balance any one of the covariance-equivalent models, all the others will be
unbalanced. Since we do not know a priori which model is the correct one, the two
above kinds of balancing do not internally balance any of the models. Instead, they work
with system-invariants that are common to all of them.

In many applications, the model’s phase-response is of no concern, and the only
purpose of covariance approximation is to smooth out the perturbations in the covariance
estimates, or to obtain a low-order rational spectral estimate. There are other applications
where the sole purpose of stochastic modeling is least-squares extrapolation /prediction
of y(¢) [23]. In general, when only the output process (or its covariances) are known,
we cannot hope to approximate the input-output transfer of the underlying system, without
any additional knowledge about the system’s phase-response or of the input process itself.
However, a balanced model reduction of the full-order minimum-phase system will ap-
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proximate the past-future interface in the output process optimally in an unweighted
least-squares sense.

We will show in the next section that an internally balanced approximation of the
minimum-phase model provides good covariance approximation, and minimizes the
least-squares error in the extrapolation/prediction of y(¢). Recall that the minimum-
phase model is internally balanced in Moore’s sense, if

Pin = pmin W = a diagonal matrix.

In these coordinates, the elements of X, are uncorrelated, and their variances are p i 0%,
where o, — s are Moore’s system-invariant parameters. Balanced model reduction of the
minimum-phase model (innovations representation) corresponding to the covariances
is achieved by retaining only the p largest ox — s.

4. Approximate stochastic realization. The problem addressed in this section is
that of approximating a perturbed covariance sequence (that may not be nonnegative
definite after the perturbation) by a low-order rational model. Because the perturbed
sequence may not be a valid covariance sequence, we cannot hope to first construct a
full-order model, and then reduce its order by one of the three balanced approximations
discussed above. We will construct reduced-order approximate models directly from the
perturbed covariance sequence. In this section, we will indicate how stochastic system
approximation based on the three kinds of balancing can be performed directly from the
covariance sequence, without constructing a full-order model, via the SVD of certain
matrices.

We will now formulate the approximate modeling problem as one of approximat-
ing the apparently high-dimensional information interface between Y~ and Y* by a
p-dimensional state Xparial-

4.1. Partial state selection. Using (4), we can verify that
Y*'\Y =HR'Y~™

where R = E(Y"Y ') and H = E(Y *Y ') are the Toeplitz and Hankel matrices, re-
spectively, formed from the covariance lags of the output process. Combining this equation
with (8):

Xmin = vY~ and Y+\Y_=0Xmin,

leads to the following observations.

(1) HR! equals O¥. Consequently, HR ~! must have rank equal to the size of the
state vector (i.e., equal to the model order p).

(2) Moreover,

HR ™'Y ™ = Oxpin,

which means that the dimension of Span (HR ™'Y 7) is equal to the model order p, and
that the state X, is any basis for this space.

Thus, the stochastic realization problem is, simply stated, the problem of picking a
basis for Span (HR™'Y ™) [24].

However, when the covariance lags are estimated from a finite record of the stochastic
process or are directly measured, then the perturbations in the lags will distort the rank
structure of HR !, It will have full rank, making the apparent state size much larger than
the true model order. Then the problem is one of constructing a partial state from those
components in Span (Y ~) that contain the most information regarding Y *. This partial-
state must “effectively” summarize the information interface between Y " and Y ~. Note
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that the problem is one of compressing Y ~ while retaining maximal information not
about Y ~, but about Y *. Hence, principal components analysis of Y ~ will not suffice
[16], [23], for the partial-state selection problem.® The compression of Y ~ into its prin-
cipal components is not appropriate because it is based on the selection of components
containing the maximum information about Y ~ itself, whereas only specific information
about Y * is of interest in the partial-state selection problem.

However, there exist in the statistical literature, generalizations of the concept of
principal components (of a random vector ) to the problem of compressing the information
interface between two random vectors (that will henceforth be referred to as the 2-vector
problem for the sake of brevity). We will present three approaches to approximate sto-
chastic realization as applications of three such generalizations.

For a zero-mean # X 1 random vector Y, the p principal components of Y

(a) Are maximally correlated with Y,

(b) Have maximum self-information in the Gaussian case,

(c) And retain the maximum reconstruction (prediction) efficiency for Y.

Generalizing these three properties to the 2-vector problem leads to the three methods
of this section.

4.2. The principal components of H. Taking a hint from the correlation-maximizing
property of the principal components of a single random vector, we could look for a
partial-state in Span (Y ~) that maximizes some measure of its correlation with Y *. For
instance, we could pick
%) pX 1sized Xpariat = ¥Y ~ to  maximize [E[Y *x’omialll 7,

constraint: ¥ ¥’ = I,
where subscript F denotes the Frobenius norm of the matrix. The solution to this is
constructed from the principal components of the covariance Hankel matrix H. The
rows of ¥ must be the orthonormal singular vectors of H corresponding to the p largest
singular values. If the SVD of H is

H=UDV‘=U,D,Vi{+U,D,V}

(where the subscript 1 stands for the dominant components corresponding to the p largest
singular values) then the solution to the minimization problem of (9)is ¥ = V. This
justifies the principal components approximation of H [25]-[27], that has been exten-
sively used for approximate stochastic modeling [28], [29]. We will henceforth refer to
this approximation as the PC-H approximation.

4.2.1. Relation to covariance balancing. It can be easily verified that the eigenvalues
of the full-order WJ in any coordinate system, are identically the squares of the singular
values of the infinite Hankel H. First note that H factors into the product of O and G':

H=E[Y*Y'1=E[0x,Y '1=0E[x,,Y '1=0G

since (Y * — Ox,,) depends only on the future input V ;, that is uncorrelated with the
past output Y . Hence, the rank of H is equal to the full order of the model, and one
choice of O and G is UD'/? and D'/?V *. In these coordinates, W = J = D, and so the
eigenvalues of WJ (that are coordinate-invariant parameters of the covariance-equivalent
class) are squares of the singular values of H. Thus, the same partial state selection
criterion is used in covariance-balanced model reduction and in the PC-H method. Hence

6 Note that the covariance matrix R is not expected to have rank equal to the model order, even when the
lags are exact. Hence, in the perturbed situation, a principal components approximation of R is not justified.
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the PC-H method suffers from the same problem: we can obtain (¥, g, h) for the class
of reduced-order models, but the class may be empty because the pseudo-spectrum
Re [2h(€’“I — F)~'g + r(0)] may be negative at some frequencies w. However, for
spectral estimation applications, where we are only interested in locating the frequencies
of spectral peaks [29], [30], the lack of positivity may not be a serious problem. For
more detailed discussion of the quality of the PC-H approximation, the reader is referred
to [31].

4.3. The canonical correlations criterion. This criterion was first proposed in statistics
by Hotelling [32], and later used for the partial-state selection problem by Akaike [12],
[24]. Here, any orthonormal basis Z * is found for Span (Y *), and the p partial-state
components are selected as p orthonormal random variables from Span (Y 7) that have
the maximum correlation with Z *. The constraint that the partial-state components be
orthonormal translates into the constraint

E [Xpartiat Xpartiat] = YR¥' =1,.

If R'/? is any square root of R (i.e., R = R'/?R"/?), and R™!/? is its inverse, then one
choice for Z* is R™!/2Y *, and so our problem is to
i -1 — Im-1/2
Maximize IE[R™'2Y *Xfargiat] [ 7= R 2H¥|| .
constraint: = p

The solution to this constrained optimization problem is constructed from the prin-
cipal singular vectors of R™!/2HR~!/2":

R7ZHR V¥ =UAV'=U A, Vi+UA, VY
where as before, the subscript 1 denotes the principal components in the SVD, and
V=VIR Y2,

Though the square root of R is not unique, different choices of R'/? will not change the
singular values A of R™'2HR ~"/?'. Although the singular vectors U and V depend on
the choice of R™'/2, the composition ¥ = ViR ™!/ is the same for all choices of the
square root.

The singular values of R™'/2HR ~'/?" are the canonical correlation (c.c.) coefficients
between the past Y ~ and the future Y * [32]. It was shown by [33], [34], that for the
Gaussian case, the c.c. coefficients between Y * and Y ~ provide a measure of the mutual
information between Y ~ and Y *. A heuristic derivation of the formula for the mutual
information between Y * and Y ~ may be found in [31].

The canonical components of Y ~ (with respect to Y *) are x, = viR™/2Y ™ and
the mutual information between each x; and Y is —0.5 log (1 — A?). Thus, the p com-
ponents from Span (Y 7) that maximize the mutual information with Y * are the p ca-
nonical components X, X,, - - * , X, with the p largest c.c. coefficients. Just as the principal
components of a random vector maximize the self-information content, the canonical-
components approximation maximizes the mutual information in the 2-vector problem.
Thus, it seems that a natural choice for the components of the partial state are the
canonical components of Y ~ that have the largest c.c. coefficients, and consequently,
the maximum mutual information (with respect to Y *). Akaike first suggested the use
of c.c. analysis for partial-state selection, and subsequently, many approximate modeling
algorithms have been proposed [22], [35], [36], that use such an approximation.

4.3.1. Relation to the Desai and Pal stochastic balancing. Desai and Pal [20]-[22]
pointed out that the nonzero c.c. coefficients between Y ~ and Y * are precisely the ei-
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genvalues of the full-order Pk, P in any coordinate system. We have seen that these
coordinate-invariant eigenvalues are squares of the nonzero entries of Py,;,, when the
covariance-equivalent class is in the Desai and Pal stochastically-balanced coordinates
P, = Pmin = A. However, we also have the following equalities: Pl = O'R™'O
and P, = YRV, Therefore, in the Desai and Pal stochastically balanced coordinates
R!/20 must equal UA'/?, and YR '/? must equal A'/?V?, for some U and V with or-
thonormal columns. However, the composition O¥ equals HR !, and so we obtain the
following equality

R 2ZHR V¥ =UAV!

where A is a diagonal matrix whose entries are square roots of the eigenvalues of
Prlx Pmin, and U and V have orthonormal columns. Thus, the singular values of
R!/2HR ~"/?' that are the c.c. coefficients between the past and the future are precisely
the square roots of the coordinate-invariant eigenvalues of Py, Ppin. The c.c. algorithm
is therefore, equivalent to model reduction via the Desai and Pal stochastic balancing.
For a discussion of the appropriateness of the mutual information criterion to the ap-
proximate stochastic realization problem, the reader is referred to [31].

4.3.2. Relation to the phase factor. Recall that the target matrix used in the PC-H
method is the Hankel H constructed from the covariance lags of the process. The co-
variance lags r(m) are the coefficients in the power-series expansion of S(z) =
pH(z)H(z™") for the full-order system. The function S(z) is called the magnitude factor
of the full-order system H(z), because on the unit circle we have S(e’*) = p| H(e’*)|%.
The information about H(e’/*) missing in S(e’*) is the phase, and this is available in the
all-pass system

H(z)

<I>(Z)=H(Z_l).

In fact, we have
p(H(2))*=S(2)¥(2).

Hence, ®(z) is called the phase-factor of the system H(z). The reason for the no-
menclature becomes even more obvious on the unit circle, where we have

) 1 ) ) 1/2
H(ef“’)=(;S(e"°)<I>(ef‘°)) )

|®(e’*)| =1,  Angle [®(e/*)]=2* Angle [H(e')].

Stochastic model reduction based on the above phase factor has also been suggested
[37], and it is closely related to c.c. analysis. It turns out that the target matrix
R~'/2HR'/?' used in c.c. analysis is related to the phase factor of the full-order, minimum-
phase system that corresponds to the given covariances. If the given covariances correspond
to the output of a large-order, minimum-phase system Hp;,(z) driven by white noise,
then the matrix R™!/2?HR /%" is equal to the Hankel matrix constructed from the
impulse-response (causal part only) of its phase factor ®(z).

CLAIM. Let the stable impulse response (inverse z-transform) of the phase
factor be

Hyin (2) < —k
Hmin(Z_l) E Gz

k=—w
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then there exists a square root R!/2 that makes the composition R™!/>?HR ~'/?' equal to
the Hankel operator

i C C3 C4°

Cp C3 C4 C5°°°
C3 C4 C5 Cg°°
C= C4 C5 C¢ C7°°° 5

and for any other choice of square root, R™'/2HR ~!/?' has the same singular values as
C, and it will lead to the same approximation.

The proof of this claim is deferred to the Appendix. We can now state that while
the PC-H method works on the Hankel operator corresponding to the magnitude factor
S(z), the c.c. approach works on the Hankel operator corresponding to the phase factor
®(z). This result is useful in demonstrating the sensitivity of the poles of Hp, (2) to
perturbations in the matrix R™'/2HR ~"/%', It is shown in Appendix B of [38], that the
first-order partial derivative of a pole 8; of the system Hp, (z) to the entries ¢, in the
Hankel matrix C is

Bi_ _grvigy_gay 7 (L omBit 1—6,,3,-)
ok Bl (1 ‘Bl)mllll( l_aMBi )gi(l_ﬁnﬁi_l

where o;, 8;, 1 = 1, 2, -+ -, p are the zeros and poles, respectively, of Hy,;, (z). Thus
when two poles are close together (as in high resolution problems where two close spectral
peaks are to be resolved), then the poles are very sensitive to perturbations in the ¢
parameters, especially when there are no zeros close to the poles. On the other hand, the
poles may not be as sensitive to covariance perturbations, because

08 _
or(m)
Hence the problem of model estimation from the covariances is numerically well

conditioned, but the use of the matrix C as an intermediate step increases the numerical
sensitivity causing finite precision errors to be magnified in the pole estimates.

4.4. The predictive efficiency criterion. The previous two approaches to approximate
stochastic modeling (the principal components of H and the canonical correlations
method) were derived by generalizing the correlation-maximizing property and the in-
formation-maximizing property of the principal components (of a random vector) to
the 2-vector problem. Recall however that the function of the partial state is to predict
the future output well. Hence, instead of maximizing its correlation with Y * or its mutual
information with respect to Y *, it might be more appropriate to generalize the recon-
struction-efficiency property of the principal components approximation to the 2-vector
problem.

The principal-components approximation of a random vector provides an optimal
data compression that maximizes its ability to reconstruct the full-sized vector. In the
partial-state selection problem for approximate modeling, we come across a similar prob-
lem, that of compressing Y ~ into a partial state that can best predict Y *. Taking a hint
from the reconstruction-efficiency of the principal components of a random vector, we
might wish to compress Y ~ into a partial state that has the smallest error in predicting
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Y *. Our partial-state selection problem is then to pick a partial state Xparia = ¥Y ~ t0
minimize E[|Y " =Y "\ Xparsia [l 2].

The inherent constraint here is that ¥ should have only p rows.” Such a criterion was
first used by Rao in multivariate statistics for the 2-vector problem [19]. Since Xpartiat =
VY -, it can be shown using (4) that

(10) Y "\x=HV¥/(VYRY')'x

and the prediction error to be minimized is Trace (R — HY/(WYRY¥')"'WH’). Equivalently,
we must choose a p X oo matrix ¥ that maximizes Trace ((VH'HY')(YR¥')™"'). The
solution to this optimization problem is as follows. The p rows of ¥ must be a basis for
the space spanned by the p generalized eigenvectors of the matrix pencil (H'H, R),
corresponding to the p largest generalized eigenvalues. If R is invertible, as is the case
when the model is strictly stable, we can obtain ¥ from the eigenvectors of HR'H'
instead.® Let the eigendecomposition (or SVD) of HR'H’ be

HR 'H'=UZU'=U, 23U} +U,23U}%

and let subscript “1” denote the principal components, as before. Then, the predictive-
efficiency criterion is optimized when

¥ =AU{HR™'

where A is any p X p invertible matrix.

Note that this solution is different from Akaike’s solution and the PC-H approxi-
mation, because under perturbations, H will be full rank and the principal components
of HR'H!, R""/?HR "/ and H are all different. Rao himself states that his generalized
principal components analysis for studying the association between two random vectors
is different from Hotelling’s canonical correlations analysis.

4.4.1. The Unweighted Principal Components (UPC) Algorithm. After choosing
the partial-state components using the predictive efficiency criterion, we still must obtain
the corresponding parameter estimates. The parameter-estimation step (Step 2) is taken
from the deterministic identification algorithm of [3]. It is assumed here that the model
order p is estimated (or given) prior to the model parameter estimation. From that point
on, the rest of the Unweighted Principal Components (UPC) algorithm is [31], [42]:

Step 1. Perform an eigendecomposition of
HR 'H'=UZ2U'=UZ1U{ 4+ U,Z3U}%
and retain only the principal components (denoted by subscript 1). Now
¥ can be any basis from the row span of UYHR ™, i.e.,
¥ =AU{HR™! for any invertible p X pmatrix A.

Different choices of A will correspond to different coordinate transformations
of the partial state. We choose

¥=372U/HR™".

7 Without such a constraint, no size compression is required, and the entire past Y ~ can be used as the
state.

8 When R is singular, the process is purely sinusoidal, and this solution is the same as the Toeplitz ap-
proximation method of [39]-[41].
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Then, (10) indicates that
Y *\Xpartial = HY (YRY") 'Xpartial,
implying that the extended observability matrix estimate is
O=HR'H'UZ{?(Z7?U'HR'H'U,Z7"?)'=U, 21

Step 2. But, the partial-state is not a ““true state” of a linear time-invariant system,
and the O and ¥ matrices do not have the required structure. Hence, as in
the deterministic identification algorithm of [3], we resort to a second ap-
proximation, and F is obtained as the least-squares solution of (see (3))

O]F = 02

where O,(0,) is formed from O by deleting the last (first) row. Moreover,
h and T are the first row and column of O and V¥, respectively. Therefore,
the parameter estimates are:

h = 1st row of O,
T = 1st column of ¥,
F=0!0,

where the superscript ' stands for the pseudoinverse.

4.4.2. Relation to internal balancing of the minimum-phase model. It can be easily
verified that the eigenvalues of HR ~'H' are precisely the squares of the state-variances
of the internally balanced, full-order, minimum-phase model; and that, consequently,
the UPC method effectively performs balanced model reduction of the full-order, min-
imum-phase system corresponding to the given covariance sequence.

We will first show that the UPC algorithm is a stochastic version of the deterministic
identification algorithm of [3]. Recall that Y *\Y ~ = Oxp, that in turn is equal to
H_;, V 7in because Xpin = Chin V min- Moreover, using (4), we saw that Y*\Y ™ =
HR ™'Y . Combining the two, we get

HR'Y ™= Hpin V min-

Therefore, the covariance matrices of the two vectors must also be the same. And thus,
we come to the rather surprising result:

HR—lHt = Pmin Hmin Hinin'

Thus, the eigenvalues of HR ~'H’ are proportional to the singular values of the impulse-
response Hankel H,;, of the minimum-phase model. Hence, the UPC method is a sto-
chastic generalization of the deterministic identification algorithm of [3] that works on
covariance data instead of impulse-response measurements.

Since the singular values of Hy,;, are precisely square roots of the coordinate-invariant
eigenvalues of WK for the minimum-phase model, it implies that the UPC method
performs balanced model reduction on the minimum-phase model corresponding to the
given covariances.

4.4.3. Some comparisons. In the previous section, it has been shown that the matrix
approximated by its dominant singular vectors in the UPC method is HH'. It also has
been shown that the matrix used in c.c. analysis is equal to the Hankel matrix built from
the impulse response of the all-pass system &(z) = Hpin (2)/Hmin (z7'). If we use the
notation I'[ -] to denote the Hankel matrix constructed from the causal part of the inverse
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z-transform of the function *-> within the square brackets, then we have
H in = I'[ Hmin (2)],
HR 'H'=T[Hpin (2)]* T[Humin (2)1",
H=T[S(2)],
R™'2ZHR™?' =T[&(z)]

where S(z) = pHm(z)Hpn(z™") and &(z) = Huin (2)/ Hein (271).

Thus the PC-H approximation uses the magnitude factor of the full-order system,
the c.c. approximation uses the phase factor, and the UPC approximation uses the transfer
function of the minimum-phase system. Alternate interpretations of the three methods
presented in this section may be found in [31].

4.4.4. Connections to other methods. We have already seen how the UPC method
relates to balanced model reduction, to the deterministic identification algorithm of [3],
and to Fujishige model reduction. It turns out that the matrix used by the UPC method
for SVD is also used in a r